
Automating Testing of Service-oriented Mobile Applications with Distributed
Knowledge and Reasoning

James Edmondson, Aniruddha Gokhale, Sandeep Neema
Dept of EECS, Vanderbilt University

Nashville, TN 37212, USA
{james.r.edmondson,a.gokhale,sandeep.neema}@vanderbilt.edu

Abstract—Automated testing of distributed, service-oriented
applications, particularly mobile applications, is a hard prob-
lem due to challenges testers often must deal with, such as (1)
heterogeneous platforms, (2) difficulty in introducing additional
resources or backups of resources that fail during testing, and
(3) lack of fine-grained control over test sequencing. Depending
on the testing infrastructure model, the testers may also be
required to fully define all the hosts involved in testing, be
forced to loosely define test execution, or may not be able
to dynamically respond to application failures or changes in
hosts available for testing. To address these challenges, this
paper describes an approach that combines portable operating
system libraries with knowledge and reasoning, which together
leverage the best features of centralized and decentralized
testing infrastructures to support both heterogeneous systems
and distributed control. A domain-specific modeling language
is provided that simplifies, visualizes, and aggregates test
settings to aid developers in constructing relevant, feature-
rich tests. The models of the tests are subsequently mapped
onto a portable testing framework, which uses a distributed
knowledge and reasoning engine to process and disseminate
testing events, successes, and failures. We validate the solution
with automated testing scenarios involving service-oriented
smartphone-based applications.

Keywords-test sequencing; distributed control in testing;
portability; knowledge dissemination; domain specific modeling
language;

I. INTRODUCTION

Automated testing of distributed, service-oriented applica-
tions generally falls into two execution models: centralized
and decentralized. In a centralized model, a testing control
service sends testing commands to services installed on
each host taking part in testing, generally in a push model.
In a decentralized model, there is no centralized control
service, and testing occurs in a purely distributed manner.
If synchronization is required, decentralized infrastructures
may use network lock files, or they may require separate
daemons with intimate knowledge of test sequencing or
custom messaging protocols.

To understand the two models, let us consider an example
where a developer would like to test a service-oriented
smartphone-based mobile application which sends a message
to an application server. Ideally, the smartphone should not
send a message to the server until the server is ready, and
suppose this should happen after 15 seconds.

In the centralized model shown in Figure 1, a control
server sends a command to launch the application server,
waits for 15 seconds, and then sends a command to the
smartphone or host connected to the smartphone, which runs
a script or launches a unit test already on the smartphone
and sends a message to the application server. If no such
script or unit test exists, a tester might emulate a message
that looks like it came from a smartphone.

Figure 1. Centralized software testing

For simple tests like this example, the centralized model
works, particularly when services or applications need to
only do one task and then exit. Additionally, the centralized
model can allow for fine-grained launch sequencing based
on time and provides a single point of configuration when
changing tests.

In a decentralized model, portable scripts (e.g., in Perl,
Python, or Ruby) are written that perform a series of steps
appropriate for the host running each script without using a
centralized controller. If coordination is needed, the scripts
may use network lock files. In the context of our example,
the first script might launch an application server, wait for
15 seconds, and then create a lock file called “server.ready”
on a network file system. A second host runs a different
script that keeps checking the network file system for a file
called “server.ready”. When the file is created, the second
script may launch another script or service to automate a
smartphone sending a message.

The decentralized model is portable, elegant and intuitive
and avoids any type of centralized messaging bottleneck
or single point-of-failure. It also allows for moving scripts
between hosts and not binding the testing infrastructure to
a single host or port configuration, which may change as
hosts go in and out of service. For clouds, LANs, and grids,
decentralized testing infrastructures are highly appropriate,
intuitive, and may be the only real available solution when
host/port information are unknown before an experiment is
swapped in (e.g., in a cloud), without the cloud API exposing
the information directly.

One of the major issues with the decentralized model is
the usage of network file systems as lock files for testing co-
ordination. Network file systems, however, were not created
with lock files in mind. Our extensive experience conducting
decentralized testing over local area networks reveals that
network file systems, such as the widely-used Network File
System (NFS), make no guarantees that local caches would
ever be updated with the lock files. Moreover, in practice,
timing delays could be thrown off by several minutes, even if
the lock file appears at all. A custom communication model
built on top of TCP or UDP could potentially solve this
issue, but we do not observe this approach being used in
traditional testing solutions.

While centralized models can avoid network file systems,
they are tightly coupled to hosts, present a single point-
of-failure (the testing controller), and the configuration of
the controller can become cumbersome as tests become
more complex, especially when services need to be launched
in parallel with different timing delays. Additionally, most
centralized models are not portable to all operating systems
and instead cater to a specific architecture (e.g., Windows).

In addition to these sequencing and portability concerns,
the testers need to be able to codify and debug their test
concerns with an intuitive interface. A cumbersome, unus-
able infrastructure is unlikely to benefit developers. From
all these concerns, we form the following requirements of a
distributed, automated testing infrastructure.

1) It should support heterogeneous OS platforms, net-
working platforms and topologies

2) It should allow for dynamic sequencing of tests based
on testing events, successes, and failures

3) It should be host-agnostic and allow for moving test
setups easily to other nodes (e.g., in a cloud)

4) It should allow for seamless recovery from node
failure, and facilitate the creation and integration of
backup testing entities

5) It should be easily configurable
Our solution to address these requirements brings together

the advantages of centralized and decentralized approaches
without suffering from their individual drawbacks. In partic-
ular, it automates the testing of distributed service-oriented
applications, illustrating the approach on case studies drawn
from smartphone-based mobile applications. Our solution

is realized as an open-source tool kit called KATS (KaRL
Automated Testing Suite). KATS is based on an underlying
framework called the Knowledge and Reasoning Language
(KaRL) engine [5] available from madara.googlecode.com.

The rest of this paper is organized as follows: Section
II details prior work relating to automated testing infras-
tructures; Section III presents an outline of our solution ap-
proach to distributed, automated testing using a DSML and
distributed knowledge and reasoning; Section IV discusses
examples of case studies that mimic real-world, distributed
black box testing that KATS is being developed for; Sec-
tion V outlines some performance related experiments; and
finally Section VI presents concluding remarks.

II. RELATED WORK

A vast majority of networked testing infrastructures [21],
[3], [4], [10] utilize a centralized controller. This centralized
paradigm extends to most deployment [15], [14] and testing
instrumentation technologies [14], [23], [24], [8] as well.

Though these related tool suites do not support truly
distributed test scheduling and automation, they often do
include useful instrumentation tools [23] that allow for real
time performance analysis – which we do not include in
our tool suite at the moment. Other instrumentation systems
place themselves in between applications and the underlying
middleware or networking layer [22]. Our solution relies
on distributed blackbox testing without any requirement for
hooks into the operating system or services to be tested.

Model-driven testing systems exist for centralized or non-
distributed systems [7], [20], [6], [11], [1]. Other systems use
a generic programming approach [12] for functional testing.
Both these types of systems demand intimate knowledge
of internal behaviors of the application or service being
tested – often requiring code insertion into the application
or modeling/reading of source code.

Recent work using domain-specific modeling in testing
with mobile phones appears in the literature [18], but there
are many key differences between the two approaches. We
do not require a hardware modification to directly send key
events to the phone and instead rely on the Android Debug
Bridge which is part of the Android SDK. Additionally,
we offer automated and barriered test cases in contrast to
interactive sessions between users and the phone in [18].

We are unaware of prior work using distributed knowledge
and reasoning in automating networked testing, nor have
we seen prior art using an anonymous publish/subscribe
(pub/sub) paradigm to coordinate and sequence test exe-
cution among generic networked processes or programs.
Scripted distributed testing using pub/sub exists [25] but it
requires a networked file system and customized scripting
to sequence tests and suffers from all of the NFS problems
mentioned in decentralized testing in Section I.

III. AUTOMATED TESTING FRAMEWORK FOR
SERVICE-ORIENTED DISTRIBUTED APPLICATIONS

This section describes our solution approach to realizing
automated testing of distributed, service-oriented applica-
tions focusing on mobile services and applications. The
contributions of this solution are as follows:

1) A portable process and process group specification
that addresses Requirement 1 by utilizing the Adap-
tive Communication Environment (ACE) [19], which
has been ported to most platforms including Linux,
Windows, Mac, Android, and iOS (see Section III-A).

2) A portable knowledge and reasoning engine called
KaRL [5] that processes testing events, successes and
failures (Requirements 2, 4) and distributes knowl-
edge across the testing network via an OpenSplice
DDS transport [17]. DDS is an anonymous pub-
lish/subscribe protocol that is network architecture
portable (Requirement 1) and helps us remain host-
agnostic (Requirement 3) (see Section III-C).

3) A middleware solution called the KaRL Automated
Testing Suite (KATS) which integrates and config-
ures KaRL and standardizes the reasoning operations
into a process lifecycle that facilitates fine-grained
sequencing (Requirement 2), and conditions for start-
ing or using backup services (Requirement 4) (see
Section III-B).

4) Our solution provides a domain-specific modeling
language (DSML) [16] for visualizing test sequences
and parameters in an intuitive way (Requirement 5).
From this DSML, we generate test configurations for
the decentralized agents to follow (see Section III-D).

The resulting architecture is shown in Figure 2.

Figure 2. Overview of Solution Architecture

A. Processes and Process Groups

Processes in the KATS DSML are organized into pro-
cess groups which dictate how individual processes are
configured and launched. Each process has over a dozen
configuration settings to affect changes in OS scheduling,
file I/O, test sequencing, and logging, and we accomplish
OS portability by using the Adaptive Communication En-
vironment (ACE) middleware, which supports a wide range
of operating systems–including mobile phone platforms like
iOS and Android. Among the more useful settings for

services supported in the current version of the KATS DSML
are the following:

• Real-time scheduling at highest OS priority, which
ensures minimum jitter, fewer context switches, and
higher priority for tested applications.

• Executable name, working directory, and command-line
arguments for fine-grained control of applications that
are launched and what configurations and parameters
they will be started with.

• Redirecting stdin, stderr and stdout to files for emulat-
ing user input and flexible file logging. Any redirection
from or to a file is buffered by the OS, which minimizes
jitter and reduces the time spent in OS calls - which
are expensive.

• Kill times and signals (POSIX) for errant applications.
Even on non-Unix operating systems (e.g., Windows),
we allow for termination of applications after a speci-
fied time delay if the application does not return first.
This feature is configurable by the tester.

• Test sequencing information (e.g., preconditions and
postconditions).

These settings allow for flexible management of each
application or service launch within a process group. Process
groups have additional settings indicating whether to launch
the processes in the group in parallel or in sequence. Each
process group also includes the settings listed above except
for executable name and command-line arguments. This
expressiveness for process and process group settings is
part of our solution to address Requirement 1 (test settings
portable across heterogenous OS platforms).

B. Configuring Test Sequencing

Processes in the KATS infrastructure can be sequenced in
two complementary ways: temporal delays and conditions.
Temporal delays occur after KATS conditions have been
checked. These conditions come in three supported types:
barriers, preconditions, and postconditions.

The sequence of these temporal delays and conditions
is shown in Figure 3. Barriers are groupings of processes
or process groups that must rendezvous to the same point
before moving onward with process launching. Barriers
require setting a process id and the number of processes
expected to participate in the barrier event.

After the barrier, preconditions are checked against the
local context within that represent conditions that must be
true before the process may be launched. The application
is then launched and its return code is saved into the
KaRL variable .kats.return, which allows for postconditions
to feature logics that check whether or not the application
succeeded or failed based on the return code (the exit value
returned by the process). Postconditions may also make
global state modifications, which may satisfy other appli-
cation or service preconditions. Temporal delays, barriers,
preconditions, and postconditions can be specified on either

Figure 3. KATS Process Lifecycle

a process or process group level. These lifecycle elements
are the foundation of our solution to meet Requirement
2 (dynamic sequencing of tests based on test progress or
failure).

C. Augmenting Decentralized Testing with Knowledge and
Reasoning

The process lifecycle outlined in Section III-B provides
the infrastructure for meeting Requirement 2, but we still
need a communication and reasoning mechanism for dis-
tributing knowledge and learning from testing events, suc-
cesses, and failures. In this section, we look at the distributed
knowledge and reasoning engine we developed called the
Knowledge and Reasoning Language (KaRL) engine [5].

KaRL allows developers to manipulate knowledge via
expressions in a programming logic which are evaluated
against a local context (see Figure 4). The KaRL reasoning
engine mechanisms used for evaluating logics allow for
accessing or mutating knowledge variables and provide fine-
grained debugging capabilities for global knowledge state in
an atomic, thread-safe manner.

Figure 4. KaRL evaluates user logics against a local context, which is
then synchronized with other contexts

The underlying reasoning engine mechanisms create
knowledge events that are disseminated based on whether
they are considered local (i.e., the variable begins with
a period) or global (i.e., anything else) and whether or

not there are interested software entities in the network
that would like information on the published knowledge
domain. Once the knowledge events in KaRL are ready to
be disseminated, they can be sent to the appropriate entities
using an underlying transport mechanism.

The coupling of KaRL with an anonymous pub-
lish/subscribe paradigm fits our knowledge and reasoning
needs for testing in the following ways. First, the communi-
cation is host-agnostic–which means we do not have to do
any configuration when changing hosts or enlarging a service
cloud (Requirement 3). Second, the KaRL reasoning service
is robust to application or node failures and allows us to
seamlessly integrate backup services to take over in testing
operations, if necessary (Requirement 4). Third, we wanted
an engine that could change preconditions, postconditions,
and barriers on the fly, at runtime, and most other knowledge
and reasoning engines do not allow this without resetting all
knowledge periodically.

The KaRL engine and its underlying transports are seam-
lessly incorporated into the KATS testing framework with
very little interaction or configuration required by the tester.
The only time a tester manually works with KaRL is when
they are creating preconditions and postconditions. Though
barriers use KaRL, the user only has to specify a barrier
name, an id for this process, and the number of processes
participating in the barrier. KATS builds the KaRL logic
from this information provided by the user in the visual
DSML of their testing procedures.

We now briefly outline the KaRL solution to encod-
ing testing information into conditions for the expressed
purpose of distributed reasoning. KaRL is a knowledge
representation and predicate calculus engine built for real-
time, continuous systems. KaRL features first class support
for multi-modal knowledge values, and each knowledge
variable may be one of 264 possible values. KATS conditions
(i.e., barriers, preconditions, and postconditions) are KaRL
expressions that take the following form Predicate =>
Result, which can be read as “if the Predicate is true then
evaluate Result.” By default, Predicate is true in the KaRL
language, and KaRL expressions may be chained together
with the Both operator ;. This operator ; simply means that
both the left and right expression should be evaluated.

For an example of a KaRL expression that can be used in
a KATS condition, consider the following possible postcon-
dition: server.finished => (no.backup => all.tests.stop
= 1) . This KaRL expression will check the variable
server.finished and if it is not zero (i.e., true), then we
will check if there is a backup server available. If no.backup
has been set to anything but zero, we then indicate that all
tests need to stop by setting all.tests.stop to 1.

KaRL supports most multi-modal logic operations and
conditionals including ==, !=, &&, and || and mutations
on knowledge, including +, −, ∗, /, %, where the latter
three are multiplication, division, and remainder or modulus.

For a more comprehensive listing, please see the project
site. See Section IV for specific, simple examples of how
KaRL expressions offer powerful sequencing capabilities to
a tester.

D. Domain-Specific Modeling

KATS provides a modeling front-end (DSML) to over-
come mundane and erroneous tasks handled by the testers
(Requirement 5). The KATS DSML comprises a UML-based
meta-model developed using the open-source and freely
available Generic Modeling Environment (GME) [13] to
codify the process lifecycle and all reasoning operations
in a highly configurable way. This DSML has four key
components that users can create and configure: processes,
process groups, hosts, and barriers. The DSML in turn
generates an XML file that is interpreted by KATS tools.
If testers do not wish to use the visual DSML, they can
encode simple XML files according to the KATS schema.
We show example testing XML files in Section IV.1

IV. DEMONSTRATING KATS ON CASE STUDIES

In this section we present experimental scenarios that
highlight typical distributed testing configurations. These
configurations feature service-oriented applications using
smartphones connected to hosts because these scenarios
represent the types of experiments we are currently working
on for our sponsored R&D projects. To concretize our case
studies, we assume that the smartphones used in each of
these examples are Android phones that allow for instrumen-
tation of application launches through the Android Debug
Bridge [2].

A. Sequenced Smartphone Scenario

In our first test case, five smartphones are connected to
a server and testers are interested in determining if the
server will receive the five smartphone requests in the correct
order with no arbitrary temporal delays between them.
Specifically, the testers want to start the gateway service,
wait for 15 seconds, and then send a message from Phone1,
then Phone2, Phone3, etc. We assume that all smartphones
are connected by USB to the same host and the server resides
on its own host.

In KATS, a model is created that creates a barrier named
SimplePhoneSequence, which has six processes and
IDs from 0..5 inclusive and arbitrarily assigned. The five
phone processes can be setup in one of two ways and
both require an initial step of launching the server with
no preconditions or postconditions. Additionally, we can
sequence the phones in two different ways: (1) no pre- or
post-conditions and (2) with pre- and post-conditions.

The first option requires that KATS process group launch
all the phone instrumentation scripts in parallel (a single

1We do not provide details of the modeling environment due to space
limitations, and since it is optional in KATS.

element added to the process group XML configuration
file). This configuration is by far the easiest to setup, and
requires only setting command line arguments for the phone
scripts (for the user-defined application logic) and possibly
redirecting stderr and stdout to files for logging.

Figure 5. Generated XML from DSML for the Sequenced Smartphone
Scenario

The second configuration possibility requires that Phones
1..5 have preconditions and/or postconditions set according
to settings shown in Table I. Phone2 depends on Phone1
completing, Phone3 depends on Phone2, and so on. With
this intuitive mapping of preconditions and postconditions,
we have accomplished distributed testing execution with no
operating system sleep calls and no centralized controller.
The XML generated from the visual KATS DSML is shown
in Figure 5.

Table I
PRECONDITIONS, POSTCONDITIONS, AND TEMPORAL DELAY IN THE

SEQUENCED SMARTPHONE SCENARIO

Name Pre Post Delay

Phone1 Phone1.done=1 15
Phone2 Phone1.done Phone2.done=1
Phone3 Phone2.done Phone3.done=1
Phone4 Phone3.done Phone4.done=1
Phone5 Phone4.done

B. Backup Service for Smartphones Scenario

The testers have acquired a backup server host, and they
want to create tests that have phones switch over to the
backup server if the main server starts dropping connections.
To complicate the scenario, testers bring in three more
machines and attach the five phones to random machines.
The three phones are blasting clients that send 100 messages
a second to the gateway service. If any of these scripts fail
to send their message, they exit with a return code of 1.
Otherwise, they return a 0 for success.

The two other phones start only if the blasting clients fail
with a return code of 1. No phone should try to contact a
server until 15 seconds after the gateway service is ready,
and all phones should be killed after 3 minutes regardless of
whether they succeed in contacting the main server or not.
We assume the backup gateway service is launched along
with or sometime after the main gateway service.

With KATS, the testers can produce this more complicated
sequencing scenario with minimal configuration of precondi-
tions and postconditions shown in Table II.2 “.kats.return” is
the return value of the launched process (in this case one of
the blasting clients). The postconditions here indicate that “if
my return value is non-zero, set the global variable backup
to 1.” The other two phones have preconditions that say “if
the global variable backup is non-zero, launch my process.”
In this way, we facilitate the testing scenario created by the
testers, and we can move these process groups wherever we
need to in the network or cloud.

Table II
SETTINGS FOR PHONES IN THE BACKUP SCENARIO

Name Pre Post Kill

Phone1 .kats.return => backup=1 180
Phone2 .kats.return => backup=1 180
Phone3 .kats.return => backup=1 180
Phone4 backup 180
Phone5 backup 180

To implement this same solution with a centralized model
would require a custom controller with push and pull capa-
bility and may require multiple versions of testing services
customized to a particular operating system. In KATS, we
get this cross-platform functionality included.

V. EVALUATING KATS

In this section we briefly describe performance infor-
mation regarding our testing infrastructure KATS. Though
very few testing infrastructures are concerned with latency
and performance, decentralized service-oriented software
can often have a high overhead especially in group com-
munications like barriers. Because our solution is novel in

2Generated XML is not shown due to space limitations.

how it disseminates data to a testing infrastructure, it is
important to investigate whether KATS features come at a
high performance cost.

We divide these performance metrics into two sections:
condition latency (the time it takes for a precondition or
postcondition to reach other interested hosts on a local area
network) and barrier latency (the time it takes for a group of
distributed applications to barrier together across a network).

A. Experimental Testbed Setup

Unless specified otherwise, all experiments were con-
ducted on five IBM blades with dual core Intel Xeon
processors at 2.8 GHZ each and 1 GB of RAM running
Fedora Core 10 Linux. Each blade is connected across
gigabit ethernet and networked together with a switch. The
code was compiled with g++ with level 3 optimization, and
each test featured a real-time class to elevate OS scheduling
priority to minimize jitter during the test runs. This testbed
is similar to the one we are using for sponsored research.

B. Measuring Condition Latency

Condition latency is the time it takes for a precondition or
postcondition of one application to reach another application
across the network. Recall that in testing, a precondition is a
condition that must be true before an application can launch.
Consequently, this latency between the setting of a variable
in one part of the network and the evaluation of this data in
interested testing entities is an important metric to have.

Setup. Two applications (App 1 and App 2) were
launched on two separate hosts. Each application was con-
figured with conditions indicated in Table III, and then
the applications were launched repeatedly. These conditions
create a roundtrip latency time on each host. We take this
roundtrip latency time and divide by two to get our averaged
latency numbers.

Table III
CONDITIONS USED FOR LATENCY TESTS

App 1 App 2

P0 == P1 => ++P0 P0 != P1 => P1 = P0

Results. The results of our condition latency tests are
shown in Table IV. These results represent average latency
for a condition to be sent and processed from one host to
the next. Each column represents the number of round trips
completed. The Ping row is the latency reported between
the nodes via the Linux ping utility. Dissem is the average
dissemination latency of KATS conditions.

Analysis. The KaRL interpreter and OpenSplice DDS
transport provide very low latency for the delivery of KATS
conditions. On our network, this allows for sub-millisecond
accuracy when a tested application’s dependencies are met.
This will vary depending on network latency in the developer

Table IV
CONDITION RESULTS

5k 25k 50k 100k 500k

Ping 114 us 114 us 114 us 114 us 114 us
Dissem 650 us 440 us 437 us 315 us 317 us

testbed. The lower the latency, the more fine-grained the test
sequencing can be, and the more expressive testers can be
with their distributed testing scenarios.

C. Measuring Barrier Latency

Barrier latency is the time it takes for a group of KATS
processes to execute a barrier operation before launching
the user-defined applications. Barrier operations are far more
expensive than setting a condition, but barriers are useful
when testers need all testing participants to be up and ready.
From our experience, all distributed testing scenarios require
a barrier, unless the individual tests do not interact with
other testing participants. Consequently, the barrier time is
an important metric because it is the overhead that must be
performed before each distributed test can start.

Setup. Five hosts with two CPUs apiece launch applica-
tions (simple sleep statements of five seconds) after reaching
barriers under different networked process stress loads. High
resolution timers are used to measure the time it takes to
complete a barrier. The tests are repeated 10 times and an
average time is reported.

Each host in these tests launched its own barrier set of 2
to 5 applications. We only have two CPUs per host, so as the
number of applications increases, no further speed increase
is possible (it is pure overhead from context switching past
2 application launches). We will discuss why we did not
connect the hosts in a LAN-wide barrier in the Analysis
section. Each barrier grouping was executed 10 times per
host and averaged. We complement the average latency
numbers with minimum and maximum observed barrier
time.

Results. The results of our barrier latency tests are shown
in Table V. These results represent latencies experienced
on a single host launching applications >= the number of
CPUs on the host. The minimum latency was the smallest
time spent in a barrier in the 50 tests. The maximum was
the largest, and the average was also for the 50 tests.

Table V
BARRIER LATENCY RESULTS

Apps per host Min Avg Max

2 0.8 ms 2.0 ms 2.7 ms
3 1.7 ms 9.4 ms 21.5 ms
4 2.4 ms 17.2 ms 17.2 ms
5 3.0 ms 17.3 ms 35.2 ms

Analysis. We use intrahost communication here to high-
light the speed and precision that the KATS system is able to
achieve with distributed processes. Within a single host, as
is the case here, the cause of deviation between the min and
max is caused by context switching. Since our experimental
machine had two cores, the deviation is very low on the two
apps test. Running this same series on a real-time kernel can
reduce the deviation, but in a networked test, the benefits will
be negligible.

We have found that barrier latencies for networked pro-
cesses across many hosts are hugely dependent on when
the distributed tests are started on each host, far more than
anything dictated by the latency of the underlying KaRL
system in disseminating knowledge shown in Section V-B.

As an example, consider the case where KATS tests will
be started distributedly via cron jobs on each host at 5:00
p.m., according to the system clock which is synchronized
with the network time protocol (NTP). Even under the
best of circumstances, this protocol guarantees accuracy
between the networked clocks in the hundreds of millisec-
onds – orders of magnitude larger than how long barriers,
preconditions, or postconditions execute in KATS or its
KaRL infrastructure outside of situations with heavy context
switching between the KATS processes and the OpenSplice
DDS daemon.

This may seem like a problem, but this is exactly the
reason barriers are recommended among test participants.
Barriers ensure that regardless of time synchronization or
order of test launches in the network, the exact sequence of
testing events will be launched precisely as specified by the
testers.

VI. CONCLUSIONS

In this paper we have described a novel, portable ap-
proach to decentralized testing automation that accomplishes
distributed test sequencing and control for service-oriented
applications. Our solution provides testers with distributed
barriers for processes involved in a test sequence, precon-
ditions for process entry that can be based on knowledge,
and postconditions that can export knowledge to facilitate
test sequencing over the network using an anonymous pub-
lish/subscribe paradigm. Testers generate XML-based test
scenarios that can be used by our solution to distributedly
automate and sequence thousands of tests in the appropriate
order.

We have validated our work with case studies involving
smartphones, client applications, and custom application
services. Additionally, we show how to use the built-in
KATS features to set knowledge based on the success or
failure of individual test processes based on their return
values.

Future work for our system includes more tools for foren-
sic accounting, performance metrics reporting for tested
applications, knowledge observers for visualizing testing

progress, and more intuitive UI design that makes conditions
easier to create, understand, and edit. All source code for this
project, including examples and case studies can be found
at our project site at http://madara.googlecode.com and is
provided under a BSD license.

REFERENCES

[1] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on java predicates. In IN PROC. INTER-
NATIONAL SYMPOSIUM ON SOFTWARE TESTING AND
ANALYSIS (ISSTA, pages 123–133. ACM Press, 2002.

[2] G. Chang, C. Tan, G. Li, and C. Zhu. Developing mobile
applications on the android platform. In X. Jiang, M. Ma,
and C. Chen, editors, Mobile Multimedia Processing, volume
5960 of Lecture Notes in Computer Science, pages 264–286.
Springer Berlin / Heidelberg, 2010.

[3] J. C. Cunha, J. Loureno, T. R. Anto, J. A. Lourenco, and
T. R. A. Ao. An experiment in tool integration: the ddbg
parallel and distributed debugger. In EUROMICRO Journal
of Systems Architecture, nd Special Issue on Tools and Envi-
ronments for Parallel Processing, pages 708–717. Springer,
1999.

[4] C. Dumitrescu, I. Raicu, M. Ripeanu, and I. Foster. Diperf:
An automated distributed performance testing framework. In
in 5th International Workshop in Grid Computing, pages 289–
296. IEEE Computer Society, 2004.

[5] J. Edmondson and A. Gokhale. Design of a scalable reasoning
engine for distributed, real-time and embedded systems. In
Proceedings of the 5th conference on Knowledge Science,
Engineering and Management, KSEM 2011, Lecture Notes
in Artificial Intelligence (LNAI). Springer, 2011.

[6] F. Fraikin and T. Leonhardt. Seditec ” testing based on
sequence diagrams. In Proceedings of the 17th IEEE in-
ternational conference on Automated software engineering,
ASE ’02, pages 261–, Washington, DC, USA, 2002. IEEE
Computer Society.

[7] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In PLDI, 2005.

[8] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko,
J. Vetter, and N. Mallavarupu. Falcon: on-line monitoring
and steering of large-scale parallel programs. In Frontiers
of Massively Parallel Computation, 1995. Proceedings. Fron-
tiers ’95., Fifth Symposium on the, pages 422 –429, feb 1995.

[9] A. Hartman, M. Katara, and S. Olvovsky. Choosing a test
modeling language: a survey. In Proceedings of the 2nd
international Haifa verification conference on Hardware and
software, verification and testing, HVC’06, pages 204–218,
Berlin, Heidelberg, 2007. Springer-Verlag.

[10] M. J. Katchabow. Making distributed applications man-
ageable through instrumentation. Journal of Systems and
Software, 1999.

[11] S. Khurshid and D. Marinov. Testera: A novel framework for
testing java programs. In In IEEE International Conference on
Automated Software Engineering (ASE, pages 22–31, 2003.

[12] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer.
Gast: Generic automated software testing. In The 14th
International Workshop on the Implementation of Functional
Languages, IFL02, Selected Papers, volume 2670 of LNCS,
pages 84–100. Springer, 2002.

[13] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom,
J. Sprinkle, and G. Karsai. Composing Domain-Specific
Design Environments. Computer, 34(11):44–51, 2001.

[14] T. Li and T. Bollinger. T.: Distributed and parallel data mining
on the grid. In Proc. 7th Workshop Parallel Systems and
Algorithms, page 2003.

[15] A. S. McGough, A. Akram, L. Guo, M. Krznaric, L. Dickens,
D. Colling, J. Martyniak, R. Powell, P. Kyberd, and C. Kot-
sokalis. Gridcc: real-time workflow system. In Proceedings
of the 2nd workshop on Workflows in support of large-scale
science, WORKS ’07, pages 3–12, New York, NY, USA,
2007. ACM.

[16] M. Mernik, J. Heering, and A. M. Sloane. When and How
to Develop Domain-specific Languages. ACM Computing
Surveys, 37(4):316–344, 2005.

[17] Object Management Group. Data Distribution Service for
Real-time Systems Specification, 1.2 edition, Jan. 2007.

[18] Y. Ridene, N. Belloir, F. Barbier, and N. Couture. A DSML
for Mobile Phone Applications Testing. In proceedings of
10th Workshop on Domain-Specific Modeling in SPLASH
10th Workshop on Domain-Specific Modeling in SPLASH,
page nc, France, 10 2010.

[19] D. C. Schmidt. The ADAPTIVE Communication Environ-
ment: An Object-Oriented Network Programming Toolkit for
Developing Communication Software. In Proceedings of the
12th Annual Sun Users Group Conference, pages 214–225,
San Jose, CA, Dec. 1993. SUG.

[20] K. Sen and G. Agha. Automated systematic testing of open
distributed programs. In FASE, 2006.

[21] J. Tufarolo, J. Nielsen, S. Symington, R. Weatherly, A. Wil-
son, and T. C. Hyon. Automated distributed system testing:
designing an rti verification system. In Proceedings of the
31st conference on Winter simulation: Simulation—a bridge
to the future - Volume 2, WSC ’99, pages 1094–1102, New
York, NY, USA, 1999. ACM.

[22] J. S. Vetter and B. R. de Supinski. Dynamic software testing
of mpi applications with umpire. In Proceedings of the
2000 ACM/IEEE conference on Supercomputing (CDROM),
Supercomputing ’00, Washington, DC, USA, 2000. IEEE
Computer Society.

[23] A. Waheed and D. T. Rover. A structured approach to instru-
mentation system development and evaluation. In Proceed-
ings of the 1995 ACM/IEEE conference on Supercomputing
(CDROM), Supercomputing ’95, New York, NY, USA, 1995.
ACM.

[24] A. Waheed, D. T. Rover, and J. K. Hollingsworth. Modeling,
evaluation, and testing of paradyn instrumentation system. In
Proceedings of the 1996 ACM/IEEE conference on Super-
computing (CDROM), Supercomputing ’96, Washington, DC,
USA, 1996. IEEE Computer Society.

[25] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and
D. Schmidt. Evaluating technologies for tactical information
management in net-centric systems. In Proceedings of the
Defense Transformation and Net-Centric Systems conference,
2007.

