
Automated Testing of Chef Automation Scripts

Waldemar Hummer
Distributed Systems Group

Vienna University of Technology, Austria
hummer@dsg.tuwien.ac.at

Florian Rosenberg, Fábio Oliveira,
Tamar Eilam

IBM T.J. Watson Research Center
Yorktown Heights, NY, USA

{rosenberg,fabolive,eilamt}@us.ibm.com

ABSTRACT
Infrastructure as Code (IaC) is a novel approach for deploy-
ment of middleware and applications. IaC typically builds
on automation scripts to put the system into a specific state.
The series of steps in an automation should be idempotent
to guarantee repeatability and convergence. These are key
factors if automations are run periodically to override out-of-
band changes and prevent drifts from the desired state. Rig-
orous testing must ensure that the system reliably converges
from arbitrary initial/intermediate states to a desired state.

We tackle this issue and demonstrate our tool for auto-
mated testing of automation scripts. Our tool is tailored to
Opscode’s Chef, one of the most popular IaC frameworks to
date. Various testing parameters can be configured, and the
Web-based user interface allows to inspect the system state
changes during execution. Detailed test reports are created
at the end of a test suite, which facilitate tracking down the
root cause of failures and issues of non-idempotence.

Keywords
Testing, Idempotence, Infrastructure as Code, Automation

1. INTRODUCTION
In order to repeatedly deploy middleware and applications

to production environments, operations teams typically rely
on automation logic (scripts). Poorly written automations
incur an increased risk of compromising the stability of de-
ployments. Infrastructure as Code (IaC) [8, 9] is becoming
a key concept to facilitate the development of automation
logic for deploying, configuring, and upgrading inter-related
middleware components. IaC automations are designed to
be repeatable, making the system converge to a desired state
starting from arbitrary states. The notion of idempotence
builds the foundation for repeatable, robust automations
[3, 1]. State-of-the-art IaC tools, such as Chef [10] or Pup-
pet [11], provide developers with abstractions to express au-
tomation steps as idempotent units of work.

We demonstrate our framework for comprehensive testing
of automation scripts. The demo is based on and comple-
ments our paper [7] to be presented at the Middleware’13

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware ’13 Beijing, China
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

main conference. While the approach is general, the demo
is tailored to Chef. Throughout the demo, we showcase our
tool based on testing scenarios with real-world Chef scripts.

In the rest of this paper, we discuss background and mo-
tivation (§2), outline the testing approach (§3), walk through
the main steps of the demo (§4), and discuss related work (§5).

2. BACKGROUND AND MOTIVATION
We briefly discuss the principles behind modern IaC tools

like Chef, and motivate the importance of testing for IaC.
Chef background. In Chef terminology, automation logic
is written as cookbooks, consisting of recipes. Recipes describe
a series of resources that should be in a particular state.� �

1 directory ”/ foo ” do
2 mode 0755
3 ac t i on : c r e a t e
4 end
5 package ”tomcat6 ” do
6 ac t i on : i n s t a l l
7 end
8 service ”tomcat6 ” do
9 ac t i on : enable

10 end� �

� �
1 bash ”bu i ld php” do
2 cwd /tmp
3 code <<−EOF
4 ta r −zx f php . t a r . g z
5 cd php
6 . / c on f i gu r e
7 make && make i n s t a l l
8 EOF
9 not i f ”which php”

10 end� �
Figure 1: Declarative and Imperative Chef Recipes

Figure 1 shows two sample recipes. The left recipe has
declarative resources which define a desired state (directory
/foo, package tomcat6, OS service tomcat6). The resource
types are implemented by platform-dependent providers, and
Chef ensures that their implementation is idempotent. Thus,
even if our sample recipe is executed multiple times, it will
not fail trying to create directory /foo that already exists.

The right listing in Figure 1 illustrates an imperative bash

resource installing PHP. This excerpt shows the common
scenario of installing software from source code – unpack,
compile, install (lines 4–7). To encourage idempotence even
for arbitrary scripts, Chef provides statements such as not_if
(line 9) or only_if to indicate conditional execution.
Threats to overall idempotence. Idempotence is criti-
cal to the correctness of Chef recipes, and we identify several
challenges when it comes to ensuring that a recipe is idem-
potent and can make the system converge to a desired state.

First, for imperative script resources, the user has the bur-
den of implementing the script in an idempotent way, which
may not be trivial. Second, although Chef guarantees that
declarative resources are idempotent, there is no guarantee
that a sequence of multiple instances as a whole is idempo-
tent [3]. Finally, if recipes depend on external components,
achieving overall idempotence may become harder due to
unforeseen interactions (e.g., a download server is down).

3. APPROACH SYNOPSIS
Our work proposes an approach and framework for test-

ing Chef automations. We follow a model-based testing ap-
proach [13], according to the process outlined in Figure 2.
Our test model consists of two main parts: 1) a system
model of the automation under test and its environment,
including the involved tasks, parameters, system states, and
state changes; 2) a state transition graph (STG) which is
constructed based on user-defined test coverage. The model
is automatically constructed by parsing the Chef scripts.
The test cases are materialized and executed in the real sys-
tem, using light-weight virtual machine (VM) containers.

Generate
STG Model

Define/Extract
System Model

Derive
Test Cases

Chef Scripts,
Metadata

Execute
Tests

Coverage
Configuration

Analyze
Results

Test
Report

Environment
Specification

Figure 2: Model-based testing process.

4. DEMO OUTLINE
Throughout the demo, we showcase the capabilities of our

testing framework based on selected real-world Chef recipes.
The testing process is as follows:

• The Web user interface (UI) automatically lists the public
Chef cookbooks from http://cookbooks.opscode.com. The
demo will work with selected cookbook that we used in [7].
• The selected cookbook is automatically parsed for basic

metadata, and a new test suite is initialized by running
the Chef script with selected test settings in a clean VM
container. (Note: The backend infrastructure executing
the tests is deployed in a remote Cloud environment.)
• The gathered data are used to create and visualize STGs.

The STG can be previewed with different test parameters
and coverage settings (see Figure 3). State changes of each
automation task are directly visible in the visualization.
• Next, we choose the test coverage settings and generate

test cases. The test cases are stored to a database and
queued for execution. The backend infrastructure spawns
multiple parallel VM containers to execute the test cases.
• After test execution, detailed reports are visualized in the

Web UI (see Figure 4). The UI reports which tests were
(un-)successful, which pre- and post-states were registered
for each task execution, which state changes were effected,
and which tasks exhibit non-idempotent behavior.
• Finally, we take a closer look at the state capturing mech-

anism and illustrate how the system is able to detect
state changes for arbitrary script resources (cf. Figure 1).
(Note: we integrated strace-based OS-level system call
tracing, extending the prototype in [7]).

5. RELATED WORK
Extensive research is conducted on automated software

testing, however, most existing work and tools are not di-
rectly applicable to the IaC domain, for two main reasons:
(i) IaC exposes fairly different characteristics than tradi-
tional software systems, i.e., idempotence and convergence;
(ii) IaC needs to be tested in real environments to ensure
that system state changes can be asserted accordingly. Such
tests are hard to simulate, hence symbolic execution [2] has
little practical value. Even though dry-run capabilities exist
(e.g, Chef’s why-run), they cannot replace systematic testing.

Figure 3: State Transition Graph in Web UI

Figure 4: Excerpt of Automation Test Results

Existing work has identified the importance of idempo-
tence for building reliable distributed systems [4] and data-
base systems [5]. Over the last years, the importance of
building testable system administration [1] based on conver-
gent models [12, 3] became more prevalent. More recently,
IaC frameworks like Chef or Puppet heavily rely on these
concepts. However, automated and systematic testing of
IaC for verifying idempotence and convergence has received
little attention, despite the increasing trend of automating
system deployments, i.e., continuous delivery [6].

6. REFERENCES
[1] M. Burgess. Testable system administration.

Communications of the ACM, 54(3):44–49, 2011.

[2] C. Cadar et al. Symbolic execution for software testing
in practice: preliminary assessment. In ICSE, 2011.

[3] A. L. Couch and Y. Sun. On the algebraic structure of
convergence. In 14th IEEE DSOM Workshop, 2003.

[4] P. Helland. Idempotence is not a medical condition.
Queue, 10(4):30:30–30:46, Apr. 2012.

[5] P. Helland and D. Campbell. Building on quicksand.
In CIDR. www.cidrdb.org, 2009.

[6] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases through Build, Test, and
Deployment Automation. Addison-Wesley, 2010.

[7] W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam.
Testing Idempotence for Infrastructure as Code. In
ACM/IFIP/USENIX Middleware Conference, 2013.

[8] M. Hüttermann. DevOps for Developers. Apress, 2012.

[9] S. Nelson-Smith. Test-Driven Infrastructure with Chef.
O’Reilly, 2011.

[10] Opscode. http://www.opscode.com/chef/.

[11] Puppet Labs. http://puppetlabs.com/.

[12] S. Traugott. Why order matters: Turing equivalence
in automated systems administration. In LISA, 2002.

[13] M. Utting, A. Pretschner, and B. Legeard. Taxonomy
of model-based testing approaches. STVR, 22(5), 2012.

