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Over the past decade, electronic sys-
tems have gradually replaced mechanical ones
in cars and trucks. The forces driving this
replacement have mainly included environ-
mental demands that require advanced elec-
tronic engine and driveline control in addition
to reduction of wire-harness size. In the mid-
1980s, Bosch and Intel developed a serial net-
work protocol, called controller area network
(CAN),1 and implemented this in silicon
chips for supporting hardware. The CAN pro-
tocol transfers information between electron-
ic control units (ECUs) in vehicles. In the
early 1990s, Mercedes was the first company
to introduce CAN in standard cars. Since
then, the CAN protocol has proved to be an
inexpensive, robust solution for automotive
control networks and is now well established
and used in all types of vehicles.

So far, however, only non-safety-critical sys-
tems, with few exceptions, use CAN. Now,
the automotive industry intends to use net-
work technologies for safety-critical tasks such
as steer-by-wire and brake-by-wire, often sum-
marized as X-by-wire. It is a common opinion
among controller network specialists that such
systems should be time-triggered rather than
event-triggered and that ECU access to the
communication bus must be supervised and
controlled by specific entities, called bus
guardians.2 Because CAN does not offer sup-
port for time-triggered message transfer or for

bus guardians, the industry has looked at
other protocols such as the time-triggered pro-
tocol (TTP)3 and FlexRay.4

However, a better solution might be to use
CAN as a base and then add missing facilities
as needed. This technique, in contrast to tra-
ditional layered communication services,
would lead to a more flexible architecture in
which the communication would be inte-
grated into the control system. Then the vast
practical experience gained from using the
CAN protocol for more than a decade in dif-
ferent environments and applications could
be leveraged to provide better services.

General concept
The starting point for discussing the com-

munication between ECUs in a distributed
embedded control system (DECS) must be
the system architecture. Predicting response
time from an event detected in one module
until the response action in another module is
an important requirement in safety-critical
systems. Thus, ECU communication is not a
stand-alone entity but an integrated part of a
real-time operating system at the system level.
For the solution proposed in this article, I have
made some assumptions about features need-
ed to meet these requirements:

• Any communication in the system must
be predefined.
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• The communication must be time sched-
uled during normal conditions.

• The time schedule must accept event-
triggered emergency messages.

• The communication must have an event-
triggered schedule as a backup.

• There must be a clear separation between
the system level and the module level
regarding failure detection and actions
on failures.

• It must be possible to update the proto-
col at any time during the system’s life
cycle.

Predefined communication
In a DECS, unlike a LAN or telecommu-

nication system, any need for communication
must be known and defined a priori. Differ-
ent ECUs can respond only to known mes-
sages and can transmit only those messages
that they are programmed to transmit, and
the system uses the message contents. LAN or
telecom systems do not know any communi-
cation and any message contents in advance
of system design, and the system does not use
these contents. In these systems, in which
communication functions as a service of the
different network nodes, the communication
service might not be available sometimes
because the demand is stochastic. A DECS
must be designed in accordance with the
worst-case reaction times for different events,
at least for safety-related operations.

Time-scheduled communication
The timing of the actions in collaborating

ECUs depends on message delays. Although
it is possible to calculate the maximum delay
for any message in an event-triggered CAN
system, it soon becomes obvious that an
event-triggered approach can be difficult to
design if correctness, failure detection, and
maximum reaction time must be verified.
Only a few messages can have a short, guar-
anteed maximum latency, and a lot of the
bandwidth must be assigned to ensure system
integrity. Systems with time-scheduled trans-
missions are much simpler to design, under-
stand, analyze, and verify. It is important,
especially for safety-critical systems, that sys-
tem behavior during any conditions is under-
standable. System architectures based on
time-scheduled communication have the best

chance of meeting the dependability require-
ments of safety-critical systems.

Event-triggered emergency messages
The time schedule must accept event-trig-

gered emergency messages, which are a big
problem in time-scheduled systems. Emer-
gency messages do not typically appear during
normal conditions, but when they must be
transmitted, their latency time must be short.
If they are a part of the schedule, they occupy
a substantial portion of the bandwidth that
could be more effectively used. A much more
efficient approach is to transmit regular mes-
sages on time schedules and emergency mes-
sages on events. CAN makes such an
approach possible.

Event-triggered schedule as a backup
The weakness of a pure time-scheduled sys-

tem is the clock. If one node is not time syn-
chronized with the other nodes in the system,
the system behavior is unpredictable. It is easy
to detect a time-keeping failure, but such fail-
ures are not always easy to rectify. A more
robust approach when trying to fix a time-
keeping problem is to switch to graceful
degradation by changing from the time-trig-
gered schedule to an event-triggered backup
schedule.

System and module separation
Although CAN itself and some current

CAN-based protocols, including SAE J19395

and NMEA 2000,6 were initially developed to
be system independent and should not require
any system designer, in practice, there are sev-
eral reasons to have a system designer. Before
a communication scheme with predictable
latency can be designed, the number of nodes
and their interactions has to be known, that
is, a system designer is required for any real-
time system. Furthermore, designers can
enhance and simplify failure detection by using
both a system level and a module level. Some
failures can only be detected when you com-
pare the responses of multiple modules to an
event. In other cases, designers can make error
detections redundant using mechanisms at
both system and module levels. A system
designer has complete knowledge of the sys-
tem and can design a node capable of super-
vising the system. By separating the design task
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into one system level and one module level,
module designers can concentrate on the per-
formance of their modules and leave system
problems to the system designer.

Protocol update
Ideally, designers would solve all problems

at a project’s specification phase. When the
team then approves the specification, it should
be simple to get it implemented, verified, and
validated. In the real world, however, design-
ers usually detect some shortcomings of the
specification long before the verification
phase. Other shortcomings remain hidden
until the product is far into its life cycle.
Almost any change in a DECS will affect
desired protocol properties, so the system
must allow updating.

Ideal building block
In 1988, Intel brought the first CAN chip

into the market. Since then, several manufac-
turers have designed and produced different
types of CAN chips in large numbers, and
many market segments, with varying
demands, have used CAN chips. CAN has
proved itself to be a solid base for different
kinds of protocols in a great variety of DECSs.
Integrating different CAN controllers in a sys-
tem has most often been a simple task.

Because CAN is a low-level protocol, sys-
tems require a higher-layer protocol (HLP)
built on top of CAN. It is the quality of the
applied HLP that makes some CAN systems
dependable and others not. The requirements
of a dependable system relate to the system
itself and to how the system resolves critical
situations (see http://www.sp.se/electronics/
RnD/palbus/eng/report.htm), which is why
it is almost impossible to create one and only
one HLP for all critical, embedded automo-
tive networks.

A different approach is to make the com-
munication an integrated part of the control
system. For this approach, as mentioned pre-
viously, CAN is an excellent basic building
block. Over the years, this technique has proved
to be a robust way to convey information with-
in control systems. The next step is to add new
standardized support for global clocks, open-
ing new opportunities for designing depend-
able systems. Developers could then combine
well-proven CAN solutions with well-proven

time-scheduled solutions, which would be an
ideal starting point for generations of embed-
ded automotive network designs.

CAN: Not an event-triggered protocol
Designers often rule out CAN outright

because many falsely regard the protocol as
event-triggered. CAN uses an efficient process
to resolve message collisions when they occur
on the bus. But the protocol does not require
collisions. Nothing prevents CAN from being
used for time-scheduled protocols. In fact,
designers have successfully used it for several
years in protocols such as CDA 101.8 A great
advantage of using CAN in time-scheduled
protocols is that clock failures can easily be
detected and efficiently handled.

Time-scheduled communication requires
that each node rely on the same notion of time.
A straightforward solution is to have local
clocks in each node, synchronized to one of
them by time messages; software achieves this
in current CAN applications. Although an
accuracy of 10 microseconds is possible, pro-
gramming software in this way is often difficult
because any change in a module’s software
might influence its clock performance. A stan-
dardized solution implemented directly in the
CAN controller would be a better alternative.

Global clock support
CAN relies on time measurement for its bit

encoding. The non-return-to-zero (NRZ)
concept encodes the bits in CAN and thus the
bus level does not change when transmitting
adjacent bits of the same value. In these cases,
the system calculates the number of bits by
dead reckoning. Thus, a CAN controller
already has the basic features for an integrat-
ed clock. According to the CAN standard, a
bit can be divided into at least 25-bit time
quanta, and each bit can be as low as 1 micro-
second. The falling edge (the start of a frame)
hard synchronizes a system’s CAN controllers
at the beginning of each message on the bus.
Thus, a time resolution of 40 nanoseconds
and an already used synchronizing flank are
available, up-front. Only a counter has to be
added to implement a local clock. However, to
support a global clock, the local time must be
synchronized to a system-wide notion of time,
which requires a few more counters and reg-
isters. But the problem is well known and was
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solved long ago in the telecom industry. Thus,
a chip designer could add an accurate and
adjustable clock to a CAN controller without
much extra cost.8

Required bandwidth
A common claim from proponents of alter-

native standards to CAN is that an X-by-wire
system requires a bit rate of at least 5 Mbps and
that because CAN provides a bit rate of only 1
Mbps, its bandwidth is too limited. This might
be true if you consider communication as a
stand-alone entity. But the picture is quite dif-
ferent if you regard the communication and
the global clock as integrated parts of the sys-
tem control. By using the global clock for time
stamping, designers can dramatically reduce
the need for communication bandwidth by
applying feedback loop control theories using
known time jitter.9

CAN’s collision resolution mechanism oper-
ates according to a bitwise arbitration of the first
part of the message, called the identifier field.
One and only one node can transmit the same
bit pattern in the identifier field unless the rest
of the message contains no data or exactly the
same data. Thus, any message addressing must
be implemented in a higher protocol layer. In
scrutinizing the CAN standard, it seems that
this offers features for efficient message trans-
ceiving of up to 94 bits of data on a bus. The
so-called CAN identifier need not be an iden-
tifier at all, it can be the message itself.

A common communication problem occurs
when several nodes simultaneously detect an
alarm-causing event and each of them trans-
mits alarm messages, resulting in a saturated
bus. Designers can solve this problem with
CAN by assigning the same identifier for an
empty alarm message to all nodes capable of
detecting the same failure. On the triggering
event, they transmit the alarm message unless
they just received the very same alarm. The
result is only one message on the bus, regard-
less of how many modules detected the fail-
ure. CAN’s address-less concept, in which
every node receives every message, can resolve
message collisions with no loss of bandwidth.

Building CANs for ECUs
The first step in building a CAN network

for critical embedded automotive networks is
wiring, which must be robust. Each ECU
must connect at the right spot. Figure 1a
shows a proposed physical architecture pre-
pared with connection points for four mod-
ules. Each connection point has a unit that
contains memory, a CAN transceiver, a Red-
CAN device, a CAN controller, and a small
CPU, shown in Figure 1b.

RedCAN helps obtain redundancy effi-
ciently.10 A RedCAN device can detect phys-
ical defects as shortcuts or breakups in the
wires and can terminate the bus. At startup,
RedCAN singles out one section as a redun-
dant sector. If one sector fails during runtime,
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Figure 1. Wiring harness for a distributed embedded network with four nodes. The RedCAN units labeled 1 and 4 disconnect
the bus. The section between 1 and 4 is disconnected. In case of a short or a break in another section, for example, between
the units labeled 2 and 3, the 2 and 3 units terminate the bus and units 1 and 4 connect the section between 1 and 4 to the
bus (a). Detail of a connection point. The RedCAN unit can either connect to the section or terminate the bus (b). 



the modules at each side automatically dis-
connect this sector, and the redundant sector
becomes active. Adjacent modules can also
disconnect a malfunctioning module. Red-
CAN not only provides efficient bus redun-
dancy but also solves the problem of a
completely crushed node. In many other sys-
tems, a crushed module might ruin the ordi-
nary bus and the redundant ones because they
all are connected to the module.

The memory in the connection-point
device contains, at a minimum, information
about what kind of ECU should be connect-
ed to this point but can include other essen-
tial information such as bit rate, setup
parameters, serial number of the ECU last
attached, and time schedules that otherwise
must be communicated by a tool or across the
bus during setup. By reading the memory
before going active, the ECU can make sure
that it is correctly attached in the system.

With a CPU at each connection point, the
system designer can implement several tasks
for supervising and controlling the system
independently of the ECU designs. Because
the CAN transceiver belongs to the wiring sys-
tem, the designer can choose the bus levels (or
even an optical alternative) while still using
ECUs with standard CAN controllers. The

designer can program the connection units
with communication rules that act as bus
guardians optimized for the system. Thus, the
connection unit can physically disconnect an
attached module if it does not behave accord-
ing to the rules, either automatically or by
command from another module.

Modules
Figure 2 shows the system with modules

attached. The system module (SM), created
by the designer, has a supervising role because
it receives every message on the bus and has
complete knowledge of expected system
behavior on the bus. It can have the capabili-
ty of detecting almost any serious ECU mal-
function. When a module connects to the
access point unit, a point-to-point CAN com-
munication runs between the module and the
unit. The access point unit can then interro-
gate the module and find out whether it is of
the right kind and can correctly set the mod-
ule before it is connected directly to the bus.
The module can also check that it is correct-
ly connected to an approved system before it
turns into an active mode.

To make the modules as system indepen-
dent as possible, they must be configurable
by some kind of a tool. The SM can act as
such a tool during setup. The CanKingdom
(http://www.cankingdom.org/) standard pro-
vides a set of command messages to configure
and control modules.11 A module supporting
CanKingdom lets the system designer assign
CAN identifiers to messages, construct mes-
sages from internal signals, select responses
on events or received messages from a list of
alternatives, set the bit rate, set the periodic-
ity of messages, and adjust the local clock to
global time. With this flexibility, the system
designer can create a CAN higher-layer pro-
tocol and integrate the control schemes with
the communication.

The property of allowing integration of new
modules into a system is often called compos-
ability. Composability requires a clear and sta-
ble interface specification in a module’s value
and time domains. Traditionally, this require-
ment can lead to inflexible systems because
the system requirements must be known when
the module is designed. But with CanKing-
dom, which provides well-defined interface
building blocks rather than complete inter-
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Figure 2. Architecture for dependable system with three
electronic control units and one system module. The CAN
controllers support global time. The system module con-
trols the connection points. 



faces, designers can build flexible interfaces in
any module, which the SM can modify to
match current system needs—not only at
startup but also during runtime.

Time schedules
Only the system designer knows how the dif-

ferent ECUs interact, how faults are detected,
and how to correct those faults when failures
happen. The combination of CAN and time-
scheduled communication create new possibil-
ities, especially in contrast to classical time-
scheduling techniques. Any time-scheduled sys-
tem must anticipate message loss due to elec-
tromagnetic disturbances. To cope with this
problem, the system must retransmit the mes-
sage one or more times in the same time slot, or
the time slot must reappear often enough so the
system can survive one or two lost slots.

CAN’s collision resolution feature allows a
more efficient use of bandwidth because crit-
ical messages can share the same time slot as
noncritical messages. In these cases, the CAN
system makes the time slot for a critical mes-
sage long enough to allow message retrans-
mission if the critical message gets corrupted.
The system designer assigns a slot-sharing
noncritical message to a CAN identifier with
a lower priority, and its time slot starts slight-
ly later than the critical message. If the criti-
cal message successfully transmits, the
noncritical message automatically transmits
immediately thereafter. If not, the system will
retransmit the critical message and the non-
critical message will lose the time slot.

Not all modules must support a global
clock in a time-scheduled system. Some of
them can piggyback on messages transmitted
by modules that support the global clock by
using CanKingdom’s action-reaction feature.
A module supporting the action-reaction con-
cept has a list of tasks and events that other
tasks or events can evoke. A command mes-
sage establishes the action-reaction relation-
ship. By setting up the reception of a message
with a certain CAN identifier as the action
event and the transmission of a certain mes-
sage as the reaction task, designers can use any
message appearing on the bus as a trigger for
message transmission from other modules.
The designer can then use time-scheduled
messages from modules that support a global
clock to trigger message transmission from

other modules in the system.
The SM—or any module that knows the

schedule of other modules—can immediate-
ly detect a module not synchronized to glob-
al time. If it detects that all other modules have
lost synchronization, then the detecting mod-
ule itself is unsynchronized. Because most
transmitted CAN identifiers relate to specific
modules, the SM knows the source of a mes-
sage appearing on the bus at the wrong time.
By carefully selecting the message priorities,
designers can create a system to be fully func-
tional for a long time even if the global time
fails. The nondestructive message-priority col-
lision-resolution mechanism provides a grace-
ful degradation of the time schedule. When
the clocks in the modules drift from global
time, messages will gradually start to collide
but will appear back-to-back on the bus. Even
when the clock in a module gets out of phase,
the system handles this problem safely and
predictably. Figure 3 shows some different
ways to schedule messages.

TTCAN standard
Ongoing work within ISO on a time-trig-

gered CAN has reached committee draft sta-
tus.12 The draft focuses on standardizing how
to schedule messages and how to get a global
system clock. In the standard, messages oper-
ate in a matrix in which each column repre-
sents a time slot. The system transmits
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(a) (b) (c) (d)

Figure 3. Messages can be scheduled in different ways to
accommodate different scenarios. Tight time slot for a
message from a module with a high accuracy rate: retrans-
mission is not allowed (a). Time slot for a message from a
module with a low-quality clock: the clock allows for a big
jitter (b). Tight time slot for a critical message: two retrans-
missions are allowed. This slot is shared by a slot for non-
critical messages that start slightly later than the critical
message. CAN priority controls bus access (c). Time slot
where the first message is from a module with a high-
quality clock. The following messages are from modules
with no clocks: These will transmit when the system
detects the first message’s CAN identifier (d).



messages row by row. Time messages, from a
time master, occupy the first column in the
matrix to synchronize the module clocks.

The advantages of the ISO proposal are that
it is easy to comprehend and easy to create a
schedule by hand. However, there are some
disadvantages:

• The time resynchronization messages
appear according to a schedule pattern
rather than when needed, possibly wast-
ing bandwidth.

• The column width governs the time slots,
which are equal for all messages in the
same column and cannot be optimized.

• Because the standard will be implement-
ed in silicon, it might be difficult to have
built-in support for a global clock if
designers use a nonmatrix method for
creating the schedule.

• The matrix only helps create a schedule,
which means that, in practice, it will
unfold into a timeline when executed,
making the columns only a restriction
and reducing the possibility of making
more efficient schedules.

• Some details make it difficult to harmo-
nize a CAN clock with other clocks—
such as GPS, GSM, or Bluetooth
clocks—possibly making it hard to build
efficient gateways to other networks.

The common denominator in any time-
triggered system is the notion of time, which
means you can use a global clock not only for
assisting communication but also for syn-
chronizing tasks. Time synchronization would
then operate independently of the scheduling
method. The ISO proposal could be restruc-
tured to fulfill this requirement. Alternative-
ly, a chip manufacturer could decouple the
schedule and the clock parts in an imple-
mentation.

An ISO standard for establishing a global
clock on top of CAN is already in prepa-

ration. Designers could use such a global clock
for establishing time-controlled message trans-
mission and synchronizing tasks in different
nodes. The combination of CAN’s collision
resolution features with message scheduling
opens up several possibilities for critical auto-
motive network designs.

By applying an architecture with a clear divi-
sion between the system and module levels,
designers can simplify failure detection. A sys-
tem node can supervise communication and
check that it is running according to current
rules and that the modules are responding to
actions within reasonable limits. Using the
proven CanKingdom tool, designers can flex-
ibly implement system communication and
control rules. The wiring could include active
connection points to the modules so that the
SM can ensure that the right modules connect
at the right places at startup and during run-
time. This technique could make time-trig-
gered CANs an excellent choice for critical
embedded automotive networks. MICRO
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