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Abstract. We describe an on-line machine learning ensemble technique,
based on an adaptation of the mixture of experts (ME) model, for pre-
dicting terrain in autonomous outdoor robot navigation. Binary linear
models, trained on-line on images seen by the robot at different points
in time, are added to a model library as the robot navigates. To pre-
dict terrain in a given image, each model in the library is applied to
feature data from that image, and the models’ predictions are combined
according to a single-layer (flat) ME approach. Although these simple
linear models have excellent discrimination in their local area in fea-
ture space, they do not generalize well to other types of terrain, and
must be applied carefully. We use the distribution of training data as
the source of the a priori pointwise mixture coefficients that form the
soft gating network in the ME model. Single-class Gaussian models are
learned during training, then later used to perform density estimation of
incoming data points, resulting in pointwise estimates of model applica-
bility. The combined output given by ME thus permits models to abstain
from making predictions for certain parts of the image. We show that
this method outperforms a less sophisticated, non-local baseline method
in a statistically significant evaluation using natural datasets taken from
the domain.

Keywords: Mixture of Experts, Classifier Ensembles, Local Classifier
Accuracy, Online Learning, Terrain Segmentation, Autonomous Robot
Navigation.

1 Introduction

Autonomous robot navigation in unstructured outdoor environments is a chal-
lenging area of active research and is currently unsolved. The navigation task re-
quires identifying safe, traversable paths that allow the robot to progress towards
a goal while avoiding obstacles. Stereo vision allows for obstacle avoidance in the
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(a) RGB Image (b) Gnd. Plane Dev. (c) Stereo Labels (d) Classification

Fig. 1. Demonstration of near-to-far learning using stereo. In (c) and (d), and through-
out this paper, red represents nontraversable obstacle (positive); green represents
traversable groundplane (negative).

near field (here, within 10 m of the robot). However, navigating solely on near-
field terrain readings can lead to a common failure mode in outdoor autonomous
navigation where incorrect trajectories are followed due to nearsightedness, or an
inability to distinguish safe and unsafe terrain in the far field [1].

To address near-sighted navigational errors, near-to-far learning is often used
[2,3]. The near-to-far approach uses both appearance and stereo information from
the near field as inputs for training appearance-based models; these models are
then applied in the far field in order to predict safe terrain and obstacles farther
out from the robot where stereo readings are unavailable.

Near-to-far learning using stereo is demonstrated in Figure 1. For a given RGB
image (1a), stereo disparity is computed using a stereo camera pair; from this
data, a groundplane model is fit and subtracted out, resulting in an estimate of
groundplane deviation (1b). Near-field stereo labels from both the groundplane
and obstacle classes are identified according to small and large groundplane
deviation values, respectively (1c); these near-field stereo labels are sampled to
create a balanced training set. Next, features are extracted from the image at
the pixels of this training set; here, color histograms are used [3]. A model is then
trained on the resulting near-field feature data. The resulting model is evaluated
over the image, including the far field, to arrive at a final terrain predictions
(1d). These terrain predictions are used by the robot’s path planning system to
influence the robot’s low-level navigation [1].

Recently, the use of classifier ensembles to learn and store terrain models over
time for application to future terrain has been investigated [3,4,5]. These en-
sembles are constructed dynamically from an on-line model library that is main-
tained as the robot navigates terrain towards some goal. For an incoming image,
the outputs of the models in the resulting ensemble are combined, dynamically
and in real-time, in a manner designed to optimize predictive performance on
far-field terrain. This previous work achieved classifier fusion by taking a linear
combination of model outputs using one weight per each model in the ensem-
ble. This technique’s primary disadvantage is that models cannot be experts
locally, i.e., at pixel resolution, which is problematic because a given model’s
discrimination ability may not apply everywhere in the image (i.e., in input
space).
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2 Terrain Segmentation with Mixtures of Experts

To overcome the shortcomings of the single-weight non-local methods noted
above, we describe an efficient on-line machine learning ensemble technique. It
is based on an adaptation1 of the mixture of experts (ME) model [6,7,8]. The
general aim of the approach is to combine multiple experts learned over time
by extracting a soft partitioning of the feature space to yield local accuracy
estimates [9], while also respecting the real-time domain requirement.

On-line mixtures of experts and related mixture models are not novel, nor
is the use of Gaussian models to partition the input space and inform where
local linear models are applicable. In particular, Sato and Ishii in [10] use the
Normalized Gaussian Network [11], or NGnet, as the basis for their proposed
on-line EM algorithm, used in turn to fit model parameters.

The primary differentiating contribution of this paper is threefold. First, we
place explicit emphasis on permitting the mixture of experts to abstain from
making predictions, where appropriate. Second, our overall approach is for the
purpose of binary classification, which requires adaptation and extension of the
NGnets above. This is contrast to the the approaches taken in [10] and [11], which
are framed in a regression context and hence do not model class-conditional
data distributions. Finally, this approach has not been previously applied to the
terrain segmentation task or to other open problems in the autonomous robot
navigation domain.

2.1 Overview of the ME Approach for Terrain Segmentation

During navigation, terrain in an outdoor scene is to be classified as either
traversable (groundplane) or nontraversable (obstacle). Two-class appearance-
based linear models, trained on-line on images seen by the robot at different
points in time, are added to a model library as the robot navigates; the training
data is not kept after the model has been added to the library. When terrain
segmentation is required, each model in the library is applied to feature data
extracted from the current image, and the models’ predictions are combined ac-
cording to the single-layer (flat) ME model. Because mixing coefficients in the
ME model are functions of the input data, models can be experts locally in
feature space.

Model Abstinence. A key benefit of our approach is model abstinence, i.e.,
when it is determined that a model does not apply to some point x and hence
should be permitted to abstain (or mostly abstain) from making a prediction
at that point. Not only can individual models abstain, but in our approach, the
entire ensemble can abstain at x. Such behavior is desirable in the autonomous

1 Our approach adopts the mixture of experts architecture from [6]. This is fundamen-
tally a conditional mixture model in which the mixing coefficients, like the expert
response, are functions of the input. We do not explicitly fit the model using EM as
outlined in [7].
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(a) Train M1 on I1 (b) Eval M1 on I1 (c) Test Image I2 (d) Eval M1 on I2

Fig. 2. Good specialization but poor generalization of linear experts. A model trained
on near-field training data from an image (2a) yields reasonable terrain classification
on that image (2b). That same model, when applied to a different test image (2c),
yields reasonable segmentation in some parts of the image, but not in others (2d).

robot navigation domain, because the robot’s path planning system (the plan-
ner) maintains a probabilistic cost map over time used for path planning [1]. If
there is not a sufficient basis to make terrain predictions, then the resulting fully
abstaining ensemble will result in no updates to the robot’s cost map. The next
incoming frame would then offer a new opportunity for terrain prediction and
cost map updates.

Behavior of Linear Models on Domain Data. Linear models are very
efficient to train, which is important in this real-time domain because training
and terrain segmentation are done on-line on incoming images while the robot
is navigating. We have found that these simple linear models are specialists in
their area of feature space, yielding good segmentation on terrain similar to that
on which they are trained, but they but do not generalize well to other terrain.
Blindly applying these models without regard to their applicability to the input
is problematic, and can lead to poor terrain prediction as the model is forced to
generalize to regions of feature space on which it was not trained.

Fig. 2 shows an example of this.2 From features extracted from a particular
training image (2a), a model is trained. Terrain prediction is reasonable when
the model is applied to the image on which it was trained (2b). For a test image
with similar terrain appearing later in same data set (2c), the model trained
on the original image is applicable only in certain areas (2d), yet still remains
equally confident everywhere.

Local Applicability Estimates. For determining where models are applicable,
we use the distribution of training data as the source of the mixing coefficients
that form the soft gating network in the ME model. This gating network deter-
mines which models are applicable and to what extent for each input (feature

2 In Fig. 2 and in similar figures throughout the paper, red coloring indicates non-
traversable obstacle terrain prediction (model output approaching +1); green color-
ing indicates traversable groundplane terrain prediction (model output approaching
−1); and color intensity indicates prediction confidence, with black representing full
uncertainty (model output of 0).
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vector) x in some set of data X . During training of model M, in addition to
training the linear model (w, b), a multivariate Gaussian model G is fit to each
of the C classes of training data (here, C = 2). Thus, a model M comprises
{Gc=1,Gc=2,w, b}. These Gaussian models are trivial to train and very efficient
to evaluate on incoming feature data.

Later, during evaluation (i.e., when segmenting terrain for an incoming im-
age), the density models G are used to determine how similar the incoming data
is to the data on which a previously learned expert was trained; the density
model thus provides pointwise estimates of model applicability. The mixing co-
efficients, which are functions of G and x, are combined with the expert output
at x according to the ME model to yield the final ensemble output.

Because they are learned on the same training data, a natural concern would
be that the mixing coefficients (model applicability estimates) and the model
output are not independent. We examined this and determined that the two
variables are poorly correlated (R2 ≈ 0.4), and conclude that they measure
different things.

This approach is similar in principle to that proposed by Grudic et al. [12],
who also sought a mechanism for applying models only where applicable. There,
as here, density models are used to inform when and where to apply models.
In that approach, histogram-based density models are used, trained on decision
boundary distances of holdout data evaluated through the linear model. Our
approach, in contrast, is based on Gaussian density models learned directly from
training data. Further, in Grudic’s approach, the final classifier output is the
output of the density model response, the input for which is the output of the
experts (i.e., decision boundary distances). In contrast, in our approach, final
classifier output is a fusion of the density model response with the expert output,
per the ME model.

Mixture of Experts Model. The mixture of experts (ME) model [6,7,8] on
which our approach is based is a type of conditional mixture model where the
mixing coefficients are functions of the input, shown in Eq. 1:

p(t|x) =
K∑

k=1

πk(x)pk(t|x) , (1)

where the individual component densities pk(t|x) are the experts, and the mixing
coefficients πk(x) are known as gating functions [13].

ME Model Adaptation. Importantly, this initial research involves an adap-
tation of the ME model, where expert predictions are scaled to be on [−1, +1]
(see Eq. 2), and hence cannot be considered true probabilities. For this rea-
son, p(t|x) also falls on [−1, +1]. In this scaling, values approaching −1 indicate
groundplane predictions of increasing confidence, values approaching +1 indicate
obstacle predictions of increasing confidence, and values approaching 0 indicate
increasing uncertainty.

This modification is motivated by numerical considerations, as shown by the
following scenario. Consider some test point x for which an expert predicts fully
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uncertain output, e.g. when x lies on that expert’s decision boundary. Numeri-
cally, the uncertain expert prediction must be propagated, regardless of applica-
bility (mixing coefficient). Scaling the expert output on [−1, +1] accommodates
this requirement, where uncertain expert output is represented as 0. Otherwise,
if expert output were on [0, 1] where uncertain output is represented as 0.5, the
final prediction will be distorted by the applicability estimate falling on [0, 1].

In the future, more sophisticated evolutions of our approach will eliminate
the need for this adaptation in part by the inclusion of a fully uncertain, generic
component that models everything the other components fail to model.

2.2 Experts: Logistic Regression Models

The experts in our technique are logistic regression models [14], a linear clas-
sification method common in statistics and machine learning, appropriate for
predicting the certainty of a binary outcome. Moreover, they are very efficient
to compute on large-scale data, motivating their use in the real-time scenarios
considered here.

Given a data instance x and associated model weights (w, b), logistic regres-
sion calculates a continuous probability of the positive output class y for some
test instance x according to the following probability model:

P (y = ±1|x,w, b) =
1

1 + exp [−y(wTx + b)]
, (2)

where w and b are estimated when training the model by minimizing the negative
log-likelihood on training data [15].

2.3 Mixing Coefficients: Gaussian Density Models

The mixing coefficients in our technique are determined by Gaussian density
models fit to training data when training the expert. When training expert k,
a single multivariate Gaussian model Gk,c is learned for each class c of training
data from the current image, using the sample mean and covariance of that data.
During terrain segmentation, for each test point (i.e., feature vector correspond-
ing to a pixel in the image) x, the mixing coefficients for model k are determined
by the response of Gk,c at x:

Gk,c(x|θk,c) =
1

(2π)d/2
∣∣∣Σ′

k,c

∣∣∣
1/2

exp
[
−1

2
(x − μk,c)

T (Σ′
k,c)

−1(x − μk,c)
]

, (3)

where x is a d-dimensional feature vector, μk,c is a d-dimensional mean vector,
Σ′ is a scaled d × d covariance matrix, and |Σ′| denotes the determinant of Σ′.
θk,c is a parameter set comprising:

θk,c = {μk,c,Σk,c, α} , (4)
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where μk,c andΣk,c are the sample mean and covariance, respectively, of the train-
ing data used to fit Gk,c. Finally, Σk,c is subject to scaling by some factor α and
application of additive white Gaussian noise ε with mean μn and variance σ2

n:

Σ′
k,c = α [Σk,c + ε] , where ε ∼ N (μn, σ2

n) . (5)

Gaussian Noise ε. In implementation, we found that the covariance Σ was
often singular, and hence not invertible, for feature data typical in this domain;
this has been encountered before in similar scenarios when d � N [16]. While
numerically stable, computing the pseudoinverse was found to yield unsatisfac-
tory results in the response of Eq. 3 for our input. Our solution, known in the
literature [16], was to apply a small amount of additive white Gaussian noise to
the feature data such that the inverse of the resulting covariance matrix would
be defined (Eq. 5). We define this noise ε to be ∼ N (μn, σ2

n), set μn = 0, and
take an adaptive approach for σ2

n: starting at 0.01, it is increased by 0.01 until
the resulting scaled covariance matrix becomes invertible.

Covariance Scaling Parameter α. In initial experimentation with the ME
technique, we observed correct behavior in terms of strong response of Eq. 3 near
the Gaussian peak (sample mean μk), and monotonically decreasing values as
|x − μk| increased. However, the cutoff was too sharp, with most of the output
distributed below a value of 0.1. The intuition is that the peak of the density
model was too steep (i.e., the distribution was too peaked). Our solution was
to scale the covariance Σ by some factor α in order to have a more gradual
decline in the response of Eq. 3 for increasing |x − μk|. We used α = 8.0 in the
experiments, which was determined ad-hoc from a sensitivity analysis. In a more
sophisticated approach, it is natural that α be data-driven; we will investigate
this possibility in future work.

Scaling of the Density Output. The response of the density output of Gk,c in
Eq. 3 is scaled such that the value at the peak of the Gaussian distribution (i.e.,
at the mean μk,c) is 1. Hence, the mixing coefficient πk,c(x) will be maximal
when x is close to the sample mean of the data used to train the model. This
scaling is achieved by dividing the response of Eq. 3 by its output at the sample
mean of the data used to train the model:

πk,c(x|μk) =
Gk,c(x)

Gk,c(μk,c)
. (6)

Determination of πk(x) from πk,c(x). The final mixing coefficient πk(x) is
simply the maximum of the C single-class density model outputs πk,c at x:

π′
k(x) = max

c
[πk,c(x)] . (7)

Alternatives for future investigation include determining πk(x) as either the
simple or the weighted mean of the C density model outputs πk,c(x), instead of
the maximum.
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2.4 Modifications Permitting Ensemble Abstinence

With a traditional mixture model, although individual models can abstain from
making predictions, the entire ensemble cannot, because

∑
k πk(x) = 1. This

effectively assumes that the correct model, or combination of models, exists in
the ensemble for a given data instance x, which we do not wish to assume. In
particular, we wish to allow the entire a posteriori ensemble output to abstain
for certain x.

Consider the case where all models in the ensemble predict +1 for x, but
whose mixing coefficients at x are all 0.1. In the traditional ME approach, the
mixing coefficients would be scaled to sum to 1, resulting in a full confidence +1
output. This output is not reflective of the underlying models’ low applicability
at x.

On the other hand, if no scaling is done, undesirable behavior will result.
Consider if there were 10 experts in the ensemble, all predicting +1 at x, each
with mixing coefficients of 0.1. With no scaling of the mixing coefficients, their
cumulative ME sum would result in a final, full-confidence prediction of +1. In
the same scenario but with 20 such experts, without scaling the final ME output
would be greater than 1; some scaling is needed to bound the output.

In short, a scaling approach is needed that bounds final ME ensemble output,
but also allows the ensemble to abstain if its underlying experts all wish to
abstain. Our solution is to scale the sum of the K mixing coefficients at x to the K
experts’ mean density model response at x, such that

∑
k πk(x) = 1

K

∑
k π′

k(x).
This is achieved by dividing each unscaled mixing coefficient π′

k(x) by the total
number of experts K:

πk(x) =
π′

k(x)
K

. (8)

Thus, if the individual experts all have low applicability estimates, the final
ensemble output will be reflective of this and will have an appropriate low-
confidence response.

2.5 Conceptual Overview of the ME Approach Applied to the
Domain

A conceptual overview of the approach as applied to terrain segmentation is
shown in Fig 3. This is also the basis of the experimental approach discussed in
Sec. 3.1.

Consider an ensemble composed of three models M1, M2, and M3. These
models are trained on the corresponding feature data sets X1, X2, and X3,
extracted from images I1, I2, and I3, respectively (shown in Figs. 3a–3c). A
fourth image It, and its associated feature data set Xt, is the current target
image requiring terrain classification (Fig. 3d). (Note that I1 and It are similar,
but not identical, frames.)

Each of the three linear models {wk, bk} in the ensemble is applied to Xt

(Eq. 2); their corresponding terrain predictions are shown in Figs. 3e–3g. In the
ME approach,Xt is also evaluated through the two density models {Gk,c=1,Gk,c=2}
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(a) Train M1 on X1 (b) Train M2 on X2 (c) Train M3 on X3 (d) Test Features Xt

(e) Eval M1 on Xt (f) Eval M2 on Xt (g) Eval M3 on Xt (h) ME Output

(i) π1(Xt) (j) π2(Xt) (k) π3(Xt) (l) Composite π(Xt)

Fig. 3. Conceptual overview of ME approach for terrain segmentation

learned from each the three training images, yielding the mixing coefficients πk

(Eqs. 3–8), shown in Figs. 3i–3k. The composite coverage π of the three experts
is shown in Fig. 3l. The final terrain classification output from the ME approach
(Eq. 1) is given in Fig. 3h.

3 Experimental Evaluation

3.1 Approach

Baseline Algorithm. We compare the ME approach to a basic unweighted
average baseline method [3], in which the terrain classification from each model
in the ensemble is averaged together to arrive at the final terrain classification.3

Data Sets. The evaluation is performed using six hand-labeled natural data
sets taken from the domain, recently contributed by the authors [5] and made
publicly available [17]. Each dataset consists of a 100-frame hand-labeled image
sequence. The images were manually labeled, with each pixel being placed into
one of three classes: Obstacle, Groundplane, or Unknown; further details
are available [3].
3 This can be seen as a general case of majority voting, appropriate when individual

expert output is on [0, 1] and final ensemble output on [0, 1] is also desirable.
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Method. The experimental method follows the conceptual approach outlined
previously in Sec. 2.5 and Fig. 3. We conducted a series of 3,000 randomized
experiments, drawing one training image at random from each of the six datasets
for each experiment. A testing image, with known ground truth labeling, was
also drawn. Six models were learned on the training images, and each model was
then applied to the test image. To obtain the output of the unweighted average
baseline method, the terrain classification was combined using a simple average.
For the ME approach, mixing coefficients were determined, and then combined
with the linear model output according to the ME model (Eq. 1) to arrive at
the final ME terrain segmentation.

Evaluation. We evaluated our approach only on the pixels in that portion of the
image occurring in the far field, i.e., greater than 10 m but less than 100 m from
the robot. We used standard binary classification accuracy (ACC), and since the
data is roughly 3:1 skew, we also report ACC for baselines of predicting all of
the same class. We report the mean ACC and std. dev. across all randomized
experiments.

3.2 Results and Discussion

Experimental data is provided in Table 1; sample output is shown in Fig. 4.

Statistical Analysis. The scores shown in Table 1 represent mean values of
scores from 3,000 randomized experiments. Within each experiment, the scores
for each method were determined by evaluation on the same test image.

Thus, a dependent-samples analysis can be performed to determine whether
or not the difference in performance among algorithms is statistically significant.
Because the distribution of the differences between the paired samples was found
to be non-normal, the equivalent nonparametric test statistic, the Sign test [18],
was used.

This test provided sufficient statistical evidence to infer that the medians
of the differences between each population are not 0, significant at the 95%
confidence level.4 We conclude that the ME approach outperforms the baseline
approach in this evaluation.

Discussion. These results illustrate the benefits of allowing individual models
to abstain. In one scenario (Figs. 4a–4c), the ME method assigns low weight to
the incorrect models, allowing the correct model (i.e., the one model of the six
that matches the scenario of the target image It) to carry the most weight in the
final ensemble output. In a different scenario (Figs. 4d–4f), for certain parts of the
image, none of the models in the ensemble were applicable, allowing “uncertain”
regions to pass through to the final output. In both cases, if models were blindly
applied without regard to local accuracy, incorrect terrain predictions would
have been made.
4 Although the standard deviations for the scores appear high, they are similarly high

for each group of samples, and are due to within-sample variance.
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Table 1. ME Algorithm Performance vs. Baseline

Algorithm Score (ACC)a,b

Mixture of Experts (Local) 0.759 ± .21
Unweighted Average (Non-Local) 0.683 ± .24
Predict all Obstacle 0.726 ± .16
Predict all Groundplane 0.274 ± .16
a Binary accuracy, thresholded at 0.5.
b Mean and standard deviation of 3,000 randomized experiments.

(a) Test Scenario 1 (b) Unweighted Output 1 (c) ME Output 1

(d) Test Scenario 2 (e) Unweighted Output 2 (f) ME Output 2

Fig. 4. Experimental snapshots from two scenarios

In our experiments, we observed the technique to be real-time in our parallel
implementation, when run on hardware with computational performance compa-
rable to that of a typical robotic platform. An in-depth study of the computational
characteristics of the proposed ME approach is an area for future work.

4 Conclusions and Future Work

In this paper, we presented a novel adaptation of the mixture of experts model
for determining model applicability, and applied this technique to the terrain
segmentation problem in the outdoor autonomous robot navigation domain. This
method accommodates the key domain constraints associated with near-to-far
learning for autonomous robot navigation: models are learned over time; model
training and evaluation must be performed in real time; training data is not kept
once a model has been trained, due to storage limitations; and training data,
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derived from stereo, may not be available for the target image requiring terrain
segmentation.

We evaluated our approach, a local method, against a non-local, unweighted
average as a baseline in a statistically significant evaluation, and concluded that
the proposed mixture of experts approach outperforms the unweighted average
baseline in far-field terrain prediction performance. In particular, the ME ap-
proach’s inherent ability to permit individual experts to abstain from making
strong predictions on a local (i.e., pointwise) basis allows for the more applicable
models’ predictions to carry the most weight in the final ensemble prediction.

Future work. We identify three key areas of ongoing future work. First, we
plan to conduct a more in-depth experimental evaluation, varying key factors
such as data-driven methods for determining α and variants of the class density
combination function (Eq. 7) to determine impact on performance. This analysis
will also involve comparison against another local method, described earlier in
the paper, which takes an alternative approach for estimating local accuracy
[12]; the computational performance of each will be considered.

Second, we will investigate posing this problem more formally in the hierarchi-
cal mixtures of experts (HME) context [7], using EM to fit model parameters,
and making use of validation data from the target image to influence mixing
coefficients.

Finally, while the notion of a mixture model with the ability to abstain ap-
pears useful, the theory behind its implementation needs to be improved. The
inclusion of an uncertain, generic component should greatly improve the theo-
retical expression.
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