
ExPort: Detecting and Visualizing API Usages in
Large Source Code Repositories

Evan Moritz1, Mario Linares-Vásquez1, Denys Poshyvanyk1, Mark Grechanik2,
Collin McMillan3, Malcom Gethers4

1The College of William and Mary, Williamsburg, VA, USA
2University of Illinois at Chicago, Chicago, IL, USA
3University of Notre Dame, Notre Dame, IN, USA

4University of Maryland Baltimore County, Baltimore, MD, USA
{eamoritz, mlinarev, denys}@cs.wm.edu, drmark@uic.edu, cmc@nd.edu, mgethers@umbc.edu

Abstract—This paper presents a technique for automatically
mining and visualizing API usage examples. In contrast to
previous approaches, our technique is capable of finding examples
of API usage that occur across several functions in a program.
This distinction is important because of a gap between what
current API learning tools provide and what programmers
need: current tools extract relatively small examples from single
files/functions, even though programmers use APIs to build large
software. The small examples are helpful in the initial stages of
API learning, but leave out details that are helpful in later stages.
Our technique is intended to fill this gap. It works by representing
software as a Relational Topic Model, where API calls and the
functions that use them are modeled as a document network.
Given a starting API, our approach can recommend complex
API usage examples mined from a repository of over 14 million
Java methods.

Index Terms—API usage, visualization, call graph, code search

I. INTRODUCTION

Programmers build new software by using functionality
provided by a multitude of pre-existing software modules such
as libraries. These modules are usable because they provide
public-facing Application Programming Interfaces (APIs).
Building software from APIs has many benefits, including
stability, testability, and common, predictable use [16].

Unfortunately, it is notoriously difficult to learn an API [13].
Many barriers to API learning are well-documented. The
list of problems include overly-specific [25], [18] or overly-
general [25] explanations of API usage, lack of understanding
of the relationships among code elements [13], [7], code
elements with a large number of alternative uses [25], [27],
[18], [17], [24], confused order of operations in extracted
API examples [4], and limited details about how to reuse
components relevant to a given task [14].

Recent work has helped programmers address some of these
problems and learn to use individual APIs [12], [22], [25],
[9], [14]. These approaches focus on extracting snippets of
source code that use methods provided by an API and can
successfully suggest patterns of usages of these methods.
However, understanding how to use an API to implement high-
level functionality is not immediately obvious with examples
from single files or functions.

High-level functionality is not usually implemented in single
files or functions [8]; it is represented by the interaction of

different functions in source code that implement the func-
tionality and belong to different APIs. Therefore, programmers
face with a coordination barrier [13], because several low-level
APIs needs to be coordinated to create high-level behaviors,
and they do not know how APIs should be used. One example
of a coordination barrier is when a programmer does not
know how to cast the type used as output in one API to
the input of another API. Another example is when several
APIs complement each other, but are not actually dependent
on each other. Consequently, before reuse, programmers need
to identify structural dependencies between relevant elements
in the code under investigation, and then to understand the
roles of the elements as part of a high-level behavior that can
be reused [11].

We target this problem in our interactive code search tool
called ExPort. The idea behind ExPort is simple: given a
task, present the programmer with a list of API methods
related to that task. Once the programmer selects the API
methods he or she wishes to use, present the programmer
with usage examples related to the task. To be interactive,
the tool presents information to the programmer visually, so
that he or she may navigate the results and reason about their
relationships. Previous studies [20], [21], [14] have shown that
presenting relationships in a visual manner greatly help the
user in determining the usefulness of the results.

For the tool implementation, we generated a database from
over 13,000 open source Java projects consisting of about
14 million methods. For the purposes of the prototype, we
computed relationships between 3700 methods in 2 software
projects: GNU Electric VLSI design system1, a CAD system
for designing circuits; and GCJ2, a front-end compiler for Java
projects. We used Relational Topic Modeling (RTM) [6] to cal-
culate these relationships and provide concrete usage examples
of APIs via an interactive call-graph visualization. In addition
to its primary applications, this tool can be used as a research
setting to study the effectiveness of the approach and discover
how developers search for APIs. ExPort is free and available
for public use at http://www.cs.wm.edu/semeru/export/.

1http://www.gnu.org/software/electric/
2http://www.gnu.org/software/gcc/

1



Our contribution with Export and the underlying model is
three-fold: (i) we used RTM to identify similarities between
API methods and provide programmers with a list of relevant
methods; (ii) ExPort presents relevant API methods and API
usage patterns visually in such a way that the developers
can explore the relationships between API methods; and (iii)
Export allows users to provide relevance (active) feedback,
and passively logs user actions in order to understand users
behavior when searching and browsing API usage examples.

II. THE PROBLEM

To illustrate the problem of providing API usage examples
based on API calls in single functions3 (as in the current
approaches) instead of API calls used across several functions
we discuss two API usage scenarios. In Figure 1 the func-
tion sendData calls two API methods: socketCreate
and socketSend; in Figure 2 the high-level functionality
implemented in the function sendData is based on the other
two functions (which may be in different files or classes)
that individually calls the API methods socketCreate and
socketSend.

Current approaches extract sets of APIs used in relevant
code examples (i.e., files, functions or code snippets) to
mine frequent combinations of APIs (usage patterns). For
example, if the sendData functions in Figures 1 and 2
are considered as relevant, after extracting the API calls in
both methods, no API usage patterns are identified because
API methods socketCreate and socketSend are not
called by sendData in the second scenario (Figure 2).
However, in both scenarios the API methods socketCreate
and socketSend are used to implement the functionality
implemented by sendData.

ExPort finds API usage examples even if the usage of those
APIs is in situations such as those in Figure 2. For example,
given the API call socketCreate, we also recommend
the API call socketSend. We extract the API usage by
analyzing the function invocations in existing source code,
in addition to the current approach of looking at the API
calls made in individual functions or files. A key feature of
our approach is sensitivity to the proximity of API calls. For
example, in Figure 1, the two API calls are highly related
because they appear in the same function. In Figure 2, the
API calls are related to a lesser degree because they occur in
separate functions. Programmers can better understand recom-
mendations of API usage if they can also see examples of that
usage. Therefore, our technique also provides these examples
to programmers. These examples are sets of functions which
call the recommended APIs. For example, in response to a
query of the API call socketCreate, we would recommend
socketSend and show (as examples) the three functions
sendData, connect, and transmit from Figure 2.

3In this paper we use the terms function and method to distinguish between
methods in software projects (functions), and methods in APIs (API methods)
such as the official Sun Java SDK, Apache libraries, etc.

Fig. 1. Example of two API calls used in a single function. The API calls
are shaded gray.

Fig. 2. Example of two API calls used across three functions. The API calls
are shaded gray.

III. OUR APPROACH

Programmers navigate software spaces (e.g., an application
or a set of applications in a repository) in two ways: di-
rected searching and browsing [21]. The former occurs when
programmers are looking for specific information, while the
latter is used to explore the space and understand high-level
concepts [21]. Moreover, browsing is most effective when
programmers follow relationships between elements in the
software space [20] (e.g., classes or functions in a call graph).
But, when the elements are atomic units (i.e., functions or
fields), the browsing process provides useful information for
understanding high level concepts [19], [14].

Therefore, we considered browsing as the main feature
in ExPort to help programmers when they are looking for
examples implementing high-level functionality. ExPort helps
to identify structural dependencies, and the role of the de-
pendencies as part of a high-level functionality. It is done by
computing similarities between API methods and representing
the software space of relevant methods as a call graph that can
be visually explored.

In general, the process follows 6 steps: 1) similarities
between APIs are precomputed offline using Relational Topic
Modeling; 2) the programmer inputs a query 4 to ExPort;
3) API methods related to the query are displayed to the
user; 4) the user selects APIs relevant to his her task; 5)
the relevant APIs are displayed in a call-graph, which shows
other functions that call the APIs; 6) finally, the user selects
functions from the call graph to view API usage examples.

A. Relational Topic Modeling (RTM)

Relational Topic Model is a hierarchical model that defines
a comprehensive approach to modeling interconnected docu-
ments, taking into account both document attributes as well as

4For our initial prototype, a query is the starting API the user is investi-
gating. Future work will involve textual queries and return suggested APIs
related to the task.

2



Fig. 3. Browsing similar APIs in the similarity view.

known links between documents. RTM identifies latent topics
associated with documents and allows for the prediction of
links between documents in large corpora based on document
attributes and known relationships between the documents [6].
Each document is modeled as a mixture of various topics,
where a topic is a probabilistic mixture over the set of
attributes (e.g., terms in a text corpus). Applications of RTM
include analysis of networked data such as social networks
of friends, collection of scientific papers with citations, as
well as web pages and their links. RTM was previously
used by Gethers and Poshyvanyk [10] to capture conceptual
relationships (degree of coupling) between classes. In ExPort
we use the same motivation in [10] but we consider functions
as documents, and the document attributes are the API calls
in the functions. Each function in a project is represented as a
vector of the API calls in the function (e.g., a call to a method
in a class in the Java SDK), and the calls between functions in
the projects represent the links between documents. Therefore,
if the model identifies a link between two functions with a high
probability, we consider these functions to be similar.

RTM identifies links between documents according to topic-
document distributions. Therefore, linked documents have a
high probability of being associate to the same topics. Based
on this property, we identified the API calls that describe
similar functions by using the topic-word distribution of topics.
Then, for a given API method (considered to be a starting point
of the required high-level functionality), relevant methods are
retrieved as the ones with high probability of being associated
with the same topics. For example, given an initial method
socketSend (Figure 2), and a link identified by the model
between functions connect and transmit (because both
functions are called by sendData), the methods called by
connect and transmit with high probability of being
associated to the same topics of socketSend are retrieved
as methods relevant to socketSend .

B. Detecting and Visualizing API Usage

ExPort provides a visual interface (GUI) to browse the space
of APIs that are identified as relevant by using RTM. The GUI
is composed of two views: similarity, and call-graph.

a) Similarity view: As a user enters a query, the auto-
completion feature of the tool presents APIs that are textually
related to the query as the user types. This feature allows the
users to identify an API method as the starting point of the
required high-level functionality. Once a query API has been
chosen, the tool presents APIs related to the query in the form

Fig. 4. Browsing API usage examples in the callgraph view.

of a directed graph, with the original query as the root and
related APIs as children (Figure 3). Further children are APIs
related directly to their parent nodes (not to the original query).
This helps widen the search space to account for different
variations of the task. For the purposes of this prototype, a
query is the initial starting API typed by the user.

For example, suppose a user wants to investigate the API
JComboBox.fireActionEvent(). The user enters the
query and gets as result a graph like the one in Figure 3. The
query node is highlighted in yellow. The other nodes’ colors
indicate how many children they have in the graph, ranging
from dark red (many) to pink (few) to grey (none). The user
can navigate the graph to view suggested related APIs, such as
the similar event handler processFocusEvent. Clicking
on a node will show the method’s basic information, with the
ability to open a new window comparing the source code of
processFocusEvent and fireActionEvent side-by-
side.

b) Call-graph view: Once a user has selected a relevant
API or a set of relevant APIs, those APIs are sent to the
call-graph view (Figure 4). This displays the chain of calls in
which an API is used, showing the programmer other functions
that use the API. When the user clicks on a node in the call-
graph, an info pane shows the actual code that implements
the call, providing a concrete example of how the API is used
in the code. From this the programmer can determine how to
use the API in her code. The API methods selected on the
Similarity view appears as red stars in the Call-graph view,
and functions are represented as grey circles nodes. Orange
squares correspond to other methods that are in the API (i.e.,
Java SDK).

From the example given in the similarity view, the user
has decided to investigate how fireActionEvent is
used. The call-graph for this method is shown in Figure 4.
From the method calls, the user can tell that the function

3



contentsChanged gets called when a JComboBox re-
ceives an event. The user reads that contentsChanged
calls selectedItemChanged and follows the callgraph.
From the code for selectedItemChanged, the user can
see that the function fires an item event for the selected item,
then notifies all of the JComboBox’s event listeners by calling
fireActionEvent. This provides a concrete example to
the user on how to properly use the method.

C. Implementation Details

This section describes the main implementation details of
our tool.

a) Platform: In order to be portable and reach a large
audience running on different systems, the tool is implemented
as a web-based interactive GUI. This avoids the problem of
changing the tool to run on different operating systems and
architectures, as well as providing instant updates to all users
and allowing the researcher direct access to the data. The
prototype runs in an Apache web server on a Linux host.

b) Languages: Given the web-based platform, the choice
of client-side language is clear: the GUI is rendered in HTML
and JavaScript, communicating with the server through the
standard HTTP requests (Get, Post, Cookie, Request) and
Asynchronous JavaScript And XML (AJAX). The server-side
architecture is written in PHP and renders pages into HTML,
responds to requests, and records information.

c) Libraries: The prototype uses a graphing library to
render the graphs in the GUI in JavaScript. This library is
the JavaScript InfoVis Toolkit (JIT)5. The prototype makes
use of the jQuery6 framework to use its advanced JavaScript
capabilities. This functionality includes (but is not limited
to): Document Object Model (DOM) manipulation, textbox
autocomplete, UI elements, and AJAX.

d) Database: The prototype uses a pre-computed
database of similarities and calls for its back end. The data
is stored in a MySQL database which is linked to from
the server-side architecture. The database contains tables for,
among other things: individual function information, function
similarities, function call graphs, and logging information.

e) WebService: The webservice implements a
commonly-used webservice format, JSON.7 The backend is
provided by the server-side architecture. The same information
used in the tool is provided to the public. The webservice
can be called via HTTP GET parameters.8 The full path to
the webservice implementation can be found here.9

IV. EXAMPLES OF DETECTING AND VISUALIZING API
USAGES WITH EXPORT

To illustrate the ability of ExPort to recommend related
APIs through complex relationships, we present an example
of finding API usages.

5http://www.thejit.org/
6http://www.jquery.com/
7http://www.json.org/
8URL?function=functionname&param1=value&param2=. . .
9http://www.cs.wm.edu/semeru/export/service.php

TABLE I
SUMMARY OF WEBSERVICE FUNCTIONALITY.

Function Description
getApiInfo(apiId) Returns information about the given apiId,

such as class name, the name of file it is
contained in, parameters, return value type,
and more.

apiSim(apiId,
threshold, cutpoint,
exclude)

Returns all of the APIs similar to apiId,
given the other parameters. The threshold
parameter determines the similarity score
which all of the APIs with equal or higher
similarity scores will be included, and all
of the APIs with lower similarity scores
will be excluded. The cutpoint parameter
determines how many total APIs to return.
The exclude parameter is an array of API
IDs to exclude from the query, for example
when used in the breadth-first search of
finding relevant APIs in the similarity view.

callee(apiId) Returns all of the methods in the database
called by apiId.

caller(apiId) Returns all of the methods in the database
that call apiId.

apicalls(apiId) Returns all of the Java J2SE API methods
called by apiId.

autocomplete(search) Returns the names and IDs of methods in
the corpus with names containing the search
term. For example, searching “save” returns
entries for Properties.save() and
JFileChooser.showSaveDialog().

Suppose a user wishes to investigate how menu key bindings
are used in the GNU electric VSLI system, with the
goal of discovering how to add his or her own key bindings
to a menu item. The user enters the query keybinding and
selects MenuBar.getKeyBindings() from the autocom-
pletion drop-down list. The similarity view presents suggested
APIs related to the query (Figure 5). From these, the user
selects two additional methods from the MenuBar class
to add to the call-graph view: resetKeyBindings and
resetAllKeyBindings. This produces the call-graph in
Figure 6. In this view, the user can immediately see the
relationship between the three methods, represented as stars.
resetAllBindings calls resetBindings, which calls
updateAccelerator and finally getKeyBindings.

But there is more to it than that – ExPort looks deeper
into the call-graph and presents additional usage exam-
ples. The four red10 nodes in the center of the fig-
ure also call updateAccelerator. Each of them de-
scribes additional functionality that can be used with key
bindings. Clicking on a node will display the relevant
code implementing the actual functionality in the project.
removeKeyBinding shows the user how a key binding
can be removed from a menu item. addUserKeyBinding
shows the user how a key binding can be added to a
menu item. restoreSavedBindings shows the user
how it is possible to restore a set of key bindings that
were saved previously. Finally, addDefaultKeyBinding
shows the user how the program registers its default

10We highlighted the nodes using red color only for illustration purposes.
Red nodes are not displayed on the ExPort’s call-graph view

4



key bindings. Each actionPerformed call leading to
addDefaultKeyBinding provides the user a concrete
example of how to add a menu item with a key binding. All of
these examples address the user’s original goal of discovering
how to use key bindings in the MenuBar.

V. RELATED WORK

This section describes other approaches that try to solve
problems related to software search and API usage.

MAPO [26], [25] is an Eclipse plugin for Mining API us-
ages from Open source repositories that gathers code snippets
from common online code search tools, such as Google Code
Search [3] and Koders [1] (now merged with Ohloh Code).
MAPO mines API usage patterns from the code snippets and
clusters them based on the task they perform. A user with
the MAPO Eclipse plugin installed could then select and API
from their code and have MAPO return relevant usage patterns
based on the code snippets. While this is similar to ExPort, it
is dependent on the quality of the online search engine results.
In addition, it does not present the results in a visualization
of concrete usage examples.

Apatite [9] is an online code search tool that creates
associations between results based on how often they are used
together. Apatite provides additional search options by provid-
ing results at the package, class, and method granularity. The
association rules are created by retrieving the first 100 results
from the Yahoo! [2] search engine. If methodB appears in
the results of a search for methodA, then a link is established
between them. Apatite presents its results in a column format.
The textual results of each granularity are sorted and sized
based on their computed relevance, with the option to view
the API documentation. Apatite does not present its results
graphically and does not provide concrete usage examples.

Portfolio [14], [15] is a web-based code search engine
that takes in a textual query as input and generates a list
of suggestions based on a spreading activation network and
PageRank. Portfolio then visualizes the callgraph and has
the option to view source code. Portfolio primarily operates
on a corpus of C/C++ projects and does not focus on API
usage. Furthermore, Portfolio does not have interactive or con-
figurable graphs, limiting their effectiveness. In some sense,
ExPort is the spiritual successor of Portfolio, as some of the
authors were involved in both projects.

PARSEweb [23] assists programmers in finding code exam-
ples from “source → target” queries. Given a source object
type, PARSEweb will identify chains of calls that transform
the object into the target object type through method calls,
class constructors, and type casts. PARSEweb is implemented
as an Eclipse plugin and allows the user to navigate to the
relevant code functions.

Sourcerer [5] is a web crawler that mirrors the functionality
of popular web search engines, specialized on indexing online
source code repositories. Sourcerer records several aspects of
the source code artifacts it finds: source code entities (such
as classes or methods), dependency relationships, keywords,
and uniquely identifying information. Sourcerer recommends

TABLE II
COMPARISON OF CODE SEARCH TOOLS. THE GRANULARITY COLUMN
SPECIFIES THE LEVEL AT WHICH RESULTS ARE RETURNED (PROJECT,

FUNCTION, UNSTRUCTURED). THE NEXT COLUMN SPECIFIES WHETHER
THE TOOL PROVIDES USAGE EXAMPLES OF THE QUERY (YES, NO). THE

RESULT COLUMN SPECIFIES THE WAY THE RESULTS ARE PRESENTED
(TEXT, VISUAL). LASTLY, THE INTERACTIVE COLUMN SPECIFIES

WHETHER THE RESULTS ARE INTERACTIVE (YES, NO).

Tool Gran. Example Result Interactive
Apatite [9] FP N T Y
ExPort F Y V Y
Google Code [3] U N T N
Koders [1] U N T N
MAPO [26], [25] F N T N
PARSEweb [23] F Y T N
Portfolio [14], [15] FP Y V N
Sourcerer [5] FP N T N
Yahoo! [2] U N T N

relevant code in response to a query based on several ranking
heuristics.

Table II presents a comparison of other code search tools
and ExPort. As the table shows, the major web-based search
tools Koders, Google Code, and Yahoo! present unstructured
results, while the others offer more specialized results, fo-
cusing on individual functions (and in some cases, projects).
Of the code search tools listed, only ExPort, Portfolio, and
PARSEweb provide real-world usage examples demonstrating
how the function is used. ExPort and Portfolio are the only two
tools that present results in a visualization, while the rest only
offer text-based results. ExPort and Apatite are the only two
tools that offer an interactive method of discovering results.
Finally, ExPort is the only tool combining all of these features.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a visualization-based approach
for finding relevant API usage examples. Our approach uses
RTM to detect relationships between functions allowing the
programmer to identify API usages across several functions.
We indexed 13,000 open source Java systems containing
over 14 million methods and investigated them using the
visualization-based approach. Our preliminary observations
indicate that visualizing methods in a call-graph is a useful
tool in discovering API usages. Future work will involve
performing a user study to evaluate the effectiveness of the
tool compared to other code search engines and extending it
to include further functionality.

VII. ACKNOWLEDGEMENTS

This work is supported in part by the NSF CCF-0916260,
NSF CCF-1253837, NSF CCF-CCF-1016868, and NSF CA-
REER CCF-1253837. Any opinions, findings, and conclusions
expressed herein are the authors’ and do not necessarily reflect
those of the sponsors.

REFERENCES

[1] http://www.koders.com/.
[2] http://search.yahoo.com/.
[3] Google code search. \http://en.wikipedia.org/wiki/Google_Code_Search.

5



Fig. 5. API suggestions for MenuBar.getKeyBindings() in the electric project.

Fig. 6. Finding additional usage examples from an initial query in the call-graph view. The blue oval shows additional APIs involved with key binding
functionality. The red oval shows concrete examples of registering key bindings in a MenuBar.

[4] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining api patterns as partial
orders from source code: From usage scenarios to specifications. In
ESEC-FSE ’07, pages 25–34, 2007.

[5] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes. Sourcerer: a search engine for open source code supporting
structure-based search. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications, pages 681–682. ACM, 2006.

[6] J. Chang and D. M. Blei. Relational topic models for document
networks. In International Conference on Artificial Intelligence and
Statistics (AISTATS’09), 2009.

[7] E. Duala-Ekoko and M. P. Robillard. Asking and answering questions
about unfamiliar apis: An exploratory study. In International Conference
on Software Engineering (ICSE’12), pages 266–276, 2012.

[8] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy,
N. Nagappan, and A. V. Aho. Do crosscutting concerns cause defects?
IEEE Transactions on Software Engineering, 34:497–515, 2008.

[9] D. S. Eisenberg, J. Stylos, A. Faulring, and B. A. Myers. Using
association metrics to help users navigate api documentation. In Vi-
sual Languages and Human-Centric Computing (VL/HCC), 2010 IEEE
Symposium on, pages 23–30. IEEE, 2010.

[10] M. Gethers and D. Poshyvanyk. Using relational topic models to
capture coupling among classes in object-oriented software systems. In
ICSM’10, pages 1–10, 2010.

[11] R. Holmes. Pragmatic Software Reuse. PhD thesis, Department of
Computer Science, University of Calgary, 2008.

[12] R. Holmes, R. J. Walker, and G. C. Murphy. Strathcona example
recommendation tool. SIGSOFT Software Engineering Notes, 30:237–
240, September 2005.

[13] A. J. Ko, B. A. Myers, and H. H. Aung. Six learning barriers in end-
user programming systems. In IEEE Symposium on Visual Languages
- Human Centric Computing (VLHCC’04), pages 199–206, 2006.

[14] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu.
Portfolio: a search engine for finding functions and their usages. In 33rd
International Conference on Software Engineering (ICSE’11), pages
1043–1045. IEEE, 2011.

[15] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu. Port-
folio: finding relevant functions and their usage. In 33rd International
Conference on Software Engineering (ICSE’11), pages 111–120. IEEE,
2011.

[16] R. Prieto-Diaz. Status report: software reusability. IEEE Software,
10(3):61–66, 1993.

[17] M. Robillard and R. DeLine. A field study of API learning obstacles.
Empirical Software Engineering (EMSE), 16:703–732, 2012.

[18] M. P. Robillard. What makes apis hard to learn? answers from
developers. IEEE Software, 26(6):27–34, November/December 2009.

[19] M. P. Robillard and G. C. Murphy. Automatically inferring concern
code from program investigation activities. In 18th IEEE International
Conference on Automated Software Engineering (ASE’03), pages 225–
234, 2003.

[20] S. E. Sim, C. L. A. Clarke, R. C. Holt, and A. M. Cox. Browsing and
searching software architectures. In IEEE International Conference on
Software Maintenance (ICSM’99), pages 381–390, 1999.

[21] J. Singer, R. Elves, and M. Storey. Navtracks: Supporting navigation in
software maintenance. In ICSM’05, pages 325–334, 2005.

[22] J. Stylos and B. A. Myers. A web-search tool for finding api components
and examples. In IEEE Symposium on VL and HCC, pages 195–202,
2006.

[23] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for
reusing open source code on the web. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering, pages 204–213. ACM, 2007.

[24] G. Uddin, B. Dagenais, and M. P. Robillard. Temporal analysis of api
usage concepts. In ICSE’12, pages 804–814, 2012.

[25] T. Xie and J. Pei. Mapo: Mining api usages from open source
repositories. In Proceedings of the 2006 international workshop on
Mining software repositories, pages 54–57. ACM, 2006.

[26] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo: Mining and
recommending api usage patterns. In ECOOP 2009–Object-Oriented
Programming, pages 318–343. Springer, 2009.

[27] M. Zibran. What makes apis difficult to use? International Journal of
Computer Science and Network Security (IJCSNS), 8(4):255–261, 2008.

6


