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Wavelet Packets of Fractional Brownian Motion:
Asymptotic Analysis and Spectrum Estimation
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Abstract—This paper provides asymptotic properties of the
autocorrelation functions of the wavelet packet coefficients of
a fractional Brownian motion. It also discusses the convergence
speed to the limit autocorrelation function, when the input random
process is either a fractional Brownian motion or a wide-sense
stationary second-order random process. The analysis concerns
some families of wavelet paraunitary filters that converge almost
everywhere to the Shannon paraunitary filters. From this analysis,
we derive wavelet packet based spectrum estimation for fractional
Brownian motions and wide-sense stationary random processes.
Experimental tests show good results for estimating the spectrum
of ��� processes.

Index Terms—Wavelet packet transforms, fractional Brownian
motion, gray code, spectral analysis.

I. INTRODUCTION

W AVELET and wavelet packet analysis of stochastic
processes have gained much interest in the last two

decades, since the earlier works of [1]–[5]. Concerning the
correlation structure of the wavelet coefficients, and according
to the nature of the input random process, one can distinguish,
first, some results [6]–[14] dedicated to the wavelet transform
of certain nonstationary processes such as processes with
stationary increments and fractionally differenced processes.
These references highlight that wavelet coefficients tend to be
decorrelated provided that the decomposition level tends to
infinity and the decomposition filters satisfy suitable properties.
Second, results of the same order holds true for stationary
random processes as shown in [15] and [16].

In [17], one can find an attempt for the generalization of the
decorrelation properties to the case of the wavelet packet trans-
form, when the input random process is stationary. On the basis
of the framework of [17], [18] proposes an extension to the case
of the dual-tree wavelet packet transform. However, the results
presented in [17] and [18] are restrictive in the sense that they do
not make it possible to compute the limit autocorrelation function
obtained by following an arbitrary path of the wavelet packet tree.
Indeed, it is shown in [19] and [20] that the asymptotic analysis
of the wavelet packet coefficients still depend on the decomposi-
tion filters considered and the path followed in the wavelet packet
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decomposition tree. By using certain paraunitary filters that con-
verge almost everywhere to the Shannon filters depending on a
parameter called filter order, [19] and [20] show that: for every
path of the wavelet packet tree, the wavelet packet coefficients of
a band-limited wide-sense stationary random process tend to be
decorrelated and gaussian distributed when the decomposition
level and the filter order increase.

This paper first extends the results of [19] when the input
random process for the wavelet packet decomposition is not
constrained to be band-limited. The paper also provides, as a
main contribution, the asymptotic autocorrelation functions of
the wavelet packet coefficients for fractional Brownian motions.
We use the same formalism as in [19]. The results obtained com-
plete those of [6]–[9], [12], which are dedicated to the standard
wavelet transform of a fractional Brownian motion.

The paper is organized as follows. In Section III, the asymp-
totic properties of the autocorrelation functions of the wavelet
packet coefficients of stationary random processes and fractional
Brownian motions are discussed. Section IV addresses the con-
vergence speed of the decorrelation process in order to evaluate
how well we can approach the limit autocorrelation function of
the wavelet packet coefficients. This convergence speed informs
us whether we can obtain, in practice, a good convergence rate
at finite decomposition levels. As a consequence of the theoret-
ical results obtained in Sections III and IV, Section V discusses
wavelet packet based spectrum estimation, by using suitable de-
composition filters. Finally, Section VI concludes this work. The
next section provides definitions and basic material used in the
paper (see [19], [21], and [22] for further details).

II. BASICS ON WAVELET PACKETS

Let and be closure of the space spanned by the
translated versions of

Closure

The wavelet packet decomposition of is obtained by re-
cursively splitting the space into orthogonal subspaces,

and , where
is defined by

Closure

and is the orthonormal set of the wavelet
packet functions. In this decomposition, any is defined
by

(1)
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and the sequence is computed recursively from
and some paraunitary filters with impulse responses

for , the factor being a normalization parameter,
see [19] and [22] for details.

In this paper, we assume that is the scaling function asso-
ciated with the low-pass filter so that (see [21],
[22] for details). The decomposition space is then the space
generated by the translated versions of the scaling function. The
recursive splitting of yields a wavelet packet tree composed
of the subspaces , where is the decomposition (or res-
olution) level and is the shift parameter. For a given path

in the wavelet packet decomposition
tree, the shift parameter is such
that and

(2)

where indicates that filter is used at the
decomposition level , with (see [19] for details on paths
and shift parameter characterization).

Consider a real-valued centered second-order random process
assumed to be continuous in quadratic mean. The projection

of on a wavelet packet space yields coefficients that
define a discrete random process . We have,
with convergence in the quadratic mean sense

(3)

provided that
which will be assumed in the rest of the paper since com-

monly used wavelet functions are compactly supported or have
sufficiently fast decay.

In what follows, we are concerned by a family of scaling func-
tions that satisfy almost everywhere (a.e.) the following
property:

(4)

where is the Shannon scaling function and
stands for the Fourier transform of , with

if . The Fourier transform

of is

(5)

where denotes the indicator function of a given set
( if and , otherwise).

The Daubechies and spline Battle–Lemarié scaling functions
satisfy (4). The parameter , hereafter called order, is the
number of vanishing moments of the wavelet function for the
Daubechies functions [23] and this parameter is the order of the

spline scaling function for the Battle–Lemarié functions [24],
[25]. The decomposition filters associated with
these functions satisfy (see [23]–[25]):

(6)

where are the ideal low-pass and high-pass

Shannon filters. In the rest of the paper, we assume that
for have finite impulse responses. This holds true for
the Daubechies and the Battle–Lemarié paraunitary filters.

Remark 1: The wavelet packet function is obtained by

a recursive decomposition involving the wavelet function :
where is defined for

by for every

being a set with finite cardinality (because we as-
sume that the wavelet paraunitary filters have finite impulse re-
sponses).

The remark above will prove useful in the sequel. When the
Shannon paraunitary ideal filters (low-pass) and (high-
pass) are used, then the Fourier transform of a wavelet packet
function is (see [22], among others)

(7)

The set is such that ,
where and are symmetrical with respect to the
origin, and (see [19], [22], and [26])

(8)

with

if is even
if is odd

(9)

The decomposition space is then the -band-limited
Paley-Wiener space, that is, the space generated by the trans-
lated versions of the Shannon scaling function . The Shannon
wavelet packet tree and the frequency reordering induced by
permutation are represented in Fig. 1.

From now on, an upper index (respectively, ) will
be used, when necessary, to emphasize that the decomposi-
tion is achieved by using filters (respectively,

).

III. ASYMPTOTIC ANALYSIS

A. Asymptotic Analysis of the Autocorrelation Functions

Let be a path of the wavelet packet decomposition tree. Ac-
cording to the description given in Section II, is characterized
by a sequence of nodes , where is given by
(2) at every decomposition level . Let , be the
value such that (see [19] for the existence of this limit)

(10)
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Fig. 1. Shannon wavelet packet decomposition tree. The positive part of the support of�� is indicated under each node� . The wavelet packets associated
with the sequence �� � � � � � � ��� �� �� define a path � � �� �� � . We have � � � (respectively, � � �) if the low-pass (respectively,

high-pass) filter is used to compute the wavelet packets of decomposition level � . The wavelet packet� of this path is such that � ��� � � � � � � �

� � � � and the positive part of the support of� is 	 with ��� ���� � 
.

Assume that the input second-order random process is a
wide-sense stationary with spectrum (power spectral density)

. Then, the discrete random process defined by
(3) is wide-sense stationary and its autocorrelation function is
(see [17] and [19])

(11)

When increases, the behavior of the autocorrelation function
depends on the wavelet packet path and the paraunitary

filters used to decompose . More precisely, we have the fol-
lowing.

Theorem 1: Consider a real-valued centered second-order
random process assumed to be continuous in quadratic mean.
Assume that is wide-sense stationary with spectrum

. We have
i) The autocorrelation function is

(12)

ii) If is continuous at given by (10), then we have,
uniformly in

(13)

where is the Kronecker symbol defined for every in-
teger by

if
if

iii) The autocorrelation function satisfies

(14)

Proof: Easy extension of [19, Theorem 1]. In this
reference, the decomposition space is the -band-limited
Paley-Wiener space and the spectrum of is assumed to
be supported in . These assumptions can be relaxed.
Actually, assuming that suffices to mimick the
proof given in [19] without any further assumption on .

Now, assume that is a centered fractional Brownian motion
with Hurst parameter . We assume that , and that the
path considered in the wavelet packet tree is , where
is the path located at the far left-hand side (LHS) of the wavelet
packet tree. Path corresponds to the standard wavelet approx-
imation path since the low-pass filter is used at every resolution
level. For path , there is no convergence for the limit integrals
encountered below and in the computation of the wavelet packet
coefficients, with respect to the wavelet packet functions consid-
ered in this work. In addition, the cases and are
irrelevant here because corresponds to a white Gaussian
process and the spectral densities of the wavelet packet coeffi-
cients are not for .

Let stand for the autocorrelation function of . We
have

(15)

Theorem 2 requires assumptions (A1–A3), used in [12] to
prove the existence of the spectral density of the wavelet trans-
form of a fractional Brownian motion.

Theorem 2: Assume that the wavelet paraunitary filters
have finite impulse responses and that there exists

some finite order such that, for every , the wavelet
function satisfies the following assumptions:

(A1) ,
(A2) ,

(A3) for some .

Then, for any , the discrete random process

, obtained by projecting on the wavelet packet is wide-
sense stationary and its autocorrelation function is

(16)

with

(17)

where is given by (8) and is the standard Gamma
function.
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Proof: Theorem 2 is a consequence of [12, Theorem 1]. In
order to apply [12, Theorem 1] for the wavelet packet functions,
we must show that every , , and

, satisfies assumptions (A1), (A2) and (A3),
which simply follows from remark 1. Appendix A summarizes
the several steps involved in the proof.

Remark 2: Under assumption (A3), the integrand in (16) is
integrable for every pair with . Thus, for any given

and any ,

can be defined as the spectral density of the wavelet packet co-
efficients of the fractional Brownian motion . According

to (1), and thus, by taking the
Fourier transform of the above equation, we have

. It follows that

(18)

where (see [19, Lemma 1])

(19)

and is the binary sequence associated with the
shift parameter via (2).

Remark 3: Note that assumption (A1) is not satisfied for the
Shannon wavelet defined by

(20)

where . Thus, Theorem 2 does
not apply to define the spectral density of the Shannon wavelet
packet coefficients of .

Theorem 3: With the same assumptions as in Theorem 2
above, and under assumption:

(A4) there exists some positive function
that dominates the sequence and satisfies:

for some .
i) The autocorrelation functions of the wavelet packet coef-

ficients of the fractional Brownian motion satisfy

where is given by (8).
ii) By setting

(21)

we have

(22)

where is defined by (21) with given by (17).

Remark 4: As highlighted by remark 3, Theorem 2 does not
apply to compute the autocorrelation function , for
the wavelet packet coefficients of a fractional Brownian mo-
tion. The above definition of (second equality in (21))
shows that results similar to those of Theorem 2 still hold for
the Shannon wavelet packets. More precisely, from (21), we can
define the spectral density of the Shannon wavelet packet coef-
ficients of a fractional Brownian motion as

(23)

where is given by (7), with since 0 does
not belong to when .

Proof: (of Theorem 3).
Proof of statement (i):
By taking into account [19, Lemma 1] and if

is the binary sequence associated with the shift parameter via
(2), then we have , with
given by (19). Thus, according to (4) and (6), it follows that

converges almost everywhere to when
tends to infinity.

Since for all , and because
we assume , we also have from (19) that

. Thus, we have

and by taking into account assumption (A4),
is dominated by ,

which does not depends on . Moreover, is integrable.
Indeed, by setting , we have

(24)

for every , and where is a constant such that
, the existence of and being

guaranteed by the assumption (A4).
It follows from Lebesgue’s dominated convergence theorem

that

(25)

Statement (i) derives from (25), after some straightforward cal-
culations by taking into account that is given by (7). Fur-
thermore, one can easily check that the integrand in (25) is inte-
grable for every pair with , because is
compactly supported and 0 does not belong to its support [see
(7)].
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Proof of (ii):
If , then (which, more-

over, is a closed set), and the function is integrable
on and is continuous at . Thus, the assumptions of
Lemma 1 given and proved in Appendix B are fulfilled so that
(22) straightforwardly follows from (26).

Lemma 1: Let be a real valued function. Consider the se-
quence of nested intervals defined by (8) and
associated with a wavelet packet path . Assume that is lo-
cally integrable on . If is continuous at given by (10),
then we have uniformly in

(26)

From Theorems 2 and 3, we have that is wide-sense sta-
tionary and tends to be decorrelated when both and tend to
infinity, with variance in path of the wavelet
packet decomposition tree. The following highlights that the
Daubechies and the spline Battle–Lemarié wavelet families sat-
isfy the assumptions of Theorems 2 and 3.

We recall that the Fourier transform of a Daubechies or a
Battle–Lemarié wavelet of order has the following form:

(27)

where denotes a scaling function and the associated
wavelet filter.

B. Properties of the Daubechies and the Spline Battle–Lemarié
Functions

The following proves that the Daubechies and spline
Battle–Lemarié functions satisfy assumptions (A1–A4) of The-
orems 2 and 3. Note that all the Daubechies and Battle–Lemarié
wavelet functions satisfy assumption (A2) by construction (null
moments condition, see [21] and [22]). In addition, since the
Daubechies wavelet functions are bounded with compact sup-
port [21], they satisfy assumption (A1). The Battle–Lemarié
wavelet functions satisfy assumption (A1) as well because these
functions are bounded and have exponential decays [21, Corol-
lary 5.4.2]. Since assumption (A4) implies (A3), it suffices now
to check that assumption (A4) holds true for the sequences of
Daubechies and Battle–Lemarié wavelet functions.

1) The Family of Daubechies Wavelet Functions Satisfies As-
sumption (A4): More precisely, we have the following.

Proposition 1: The Daubechies wavelet functions
are such that

(28)

for any such , where is a constant
independent of .

Proof: The Fourier transform of the Daubechies wavelet
function of order can be written according to (27). We
have from [21, Lemmas 7.1.7 and 7.1.8] that:

(29)

for every , and thus, we derive

(30)

On the other hand, the Daubechies wavelet filter is de-
fined by

(31)

where is a trigonometric polynomial (see [21] and [22] for
more details). From [21, Lemmas 7.1.3 and 7.1.4], we have that

. Thus, we get

(32)

It follows that for and the
result derives by taking into account (27) and (30), with

.
2) The Family of Battle–Lemarié Wavelet Functions Satis-

fies Assumption (A4): The Battle–Lemarié scaling and wavelet
functions are computed from the normalized central B-spline of
order . The Fourier transform of its associated wavelet function
is given by (27) with (see [22], [27], and [28])

(33)

and

(34)

or, equivalently

(35)

where

(36)

(37)

Lemma 2: For every the function defined
by (33) satisfies

(38)
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Proof: If , then (see [24]) we have
and thus

(39)

and since we assume that , we obtain

The result is then the consequence of the following facts:

(40)

the right-hand side (RHS) in the above inequality equals

and, for , we have and
.

Proposition 2: The Battle–Lemarié scaling functions satisfy

(41)

for every .

Proof: For every we have from (34) that
for every . This follows from the in-

equality:

On the other hand, for every , there exists some
such that . Thus

(42)

so that .
When , we have for every

. It follows that for .

Finally, we have that the family of Battle–Lemarié wavelet
functions satisfies assumption (A4) since from (27), (38), and
(41), we obtain

(43)

Theorems 1 and 3 specify the asymptotic behavior of the
wavelet packet coefficients when using some families of parau-
nitary filters that converge almost everywhere to the Shannon fil-
ters. The following discusses some consequences of Theorems
1 and 3. Due to the complexity of the convergence involved, the
key point is the convergence speed to the limit autocorrelation
and distributions. In fact, if the convergence speed is fast, we
can expect reasonable decorrelation of the wavelet packet coef-
ficients for finite and .

IV. ON THE CONVERGENCE SPEED OF THE DECORRELATION

PROCESS

Consider a family of paraunitary filters satisfying (6) and a
second-order centered random process being either fractional
Brownian motion or wide-sense stationary with spectrum . The
convergence speed to the limit autocorrelation for the wavelet
packet coefficients of depends on two factors:

A) The convergence speed involved in (6), that is, the speed
of the convergence to the Shannon filters.

B) The convergence speed to the limit autocorrelation in the
case where the decomposition used is achieved by the
Shannon filters [see (13) and (22)].

A. Convergence of Paraunitary Filters to the Shannon Filters

Theorems 1 and 3 concern some paraunitary filters that ap-
proximate the Shannon filters in the sense given by (6). Ac-
cording to these theorems, we can expect that using parauni-
tary wavelet filters that are close to the Shannon filters will ap-
proximately lead to the same behavior as that obtained by using
the Shannon filters. In this respect, the following illustrates how
standard Daubechies, Symlets, and Coiflets paraunitary filters
are close to the Shannon filters. These standard filters are de-
rived from the Daubechies polynomial

so that describes the flatness of at and [29].
Fig. 2 illustrates the convergence speed for the scaling filters
depending on their orders.

The Meyer paraunitary filters are also close to the Shannon
filters in the sense that these filters match the Shannon filters in
the interval . The mag-
nitude response of the Meyer scaling filter is given in Fig. 3 and
its expression is such that

if
if

(44)

It follows from Figs. 2 and 3 that we can approach, reason-
ably well, the flatness of the Shannon filters with finite impulse
response paraunitary filters. The following now addresses the
convergence speed when the wavelet decomposition filters are
the Shannon filters.
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Fig. 2. Graphs of �� � for the Daubechies, Symlets, and Coiflets scaling filters. “FilterName���” denotes the filter type and its order �.

Fig. 3. Magnitude response of Meyer scaling filter.

B. Convergence Speed for the Shannon Paraunitary Filters

Consider a path associated with nodes (subbands)
. The speed of the decorrelation process in path de-

pends on the shape of spectrum of in the sequence of nested
intervals . First, if is constant in
for some , that is, if in

, then it follows from (12) that for any

(45)

and the wavelet packet coefficients are decorrelated in any sub-
band of path , for every . Now, assume that is
approximately linear, in , then it
follows from (12) that, in path and for every

if

if
(46)

Note that is a tight interval when is large. For ,
the diameter of is . It follows that the
assumption “ is constant or linear in ” is a reason-
able piecewise linear approximation of for large values of the
decomposition level, for fractional Brownian motions and for
wide-sense stationary processes with regular or piecewise reg-
ular spectra.

We can draw two consequences from (46). First, the conver-
gence speed is very high since the decay of the sequence
is very fast when increases. Second, let be two pro-
cesses having spectra with linear shapes and in .
If , then we can expect that decorrelating process

will be sensibly easier in the paths associated with
than decorrelating process .

C. Decorrelation Speed, in Practice

We first consider a random process with spectrum
. The spectrum of such a process is very sharp

near and becomes less and less sharp when increases.
Section IV-B thus tells us that the decorrelation speed will be
very slow in any path characterized by a sequence of nested
intervals for which the limit value is close
to zero.

More precisely, Fig. 4 illustrates the decorrelation speed for
path (denoted because so that the limit
autocorrelation function is ), in comparison with the
autocorrelation function obtained in path (for which, there is
no convergence of the integrals involved to compute the auto-
correlation functions). It follows that decorrelation can be con-
sidered to be attained with reasonable values for decomposition
level and filter order for path , whereas coeffi-
cients of path remain strongly correlated. Note that for spec-
trum and Theorem 3 does not apply for path .

Now, we consider a stationary random process (generated by
filtering white noise with an autoregressive filter) with spectrum

defined by
(47)

with . For such a process, Theorem 1 applies even for
path and the decorrelation speed thus depends on the shape
of the spectrum in this path. Fig. 6 shows that the decorrelation
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Fig. 4. Normalized autocorrelation functions of the wavelet packet coefficients (� � �� ��� � �� � and � � ���) of a process with spectrum ��� . The approxi-
mation path � and the path � (���� � ��	� � 
 and ���� � 	 for every � �) are considered. Daubechies filters with order � � �� � are used.

in is faster when the spectrum shape is parameterized by
than when it is parameterized by with , that is,

when the shape of the spectrum is less sharp. This confirms the
role played by the spectrum shape in the decorrelation speed, as
highlighted by (46). Spectra are plotted in Fig. 5 for
and .

V. WAVELET PACKET-BASED SPECTRUM ESTIMATION

We now address wavelet packet-based spectrum estimation,
on the basis of Theorems 1 and 3. These theorems provide a
general nonparametric method to estimate the spectrum of
assumed to be fractional Brownian motion or wide-sense sta-
tionary with spectrum . The principle of the method is de-
tailed here. Its advantages and limitations are discussed in the
Section V-C.

A. Wavelet Packet Based Spectrum Estimation

From Theorems 1 and 3, we have that is close to
with a good precision when and are large

Fig. 5. Spectrum 	 for process 
 (respectively, 
 ) with parameter � �

�� (respectively, � � 
��) in (47).
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Fig. 6. Normalized autocorrelation functions of the wavelet packet coefficients �� � �� ��� � �� �� of processes � and � with parameters � � ��	� � �
��
, the spectra of these processes are given by Fig. 5. The approximation path is considered. For every set of parameters �� �� � considered, the correlation is
stronger for process � �� � than for process � �� �. The decorrelation process is fast. Even though the spectrum of process � is very sharp around the null
frequency, the coefficients of this process in the approximation path are sensibly decorrelated by using standard paraunitary filters (Daubechies filters with order
� � � are used).

enough since the absolute value of the difference between the
two quantities can be made arbitrary small: for every fixed

, there exists some , such that for every
, there exists some so that for every

, . Thus the set of the
variances of the wavelet packet coefficients at decomposition
level , can be de-
scribed as a set of estimates for the spectrum values

.
Now, if spectrum is not very singular and if we choose

sufficiently large, then we can assume that is approximately
constant in (this is reasonable because the diameter

of decreases rapidly when increases). It fol-
lows that for any frequency , the value can be
estimated by the variance of the wavelet packet coeffi-
cients located at node , where is such that

.
Summarizing, assume that we identify sufficiently large

values for and . We can thus sample uniformly or nonuni-
formly the spectrum of with respect to the values

chosen in . For an arbitrary , the estimation is
performed along the following steps.

1) Compute the largest integer so that , that is

2) Compute the shift parameter by using the inverse of the
permutation :

being obtained from the Gray code (see [22]) of : if
, with , then

(48)

with the convention and where denotes the bit-
wise exclusive-or.

3) Set where is the variance of the
wavelet packet coefficients located at node (projec-
tion of on ).
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TABLE I
EMPIRICAL MEANS, ERRORS, AND VARIANCES, OF THE ESTIMATION OF � OVER 25 NOISE REALIZATIONS, BY USING A FOURIER–WELCH AND WAVELET

PACKET-BASED METHOD. THE BEST PERFORMANCE OF THE WAVELET PACKET METHOD ARE IN BOLD, IN THE TABLE. THE WELCH’S AVERAGED MODIFIED

PERIODOGRAM METHOD WITH WINDOW SIZE � � ��� � �� � IS USED AT DECOMPOSITION LEVEL �

B. Experimental Results
The experimental tests concern samples of a (simulated)

discrete random process with spectrum . We
consider the following wavelet filters for the decomposition of
the input process: Daubechies filters with order 7 and 45, Symlet
filters with order 8 and 30, Coiflet filters with order 5 and Meyer
filters (see Figs. 2 and 3). The results presented are obtained at
decomposition levels 7 and 9. The Welch’s averaged modified
periodogram method [30] with window size
is also used. The Welch averaged modified periodogram is one
of the most efficient methods for estimating spectrum of long
data [31]. We choose the window size equal to in
order to get the same number of samples of the estimated spec-
trum as for the wavelet packet method (at level , we have
subbands and thus, spectrum samples because the ap-
proximation path is not concerned by Theorem 3). The reader
can find in [19, Table 1], some complementary tests for the esti-
mates of the values , as well as their
95% confidence intervals for 100 realizations of the process with
spectrum parameterized by (see Fig. 5). For a
single test, a simple estimate of is obtained by averaging
over all the possible combinations of the form

, with .
More refined methods could be used. We have chosen one of the
simplest so as to emphasize the intrinsic good behavior of the
wavelet packet based spectrum estimation.

The empirical mean of the estimate , the estimation error
and the empirical variance of are given in Table I. These values
are those obtained over 25 tests based on different realizations
of the random process . This table illustrates that the wavelet

packet based spectrum estimation performs well, in comparison
with the Fourier–Welch method. Note that, surprisingly, the best
results for the wavelet packet methods are not those achieved by
filters with long impulse responses (filters that are much closer
to the Shannon filters). This is due to the fact that the computa-
tion of filters with very very long impulse responses—and thus,
the computation of the wavelet packet coefficients obtained by
using such filters—are subject to numerical instabilities [22].

Fig. 7 gives an estimate of the spectrum computed on the basis
ofonerealizationof , incomparisonwith thespectrumobtained
with the Fourier–Welch method. This figure highlights the good
behavior of the wavelet packet method, even when is close to
the null frequency, in contrast to the Fourier–Welch method.

C. Discussion

The main limitation of the method seems to be the number of
samples required to decompose the input random process up to
6, 7 levels (or more). However, note that if the spectrum shape is
not very sharp around certain frequency points, it is not neces-
sary to decompose up to 6 decomposition levels. As an example,
if we consider a random process whose spectrum is that of Fig. 5
with , then by using the Daubechies filters with order 7,
we get (see [19, Fig. 5]) a good approximation of

• at decomposition levels ;
• at decomposition levels ;
• at decomposition levels ;
• at decomposition levels .
Around the null frequency, is very sharp and 7 decomposi-

tions are necessary; otherwise, less decomposition levels are suf-
ficient because the spectrum is rather flat. The first advantage of
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Fig. 7. Spectrum estimated via the Wavelet and Fourier–Welch method.

the wavelet packet based method is the simplicity of the spectrum
estimation via the technique described in Section V-A. Statis-
tical properties of the autocorrelation and the convergence speed
to the limit autocorrelation functions ensure that we can expect
good performance of the method by using standard Daubechies
or Symlets filters with order larger than or equal to 7. The second
advantage of the method is that it is nonparametric: in practice, it
can be used in many applications with no a priori knowledge on
the spectrum shape. When a priori information is available, the
method could also be improved by using existing techniques. As
a matter of fact, if the spectrum of interest has a priori exactly
the form , then we can compute a maximum-likelihood es-
timate of , as proposed in [32] and [33] or resort to technique
such as that presented in [34] when the observation is corrupted
by additive white, Gaussian noise.

VI. CONCLUSION

The asymptotic autocorrelation functions of wavelet packet
coefficients of fractional Brownian motions have been com-
puted for some paraunitary filters that approximate the Shannon
paraunitary filters.

The paper has also characterized the convergence speed to the
limit autocorrelation and shown that good decorrelation can be
achieved at finite decomposition levels even by using nonideal
paraunitary filters.

The ideal subband coding yielded by the Shannon wavelet
packetdecomposition, theconvergenceofsomestandardwavelet
filters to the Shannon filters, and the asymptotic properties of the
wavelet packet autocorrelation allow for defining wavelet packet
based spectrum estimation. This spectrum estimation has been
tested in the framework of fractional Brownian motion, but also
applies to wide-sense stationary random processes.

The new wavelet packet based spectrum estimation presented
in the paper derives from theoretical results (those stated in
Theorems 1 and 3), has very low complexity and outperforms
the standard nonparametric Fourier–Welch based spectrum
estimation. The discussion of Section V-C has highlighted the
limitations and the advantages of the new method. It has also

presented some perspectives for further improvement of the
wavelet packet based spectrum estimation.

In future work, we plan to investigate the contributions of
some of the proposed techniques, among others, the exploitation
of redundancy in the signal domain (Hilbert transform) or in
the wavelet domain (averaging several -decimate orthogonal
wavelets, using complex wavelets or multiwavelets).

APPENDIX A
PROOF OF THEOREM 2

By taking into account remark 1 and under assumption (A1),
the discrete random process representing the wavelet packet
coefficients of the fractional Brownian motion is defined by

(49)

with convergence in quadratic mean sense and its autocorrela-
tion function is

(50)

with given by (15).
By considering again remark 1 and under assumption (A2),

we have that

(51)

and thus

(52)

By mimicking the proof of [12, Theorem 1] we get 1 2 3 4 5

(53)

1Change of variables.
2Bahr and Essen representation of ��� , see [35].
3Fubini’s theorem, the integrand is integrable.
4Taking into account (51).
5Write ������� � �� � � ��� to obtain Fourier integrals of �

and � .
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Thus, from (50), (52) and (53), we obtain

(54)

One can check that under assumption (A3), the integrand in (54)
is integrable for every pair with . From (54) we have
that is a wide-sense stationary random process for every

. With the standard abuse of language, we denote
, with and (16)

follows.

APPENDIX B
PROOF OF LEMMA 1

Proof: Since is continuous at , then for every real
number , there exists a real number such that,
for every , we have .
In addition, since

there exists an integer , such that, for every natural
number , the values and

are within the interval . It follows that,
for every natural number and every ,

Therefore, for any natural number

(55)

On the other hand, for any natural number and every
integer

(56)

Hence, we derive from (55) and (56) that, for every natural
number ,

uniformly in . Since

we conclude that, for every natural number

uniformly in .
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