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Abstract

We propose a method for Acoustic-to-Articulatory Inversion based on acoustic and
articulatory ‘gestures’. A definition for these gestures along with a method to seg-
ment the measured articulatory trajectories and the acoustic waveform into gestures
is suggested. The gestures are parameterized by 2D DCT and 2D-cepstral coef-
ficients respectively. The Acoustic-to-Articulatory Inversion is performed using a
GMM-based regression and the results are at par with state-of-the-art frame-based
methods with dynamical constraints (with an average error of 1.45-1.55 mm for the
two speakers in the database).

1 Introduction

The relationship between an acoustic signal and the corresponding articulatory
trajectories is of interest both for practical applications (such as speech coding,
robust ASR, or feedback in computer-assisted pronunciation training) and on
theoretical grounds, e.g. with respect to human speech perception. Among the
different theories of speech perception, three main theories, namely the Motor
theory (Liberman et al., 1967), the Direct realist theory (Diehl et al., 2004)
and the Acoustic landmark theory (Stevens, 2002) claim that humans make
use of articulatory knowledge when perceiving speech.

The motor theory of speech perception considers the perception of speech as
a special phenomenon. According to the theory, speech perception is carried
out by analyzing the signal based on the innate knowledge of the articulatory
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production of the particular sound. Because of the invariance in the production
mechanism, signals that differ in acoustic properties by a large amount, can
still be perceived as the same phonemic class. A classic example is that even
though the acoustic properties of the initial segment /d/ in /da/, /di/ and
/du/ are different, it is categorized into the same phonemic class.

The direct realist theory reasons along similar lines as the motor theory, but
does not claim that speech perception is largely different from the perception of
other kinds of sounds. The theory postulates that the objects of perception in
case of speech are articulatory gestures, and not phonemic targets as proposed
by the Motor theory. The gestures are inferred from evidence given in the
acoustic signal.

The landmark based theory of speech perception also makes use of articula-
tory gestures in order to explain the phenomenon of speech perception. The
theory claims that the segments in speech are encoded by different states of
the articulators. Due to the the quantal nature of the mapping between ar-
ticulatory and acoustic parameters, when moving from a particular encoded
configuration of articulators to the next, we can perceive distinct segments in
the acoustics.

In this paper, we draw inspiration from the direct realist theory, in that we
attempt predicting the shape of articulatory trajectories (‘gestures’) from
acoustic segments of speech. We use a database with simultaneous record-
ings of acoustics and articulatory trajectories to perform a statistically based
acoustic-to-articulatory inversion.

Acoustic-to-articulatory inversion has commonly been performed by apply-
ing an inversion-by-synthesis method, in which an articulatory model (such
as Maeda’s (Maeda, 1988)) is first used to build a codebook by synthesizing
sounds from the entire articulatory space of the model (Atal et al., 1978).
Inversion is then performed by a lookup in the codebook in combination with
constraints on smoothness or entropy of the estimated trajectories. Recently,
statistically based inversion methods have been able to provide further insight.
These methods rely on databases of simultaneously collected acoustics and ar-
ticulatory data, e.g., Electromagnetic Articulography (EMA) (Wrench, 1999)
or X-ray microbeam (Yehia et al., 1998; Toda et al., 2008; Richmond, 2002).
Some researchers have also employed visual information from the databases
(such as videos or markers on the face) in order to make better predictions
of the articulation (Katsamanis et al., 2008; Kjellström and Engwall, 2009).
Toutios and Margaritis (2003) have reviewed various data-driven methods.
The problem of data-driven inversion is usually tackled using statistical re-
gression methods, using different types of machine learning algorithms, e.g.,
Linear Regression (Yehia et al., 1998), Gaussian Mixture Model Regression
(Toda et al., 2004a), Artificial Neural Network Regression (Richmond, 2006)
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and HMM regression (Hiroya and Honda, 2004). It is then assumed that the
articulatory configuration, given the acoustics, is a random variable with as
many dimensions as the number of measured articulator positions.

Most of the methods, both analytical and statistical, have tried to predict area
functions or the position of discrete flesh points of the articulators at a partic-
ular time instant given the acoustics, rather than trying to predict the shape
of the articulatory trajectory or the gestures using the acoustics of an utter-
ance. Several researchers have used dynamic constraints on the articulatory
parameters knowing that the movement is along a smooth trajectory (Ouni
and Laprie, 2002; Richmond, 2006; Zhang and Renals, 2008). Özbek et al.
(2009) augmented Mel Frequency Cepstral Coefficients (MFCC) with formant
trajectories and showed that there is a slight improvement in the prediction
of the articulator trajectories.

The above paradigm of predicting the articulator positions at each time instant
can be said to draw its inspiration from the motor theory, in that it corresponds
to the proposed innate mechanism of mapping the acoustics directly to the
articulatory production. In contrast, we propose an inversion method that is
closer to the direct realist theory, in that the units of inversion are acoustic and
articulatory gestures, rather than articulatory parameters at a single instance
of time with smoothing constraints. Such a method of mapping gestures in the
acoustic and the articulatory domains has not been tried with success before,
because of two reasons. The first problem is that of segmentation. There are
no clear or consistent ways of segmenting the acoustics into gestures, whereas
segmenting into phonemes is deemed easier because it can be verified with our
understanding of speech units. The second problem is parameterizing time-
varying acoustic features. Most acoustical analyses deal with short windows
of the signal where the signal is considered stationary. In order to map acoustic
and articulatory gestures, a time varying parametrization is necessary.

We therefore propose to perform acoustic-to-articulatory inversion by the fol-
lowing method. The utterance is first segmented into acoustic and articulatory
units, which we call ‘gestures’. The segmentation algorithm we propose is a
general algorithm that can be applied to any time-varying data, so both ar-
ticulatory and acoustic gestures can be detected by the same method. The
detected acoustic gestures are then parameterized using length independent
time-frequency 2-D cepstral coefficients, which give a time-frequency repre-
sentation for these segments. The corresponding movement made by the ar-
ticulators during this acoustic gesture are also parameterized by the same
function, which is a Two Dimensional Discrete Cosine Transform (2D-DCT).
The corresponding articulatory and acoustic gestures are then modeled as
a joint distribution using the multivariate Gaussian Mixture Model (GMM).
The correspondence between the acoustic and articulatory gestures are learned
using GMM regression (Sung, 2004) which is used to predict the articulatory
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gestures corresponding to unseen acoustic gestures. We evaluate this inver-
sion method using an EMA corpus of simultaneous acoustic and articulatory
measurements. We also compare the proposed method against the standard
frame-based inversion method with the same machine learning technique. We
found that the proposed gesture based method performed as well as the con-
ventional frame-based inversion method.

This article is structured as follows. First our definition of ‘gestures’ along with
the segmentation strategy is described in Section 2. We then evaluate the seg-
mentation strategy with experiments on the detection of gestures in Section 3,
before turning to the main focus of the article, namely the relationship be-
tween acoustic and articulatory gestures. The description of the parametriza-
tion of the gestures is first given in Section 4. The regression technique used
in the acoustic-to-articulatory inversion and a method to evaluate the results
are outlined in Sections 5 and 6. The regression experiments performed and
their results are then presented in Sections 7 and 8, before concluding with a
discussion on the findings made in this study.

2 About Gestures

Our use of the term ‘Gestures’ is not from a semiotic point of view, which
requires that a gesture necessarily has a linguistically significant meaning.
Here, a gesture is more from a phonological point of view. The gesture spec-
ifies a unit of production, such as the movement during the production of
a phoneme or a syllable, as described by the direct realist theory of speech
perception (Fowler, 1996).

Although it is quite clear what articulatory gestures are qualitatively, there
is no clear quantitative method for defining them. It is especially unclear
what the unit of the gesture within a sentence or a phrase is. Secondly, the
notion of linear sequences of non-overlapping segments of speech has been
criticized by some researchers (Browman and Goldstein, 1986; Keating, 1984).
The organization of the temporal movements of different articulators may
further differ for different speakers, languages or contexts. On the other hand,
some studies have shown that the gestures may be controlled by invariant
articulatory targets (MacNeilage, 1970) and thus, the gestures themselves may
not be important and can be retrieved by applying physical constraints on the
transitions between the acoustic or articulatory targets.

The problem of finding a correspondence between articulatory gestures and
the acoustic signal thus makes it necessary to obtain a quantitative definition
of what gestures imply. The same definition should be valid for both signals.
Secondly, the definition should include an implicit method for segmenting
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individual ‘gestures’ from a sequence.

The notion behind our definition is that there is an innate correlation between
targets and gestures, even though there may not be a one-to-one mapping
between them. Each gesture has a minimum of two targets, because there
must be some sort of motion involved. If there are only two targets, the object
making the gesture starts at one target, move towards the second target and
stops. If there are more than one target within a specified amount of time, then
the object need not stop before it continues towards the next target. This is
the case in the utterance of a sentence, consisting of several targets and several
gestures. In theory, by controlling the curvature of the trajectory, an object
can move from one target to another via an in-between target without reducing
its speed while approaching it. However, it has been found that human motor
movements (especially the limbs and oculomotor systems) seem to follow the
so called ‘1/3rd power law’ (Viviani and Terzuolo, 1982) in the speed-curvature
relationships. The velocity of motion in human motor movements is related to
the curvature as

v(t) = kc(t)−1/3 (1)

where v is the velocity and c is the curvature at time t and k is the velocity
gain. This means that when the curvature is larger, the velocity is reduced to
allow for greater precision (Schmidt et al., 1979). Thus reduction of velocity
is a good indicator of the human motor object approaching a target. Perrier
and Fuchs (2008) showed that even though the power law is valid in an overall
sense for articulatory movements it may not hold for individual movements
of the articulators, probably due to the high elasticity of their tissue. The
relationship between an increase in curvature and a decrease in instantaneous
velocity was however preserved. Viviani and Terzuolo (1982) also observed
that the angle made by the trajectory with respect to the horizontal axis was
a good indicator for segments in the motion. Points of inflection and cusps
were characterized by a large change in angle made by the moving object.
Thus those points where there is a drop in velocity and a large change in
the angle can be considered as articulatory targets. Gestures are the motion
through or towards such targets. Because of the time constraints while uttering
a sentence, the true targets may not be reached, and how closely the articulator
comes depends on its velocity.

We propose a two-step approach in segmenting gestures. First we locate what
we call the ‘critical points’ in the trajectory, which are the projections of the
theoretical targets onto the trajectory. We then define a gesture as the motion
through one such ‘critical point’.
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2.1 Finding Articulatory Gestures - Segmentation

For an utterance with T time samples, let γa(t) be the vector corresponding
to the position of the articulator a at time instant t. The absolute velocity
(speed) dγa(t) is calculated between the positions γa(t) and γa(t − 1) for all
time instants 2 to T . The ‘Importance’ function, which gives an indication of
how close the position is to a target, Ia(t) can be calculated as

Ia(t) = log




θa(t)

2π
−

dγa(t)

max
1≤i≤T

va(i)


 (2)

The angle θa(t) is the acute angle (in radians) between the vectors [γa(t −
1), γa(t)] and [γa(t), γa(t + 1)]. A ‘critical point’ is a local maximum in this
‘Importance’ function. The Importance function needs to be smooth in order
to find good local maxima, and a minimum jerk trajectory algorithm is there-
fore used for smoothing. A minimum jerk trajectory is the smoothest possible
trajectory an object can take between two points with the minimum peak ve-
locity during the trajectory. Since jerk is the third derivative of the position,
setting the fourth derivative to zero would minimize the jerk. In order to fit
the minimum jerk trajectory, we need to integrate the fourth order differential
equation. Solving for each of the 4 derivatives as well as the constant of inte-
gration gives us a 5th polynomial equation. Given the noisy (jittery) trajectory
of the object γa(t), a smoothed version γsa(t) can be obtained as

γsa(t) =




1

t

t2

t3

t4

t5




T




1 t̄ t̄2 t̄3 t̄4 t̄5

0 1 2t̄ 3t̄2 4t̄3 5t̄4

0 0 2 6t̄ 12t̄2 20t̄3




† 


γa(t̄)

dγa(t̄)

d2γa(t̄)




(3)

where † indicates the pseudo-inverse of a matrix and t̄ is the vector of time
instances from interval [t − ws, t + ws], with 2 ∗ ws + 1 being the window
length. The trajectory is expected to be smooth and following minimum jerk
within this window. Figure 1 shows the original jittery trajectory and the
smoothed version of an EMA coil placed on the tongue tip in the MOCHA-
TIMIT recordings (Wrench, 1999). The jitter in the signal can probably be
attributed to measurement errors of the EMA coil.

The Importance function, calculated on this smooth trajectory has more re-
liable local maxima, facilitating better detection of ‘critical points’. The level
of smoothing and thus the number of critical points depends on the window
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(a) Original Trajectory (b) Smoothed Trajectory

Fig. 1. (a) The original recording of the trajectory of an EMA coil placed on the
tongue tip along the mid-sagittal plane during the utterance of the sentence, “Jane
may earn more money by working hard”. (b) The smoothed version of the same
trajectory using minimum jerk smoothing.

length. The larger the window, the finer transitions in the trajectory will be
smoothed over, hence resulting in fewer gestures. Figure 2 shows the Impor-
tance function of the trajectory calculated using Equation 2 and the critical
points obtained from its local maxima. Since a gesture was defined as the
movement through at least one such critical point, we consider a gesture as
the movement between two alternate critical points. That is, for every critical
point C, the gesture starts from the preceding critical point P and lasts until
the succeeding one S unless C is the first or the last critical point. Adjacent
gestures overlap, since the trajectory PC of one gesture corresponds to CS
for the previous one. One such gesture is shown in Figure 2.

These critical points constitute around 1 to 4% of the trajectory lengths de-
pending on the articulator and the content of the sentence. By performing
minimum jerk interpolation between the critical points, the original trajecto-
ries can be estimated with a Root Mean Square Error (RMSE) of less than
0.4 mm (less than 15% of the standard deviation). The error increases with a
larger amount of smoothing. The application of the above method to motion,
such as in articulatory data, is rather intuitive in view of the speed-curvature
relationship. We propose to apply the same paradigm to acoustic signals, as
outlined in the following subsection.

2.2 Acoustic Gestures

There are several automated methods to segment speech into small time
units. Segmentation after counting the number of level-crossings in a region of
the speech waveform (Sarkar and Sreenivas, 2005) is usually highly accurate.
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Tongue−Tip Trajectory

Critical Points

One Gesture

The Previous 
Point (P)

The Current 
Point (C)

The Successive 
Point (S)

(a) Importance Function (b) Critical Points in 2D

Fig. 2. (a) The trajectory of an EMA coil placed on the tongue tip along the
mid-sagittal plane during the utterance of the sentence, “Jane may earn more money
by working hard” along with the Importance function and ‘critical points’. It can
be noted that the absolute value of the Importance function is not crucial, but the
relative importance for different parts of the articulatory trajectories is. Hence the
y-axis denotes the scale only for the articulatory trajectories (1/100th of an mm).
(b) The EMA trajectory along the vertical and horizontal axes. One such ‘gesture’
is also shown.

Methods using intra-frame correlation measures between spectral features to
obtain the segments called the Spectral Transition method (STM) (Svendsen
and Soong, 1987) is also a popular method. Statistical modeling using Autore-
gression (or ARMA) models (Van Hemert, 1991) and HMM based methods
(Toledano et al., 2003) are often used to good effect. Many different features
like amplitude (Farhat et al., 1993), short time energy in different frequency
sub-bands (Gholampour and Nayebi, 1998; Ananthakrishnan et al., 2006), fun-
damental frequency contour, (Saito, 1998), auditory models, (Zue et al., 1989),
Mel Frequency Cepstral Coefficients (MFCC) (Toledano et al., 2003) etc. have
also been tried. While most research is directed towards detecting boundaries,
some algorithms, including the one presented in this article, are directed to-
wards finding acoustic landmarks (Zue et al., 1989; Liu, 1996) in the stable
regions of the speech signal. The landmarks have often been described as lin-
guistically or phonetically motivated events. The approach we have used is
following Ananthakrishnan et al. (2006) as we find the energy along differ-
ent frequency sub-bands to give multi-dimensional acoustic trajectories along
time, and then locate the landmarks by applying simple physical rules on these
acoustic trajectories.

We represent the acoustic signal as a time-varying filter-bank based on the
Equivalent Rectangular Band-width (ERB) scale (Moore and Glasberg, 1983)
instead of the traditional ‘Mel’ scale. The advantage of using such a filter-
bank is its relationship with the critical bands of hearing, in which the noise
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outside the critical band is suppressed. In contrast to the short-time segmental
approach, the signal is filtered into frequency sub-bands. The kth spectral
component of the transform of the time signal x(t) : 1 ≤ t ≤ T sampled at
sampling frequency Fs is given by

X(k, t) = α(k)
L(k)∑

m=1

Wk(m)x(t − m) exp

(
−j2πtCf(k)

Fs

)
(4)

where, L(k) is the length of the window corresponding to the kth spectral
component. α(k) is a weight that is set to 1 in the current experiments, but
could correspond to the equal loudness weights or pre-emphasis.

The windows function Wk(t) are Finite Impulse Response (FIR) linear phase
low pass filters. Their Central Frequencies (Cf) are calculated by dividing the
ERB scale into K equal parts, where K is the total number of filters (45 in
our experiments). Cf(K) must be less than Fs/2. Their Band-Widths (BW )
are calculated by Equation 5 which is the approximation of the ERB scale
made by Moore and Glasberg (1983)

BW = 6.23 ∗ 10−6 ∗ f 2 + 9.339 ∗ 10−2 ∗ f + 28.52 (5)

where f is the frequency in Hz. The order, L(k), depends on the pass band
frequency and is calculated as L(k) = 2/BW (k). The order for the FIR filters
also indicates the time resolution of the filters. One can see that these are
dependent on the frequency giving higher temporal resolution to higher fre-
quencies and higher frequency resolution to lower frequencies. Thus this sort
of spectral modeling is expected to be an advantage over the traditional short-
time analysis window methods. The filter Wk(n) : 1 ≤ n ≤ L(k) is calculated
as follows.

Wk(t) = H(t) ∗

sin

(
(t − (L(k)/2)) BW (k)

Fs

)

(
t −

L(k)

2

) (6)

where H(n) is the windowing function, in this case, the ‘Hann’ window. Fig-
ure 3 shows the frequency response of the designed ERB filter-bank. It is quite
clear from this figure that while the main lobe (pass-band lobe) is quite flat,
the sub-band ripple for all the filters is below 40 dB. This reduces the leakage
from the higher frequency sub-bands to lower frequency ones. This property
would not be exhibited by a uniform order filter-bank.

The complex signal X(k, t) is then converted to a real signal by finding its ab-
solute value and compressing it using the log scale approximation of loudness,
as

lX(k, t) = 10 log10(|X(k, t)|2) (7)

The real signal lX(k, t) is used for further processing. In our experiments the

9



0 1000 2000 3000 4000 5000 6000 7000 8000
−350

−300

−250

−200

−150

−100

−50

0

50

Frequency −−−−> (Hz)

Lo
g 

M
ag

ni
tu

de
 −

−
−

−
>

Fig. 3. The frequency magnitude response of the ERB Filter-banks with B = 80
Hz and 45 filters. One can see that the sub-band ripple is below 40 dB for all the
filters.

minimum frequency of the filter-bank was 80 Hz, the maximum frequency was
less than 6500 Hz and the total number of filters was 45. The configuration
was not optimized for the task at hand, but small changes in these numbers
did not result in any larger differences in the experimental results.

Figure 4 shows the original output of the filter-banks and after smoothing with
the minimum jerk formulation, which can be considered as a 5th degree poly-
nomial smoothing, with weighted coefficients. While this provides a smoothing
for the frequency representation, it does not remove the salient features of the
spectrogram.

Applying the conditions for detecting the ‘critical points’ as defined in Sec-
tion 2.1, we hope to detect the stable regions of the acoustics, which are the
projections of the target acoustics onto the true acoustics. Thus this algorithm
should be able to predict the salient landmarks in the speech signal. Figure 5
illustrates that the algorithm find critical points for most of the phonemes
and that they lie close to the centre of the manually segmented phonemes.
A more detailed analysis of the performance of this algorithm is discussed in
Section 3.

2.3 Relationship Between Acoustic and Articulatory Gestures

The critical points detected using the acoustic signal and the articulatory tra-
jectories have a very complex relationship. There is a high correlation between
the critical points when the particular articulator is important for the acous-
tics, but low when it is not so, as can be seen in Figure 5. The critical points on
the lower lip (LL) are synchronized with the acoustic ones for the phonemes
/m,b,w/. We see synchronization between the critical points on the tongue tip
(TT) and the acoustics for phonemes /t,d/ and between the tongue dorsum
(TD) and acoustics for phonemes /dZ,N/.
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(a) ERB output
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(b) Smoothed ERB output

Fig. 4. A part of the ERB scale log spectrogram from filter-bank outputs of an ut-
terance of the sentence “Jane may earn more money by working hard” sub-sampled
to 500Hz, before and after minimum jerk smoothing.

3 Gesture Detection Experiments

A set of experiments was made to estimate the accuracy of the acoustic ges-
ture segmentation (or critical points detection) algorithm. A highly accurately
transcribed and aligned data was required, and we used the TIMIT database
(Seneff and Zue, 1988). The test set contained sentences spoken by 168 speak-
ers in 8 American dialects with a total of 1344 sentences. Since the method
did not use any training, the results are presented directly on the test corpus.
Note that these results are not optimized for the purpose of segmentation,
which would then be done in the training set.

In order to get an estimate of the performance of the gesture detection al-
gorithm, we calculated the number of phonemes that were represented by at
least one gesture and the number of phonemes that were represented by more
than one gesture. More than one gesture per phoneme may be adequate for
diphthongs or aspirated stop consonants, but it was found that some long
fricatives and vowels were also broken into more than one acoustic gesture.
Table 1 shows the results on the TIMIT database. Most of the deletion errors
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Fig. 5. Illustration of the relationship between the critical points in the the acous-
tic signal and the different articulatory channels for the sentence “Jane may earn
more money by working hard”. In all figures, the upper part shows the acoustic
importance function and critical points and the speech waveform, while the bot-
tom part shows the articulatory trajectories. The x-axis are the time samples at
a sampling frequency of 16000 Hz. For the y-axis the scales of the acoustics and
articulatory trajectories are not maintained because the illustration indicates the
relative changes in acoustics, articulation and the Importance. The vertical lines
represent the phoneme boundaries marked by manual annotations.
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occurred when the phoneme duration was less than 10 milliseconds.

Window Length Accuracy Insertions

(ws) (%) (%)

30 ms 83.16 23.98

40 ms 76.5 11.67

50 ms 69.48 5.91

Table 1
Performance of the acoustic gesture detection algorithm. Accuracy indicates how
many times at least one critical point was detected within the duration of a phoneme.
Insertions denotes how many times a phoneme was segmented into more than one
gesture.

By increasing the smoothing (larger ws), the number of insertions decrease but
at the cost of not detecting all the phonemes. These numbers are comparable
with most automatic segmentation schemes suggested in the literature which
do not rely on extensive training based on orthogonal transcriptions. One must
note here that the focus of this segmentation scheme is not on getting highly
accurate acoustic segments, but to have a scheme which is also compatible
with segmenting articulatory trajectories in order to explain correspondences
in acoustic-to-articulatory inversion.

It is more difficult to judge whether the articulatory gestures are detected
correctly. The method of evaluation is as follows: we interpolate between the
critical points and compare the RMSE between the interpolated trajectories
and the measured ones. We used the articulatory measurements from the
MOCHA-TIMIT database (Wrench, 1999) in order to evaluate our method.
The data is described with further detail in Section 7. Figure 6 shows that in
spite of having just 1 to 4% of the points in the trajectory, the RMSE for
reconstruction is as low as 0.33 mm. For comparison, the reconstruction error
for interpolating between the same percentage of randomly selected points on
the trajectory is shown.

These experiments thus show that the gesture detection algorithm is able to
detect phonetically relevant units in the acoustic and articulatory signals. It
remains to be seen whether these detected segments can be used for acoustic-
to-articulatory inversion, which is the focus of the remainder of this article.
A time-varying, but length independent, parametrization scheme is needed
in order to be able to find a mapping between these acoustic and articula-
tory gestures. Section 4 describes 2-Dimensional Discrete Cosine Transforms
(2D-DCT), a parametrization scheme which can be applied to both acoustic
gestures and their corresponding articulatory movements.
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Fig. 6. Comparison of the mean RMSE (mm) of the trajectory reconstruction by
interpolation using only the critical points. For comparison, the reconstruction error
when interpolating between the same number of randomly chosen points over the
trajectory is also shown.

4 2-Dimensional Discrete Cosine Transform

The acoustic and articulatory gestures are parameterized as two-dimensional
cepstral coefficients and discrete cosine transforms, respectively. Mel Frequency
Cepstral Coefficients (MFCC) are the most common acoustic parametrization
for speech recognition and more recently synthesis. The cepstra are often cal-
culated by taking the cosine transform of the short time log of the frequency
warped spectrum of the acoustic signal. It is known that MFCC of consec-
utive segments of speech are highly correlated. In order to use time-varying
information, velocity (or acceleration) coefficients are also added in the pa-
rameterizations.

A two-dimensional cepstrum (2D-cepstrum) along the time and frequency di-
mensions was suggested by Ariki et al. (1989), with a linear frequency scale. It
was later adapted to the Mel Frequency scale by Milner and Vaseghi (1995).
Such a parametrization of speech is shown to be a time varying representation
with parameters that are highly de-correlated with each other. Thus, by using
2-D cepstra, further feature reduction schemes such as Principal Component
Analysis or Linear Discriminant Analysis need not be performed in order to
reduce the correlation between the features.

In most previous studies, the 2D-cepstrum was calculated for a fixed duration
window. In this study, they are instead calculated for segments of varying
duration, since the duration of each gesture could vary greatly, and a length
independent representation of the acoustic segment is hence required.
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The 2D-cepstra are calculated by applying a 2-dimensional discrete cosine
transform (2D-DCT), as follows. For 1 ≤ p ≤ P and 1 ≤ q ≤ Q, (where P
and Q are the number of cepstra in the frequency and time, respectively), the
time-varying cepstral coefficients are

τ(p, q) =
T∑

t=1

K∑

k=1

lX(k, t)

T
∗cos

(
π(k − 1

2
)(p − 1)

K

)
∗cos

(
π(t − 1

2
)(q − 1)

T

)
(8)

where K are the total number of frequency components (or filters) as in Equa-
tion 4 and T is the length of the gesture in terms of number of samples. The
axis along p is called the ‘quefrency’ and the axis along q is the corresponding
parameter along time, which we call ‘meti’, following the tradition of flipping
the first two syllables. Quefrency has the units of time and meti has the units
of frequency. It should be noted that the 2D-DCT has been modified so that
this representation is length invariant, which means that the parameters are
not affected by stretching or compression in time. In that sense, this represen-
tation is length-normalized. By selecting P and Q to be smaller than K and
T respectively, this representation provides a compression of complexity, i.e.
the representation is only an approximation of the original signal.

In speech recognition, 12 to 20 MFCC are typically considered, and in this
study P = {12, 15, 18, 20} was tested. The order for Q should typically be
quite small, between 3 and 5. The higher the number of coefficients Q, the
lower the compression and the more the variations in the trajectories and noise
in the acoustic signals are captured. The size of the window for smoothing
was ws = {30, 40, 50} ms (c.f. Equation 3). Along with the 2D-cepstra, which
were normalized with respect to time, the actual duration of the gesture is
taken as an additional feature, in case there were would be dependencies on
duration. Figure 7 shows how the original ERB log spectrogram obtained
from the output of the ERB filter-banks for a gesture is parameterized as a
2D-cepstrum.
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Fig. 7. (a) The original ERB log spectrogram segment of the acoustic gesture during
the sequence of phonemes /ni:b/ in the context of the words ‘money back’. (b)
Reconstructed spectrogram segment(from 2D-cepstrum with P = 18 and Q = 3)
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The articulatory gestures were parameterized in the same manner, i.e. 2D-
DCT coefficients, without allowing for compression in the number of articu-
latory parameters., i.e., P was the same as the number of parameters and Q
was the same as the number chosen for the acoustic gestures. Thus 2D-DCT
are a parametrization scheme which is applicable to time-varying segments of
both acoustic signals and articulatory trajectories.

5 Regression

In order to evaluate the use of gesture mapping for articulatory inversion, we
decided to compare it with the standard frame-based approaches using one of
the state-of-the-art machine learning algorithms, Gaussian Mixture Model Re-
gression (GMMR) (Sung, 2004). It is a piece-wise linear space approximation
and it can be used to calculate the regression in a probabilistic sense. Toda
et al. (2004b) applied this technique to acoustic-to-articulatory inversion using
11 consecutive frames of 24 MFCC coefficients as acoustic parameters and the
positions of the articulators corresponding to the central acoustic frame as the
articulatory features to be detected. Both the acoustics and articulatory data
was first sub-sampled to 100 Hz. The training samples were corresponding
frames of a part of the acoustic and articulatory data. Articulation predic-
tion was made based on every instance of the acoustic data in the testing
set. They performed regression based on two methods, namely the Minimum
Mean Square Error Estimate (MMSE) and the Maximum Likelihood Trajec-
tory Estimate (MLTE). The former method simply considered the positions
of the articulators, while the latter considered the velocity of the articulators,
in order to improve the estimation. We replicated their experiments with as
much fidelity as was possible, in order to have a baseline for evaluating the
gesture mapping. In our case, we performed a GMMR between the 2D-cepstra
of the acoustic gestures and the 2D-DCT encoded articulatory gestures. The
GMMR is explained briefly below following the notation used by Toda et al.
(2004b).

The conditional probability density of a variable yt conditioned on variable xt,
modeled as a GMM is represented as

P (yt|xt) =
M∑

m=1

P (m|xt, λ)P (yt|xt, m, λ) (9)

where

P (m|xt, λ) =
ρmN (xt; µ

x
m, Σxx

m )
∑M

n=1 ρnN (xt; µx
n, Σxx

n )
(10)

and

P (yt|xt, m, λ) = N (yt; E
y
m,tD

yy
m ) (11)
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and λ is the model in the joint space xy. The mean vector Ey
m,t and the

covariance matrix Dyy
m of the conditional probability distribution are

Ey
m,t = µy

m + Σm(yx)(Σxx
m )−1(xt − µx

m) (12)

Dyy
m = Σm(yy)− Σm(yx)(Σxx

m )−1Σm(xy) (13)

The MMSE estimate for the regression, ŷt, given xt, is calculated as

ŷt = E[yt|xt] =
M∑

m

P (m|xt, λ)Ey
m,t (14)

where E[.] is the expectation of the distribution. The GMM on the joint space
(xy) is obtained using the Expectation Maximization (EM) algorithm (Bilmes,
1998). The estimated vector is the weighted average of the different conditional
means estimated over individual Gaussian components. After regression, the
estimates are often smoothed using dynamic information, such as the MLTE
employed by Toda et al.(2004b).

In our method, the estimates of the articulatory trajectories are parameter-
ized and are hence calculated by the inverse transform of Equation 8, taking
care of the length of the required articulatory gesture. Since there is an over-
lap of trajectory estimates at every critical point due to overlapping gestures
(c.f. Section 2 and Figure 8), this overlap in information is handled using
a minimum jerk smoothing with multiple weighted hypotheses. In the cur-
rent implementation, the weights for each hypothesis are set to be equal, but
they could be optimized through further experimentation. The minimum jerk
smoothing for a time vector t̄ of time interval [t − ws, t + ws]

T , with multiple
hypotheses at each time instant, is the minimum mean square error (MSE)
solution to the following optimization function J .

J(βt) = (Ξ − Γ ∗ βt)
T ∗ diag(Φ) ∗ (Ξ − Γ ∗ βt) (15)

β5×1
t are the parameters of the minimum jerk trajectory. Ξ3∗(2∗ws+1)∗h×1 is

Ξ =




[
H1(t̄)

T dH1(t̄)
T d2H1(t̄)

T
]T

[
H2(t̄)

T dH2(t̄)
T d2H2(t̄)

T
]T

...
[
Hh(t̄)

T dHh(t̄)
T d2Hh(t̄)

T
]T




(16)

where [H1 H2... Hh]
T are the h hypotheses and dH and d2H denote the
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Fig. 8. Multiple hypotheses predicted at every critical point from overlapping ges-
tures made by the tongue-tip (TT) for the sentence, “Jane may earn more money
by working hard”

corresponding velocity and the acceleration parameters. Γ3∗(2∗ws+1)∗h×6 is

Γ =




1 t̄ t̄2 t̄3 t̄4 t̄5

0 1 2t̄ 3t̄2 4t̄3 5t̄4

0 0 2 6t̄ 12t̄2 20t̄3

repeat
...

...
...

...
...

1 t̄ t̄2 t̄3 t̄4 t̄5

0 1 2t̄ 3t̄2 4t̄3 5t̄4

0 0 2 6t̄ 12t̄2 20t̄3




(17)

The weight vector,Φ3∗(2∗ws+1)∗h×1, is the weight for each hypothesis for each
time instance in t̄. The velocity and acceleration parameters can also be
weighted independently. Using the parameters, βt, the new smoothed trajec-
tory γ̂(t) can be found by

γ̂(t) =
[
1 t t2 t3 t4 t5

]
∗ βt (18)
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6 Evaluation Criteria for the Inversion

Since the predictions of the articulation are trajectories, a commonly used eval-
uation criterion in acoustic-to-articulatory inversion is the Root Mean Square
Error (RMSE) between the measured and estimated trajectories of every
articulator a. The mean RMSE (mRMSE) is the mean across all the A
articulators.

The second standard evaluation criterion is the Correlation Coefficient (CCa)
between the measured and the estimated trajectories calculated as

CCa =

∣∣∣∣∣∣

∑T
t=1(γa(t) − Ê[γa]) ∗ (γ̂a(t) − Ê[γ̂a])√∑T

t=1(γa(t) − Ê[γa])2 ∗
∑T

t=1(γ̂a(t) − Ê[γ̂a])2

∣∣∣∣∣∣
(19)

The mean Correlation Coefficient mCC is calculated by averaging over all
articulatory trajectories.

Both these criteria, although used quite often, may not really be effective in
determining where or what the error really is. The estimated trajectory may
simply be out of phase with the true trajectory, which is not as much a problem
as making a different trajectory. Besides, the error made for different parts of
the trajectory (for different phonemes) may not be of equal importance. An-
other issue is that the RMSE error would be lower for smoother trajectories.
This means that gestures without much movement (which then are not as im-
portant) would be predicted better than gestures with more movements. Most
of the drawbacks associated with RMSE are also applicable to CC. Addition-
ally, calculating CC gives no intuitive idea about the location of the error and
about how significant the error is. It is generally known that a low RMSE
and a high CC is good, but they do not indicate whether the performance of
the state-of-the-art systems are good enough for their purpose.

One evaluation method would be to use these estimates in an articulatory
synthesis model and see whether the estimates are able to produce intelligi-
ble speech. The quality of the sound produced by the synthesizers is however
highly dependant on the vocal tract excitation function (or glottal source mod-
eling) (Childers, 1995). Since these factors are unknown, synthesized speech
hence may not make a fair comparison when the articulatory features are
estimated by other techniques than inversion-by-synthesis.

Another method of evaluating the overall goodness of the estimates is to
use the estimated trajectories to enhance speech recognition. Several studies
(Wrench and Richmond, 2000; Zlokarnik, 1993; Stephenson et al., 2000) have
shown that measured articulatory data improves the performance of speech
recognition systems significantly. However, almost none of the studies that
tried to enhance speech recognition performances with estimated trajectories
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(or probabilistic models of the estimates) were successful in improving speech
recognition significantly. (Stephenson et al., 2000; Markov et al., 2006; Neiberg
et al., 2009)

Engwall(2006) and Katsamanis et al.(2008) have suggested two alternative
evaluation schemes for acoustic-to-articulatory inversion based on a classifica-
tion task and a weighted RMSE, respectively. The first method attempts to
determine if the important articulatory features are correctly recovered, while
the second gives more importance to errors that were found to be statistically
important for a given articulator and phoneme.

The evaluation method proposed in this article relies on the critical points and
thus depends on the reliability of the method to obtain the critical points. If
the critical points are calculated reliably, then the rest of the trajectory can be
obtained by interpolating between the critical points, as shown in Section 3.
However, the estimated critical points may not just be misplaced in position,
but may also be misplaced in time. Secondly, a very jittery movement which is
able to predict the critical points is not adequate, which means that erroneous
insertion of critical points needs to be penalized. Similarly, a smooth prediction
may give a high CC and RMSE but may not have enough critical points. Thus
the proposed error measure which we call ‘Critical Trajectory Error’(CTE)
finds the displacement both in space and time, and returns a quantity which
gives an indication of how unsynchronized the estimated trajectory is. The
units of this error measure is a unit of time, typically milliseconds.

6.1 Algorithm to Find CTE

Consider the measured trajectory γa and the estimated trajectory γ̂a

(1) Find the measured critical points [Cp Ct] on γa. C has two dimensions,
position p (units mm) and time t (units ms). Say there are M critical
points.

(2) Find the average velocity, ν, of the gesture associated with each critical
point m.
∀m

ν(m) =
(
∑Ct(m+1)

k=Ct(m−1) |γa(k) − γa(k − 1)|)

(Ct(m + 1) − Ct(m − 1))
(20)

(3) Find the estimated critical points [Ĉp Ĉt] on γ̂a.
Say there are N estimated critical points.

(4) Initiate N flags F (1 ≤ n ≤ N), required to know whether all the critical
points find the correspondences.

(5) Initialize the error value, CTEa = 0 for articulator a.
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(6) for ∀m ∈ Ct

(a) The nearest critical point in the estimated trajectory to the mth

critical point in the measured trajectory is found as
N̂m = arg min

1≤n≤N
(Ct(m) − Ĉt(n))2

(b) set F (Nm) to indicate that the critical point in the estimated trajec-
tory has a correspondence in the measured trajectory

(c)

CTEa = CTEa +




(

Cp(m) − Ĉp(Nm)

ν(m)

)2

+ (Ct(m) − Ĉt(Nm))2




1/2

(21)
(7) In order to find all the critical points in the estimated trajectory without a

corresponding critical point in the measured trajectory, ∀n ∈∼ F , where
∼ is an unset flag,
CTEa = CTEa + |Ĉp(n) − γa(Ĉt(n))|

(8) The final error for articulatory channel a, is the mean error for each
critical point, CTEa = CTEa/M

This method weighs the displacement in position error by the inverse of the
average speed during the gesture. So if the gesture is very slow, a larger penalty
is given to the difference in position, while if the gesture is fast, a lower penalty
is given. For missing critical points, the error would be quite large because the
closest estimated critical may be highly displaced in time. For inserted critical
points, the error is calculated with respect to a closest critical point in the
measured trajectory, as shown in Figure 9.

This error measure thus gives a better idea about how well the algorithm
performs in terms of how far the estimated trajectory is from being perfectly
synchronized with the measured trajectory. The drawback, however, is the
reliance on a method to find these critical points.

7 Inversion Experiments

The inversion experiments were conducted using the simultaneously recorded
Acoustic-EMA data from the MOCHA database (Wrench, 1999) consisting
of 460 TIMIT sentences spoken by two speakers, one male (msak) and one
female (fsew). The sentences had a total number of 46 phonemes including
silence and breath. The 14 articulatory channels consisted of the X- and Y-
axis trajectories of 7 EMA coils, namely Lower Jaw (LJ), Upper Lip (UL),
Lower Lip (LL), Tongue Tip (TT), Tongue Body (TB), Tongue Dorsum (TD)
and Velum (VE). The trajectories were processed as described by Richmond
(2002) in order to remove the drift.
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Fig. 9. Plot showing how the Critical Trajectory Error (CTE) measures are calcu-
lated. One can see that this CTE error measure gives an idea about how unsynchro-
nized the estimate is with respect to the original trajectory. The time scales are in
milliseconds.

For the baseline method, the EMA data was low-pass filtered and down-
sampled to 100 Hz, in order to correspond to the acoustic frame shift rate.
Each acoustic frame was parameterized by 24 MFCC coefficients (including
the 0th), and 11 adjacent acoustic frames each of duration 25 ms (at a frame
rate of 100 Hz) were considered. The features were reduced using Principal
Component Analysis (PCA) such that all components that contributed to
less than 2% of the variation was removed. Thus each acoustic frame had be-
tween 64 to 69 (different for each cross-validation set) acoustic features and
contained information from 125 ms of the signal. The delta features for the
articulatory measurements were also computed with a look-ahead and lag of
30 ms for the MLTE estimation, giving 28 articulatory features correspond-
ing to the central frame of the acoustic features. A ten-fold cross-validation
was performed where 90% (314 sentences, around 94,100 data-frames) of each
of the speaker data was used for training the GMMR models and 10% (46
sentences, around 10,400 data-frames) of the same speaker data was used for
testing each speaker model’s performance. The MFCC and the articulatory
trajectory vectors of the training data were normalized to zero mean with a
Standard Deviation (SD) of 1. The parameters were optimized on the male
speaker. The number of Gaussians that gave the best results was 64 when
using the entire training set. The MMSE and MLTE estimates were then fil-
tered using the cut-off frequencies that were suggested by Toda et al. (2008)
for each articulator trajectory.

22



For the method proposed in this article, the segmentation into acoustic ges-
tures and their corresponding articulatory movements were encoded using the
2D-cepstra and 2D-DCT respectively, as described in Section 4. After seg-
mentation we had an average of around 26,450 samples of acoustic-articulatory
pairs for training and an average of around 2,430 pairs for testing. Each acous-
tic gesture was parameterized by P × Q quefrency and meti parameters plus
the actual duration of the gesture. So with P equal to 18 and Q equal to 3,
there would be 55 parameters (18×3+1).

The ten-fold cross-validation was performed for this method similarly as for the
frame-based method. The encoded parameters of the training were normalized
to have a zero mean and an SD of 1, before the training the GMMR with 64
Gaussians. The articulatory trajectories were not filtered or down-sampled as
was the case in the frame-based method. The test sentences in both the cases
were normalized according to the mean and SD, calculated on the training
set. All evaluations were performed against the drift-corrected articulatory
trajectories at the original sampling rate rather than the further processed
trajectories.

8 Results

Three main parameters may influence the results of the gesture-based acoustic-
to-articulatory inversion, namely, the level of smoothing for segmenting the
acoustic gestures, and the number of 2-D cepstral coefficients for parameter-
izing the acoustic space along quefrency and meti. We assumed that the same
number of meti components are sufficient for parameterizing the articulatory
trajectories, although in principle this could be another parameter to optimize.
We conducted a 3× 4× 3 grid search over the possible parameter choices. Ta-
ble 2 shows the partial optimization table, i.e., the result of variation over
one parameter at a time while keeping the other parameters to the optimal
ones. The level of smoothing does not affect the performance of the algorithm
substantially, but the best performance was for a detection with a balance
between number of insertions and deletions (c.f. Table 1). The largest effect is
seen by the number of meti parameters Q, as the performance decreases with
more than 3 parameters.

Figure 10 compares the performances of the traditional frame based acoustic-
to-articulatory inversion methods with the gesture based method proposed in
this article. The Gesture based method shows an mRMSE of 1.45mm (0.63
of Standard Deviation) and 1.55mm (0.64 of Standard Deviation) for the male
subject (msak) and female subject (fsew) respectively. The figure shows that
there is no statistical difference between the gesture-based method and the
frame-based one using dynamical constraints. However there is a statistically
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ws RMSE (mm) CC CTE (msec)

30 ms 1.47 0.78 50.1

40 ms 1.45 0.79 48.4

50 ms 1.49 0.75 51.3

P RMSE CC CTE

12 1.49 0.78 50.3

15 1.47 0.79 49.6

18 1.45 0.79 48.4

20 1.46 0.79 49.3

Q RMSE CC CTE

3 1.45 0.79 48.4

4 1.5 0.74 50.1

5 1.55 0.71 52.3

Table 2
Table comparing the performance of the proposed method for different window
lengths (ws), number of ‘quefrency’ components (P ) and number of ‘meti’ compo-
nents (Q). When one parameter was being optimized, the default setting for the
remaining parameters were ws = 40ms, P = 18 and Q = 3. The results presented
are the average over the ten-fold cross-validation on the male speaker (msak) using
64 Gaussian GMMR.

significant difference (p < 0.05) between the methods using dynamic features
and the MMSE based method. This shows that modeling of dynamics of the
articulatory trajectories is important for the inversion.

The different methods showed an asynchrony (based on CTE) in the range
of 48-50 ms. Earlier research (Reeves and Voelker, 1993) based on asynchrony
between audio and video has shown that an asynchrony of around 40 ms
cannot be detected easily by human subjects, but affects their performance
in retrieving information from the audio. Thus we can say that the current
methods for statistical inversion are close to the point where the error may
not be detectable, but will definitely degrade the performance. This effect has
been observed in experiments on enhancing speech recognition with estimated
articulator trajectories (Wrench and Richmond, 2000; Neiberg et al., 2009).
While measured trajectories could enhance the speech recognition accuracy,
the same was not true when estimated trajectories were used.

Figure 11 shows the RMSE estimates from the gesture based inversion al-
gorithm for different phonemes. The error is quite balanced for the different
classes of phonemes which is different from the usually reported observations
(Richmond, 2002; Hiroya and Honda, 2004) that the inversion is better for
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Fig. 10. Comparisons of the mRMSE, correlation coefficients (mCC) and critical
trajectory error (mCTE) over a ten-fold cross-validation for different methods. The
left column is for the male speaker (msak) and the right column is for the female
speaker (fsew). The MMSE and MLTE methods are the traditional Frame Based
(FB) methods, without and with dynamic features respectively, while the Gesture
based method uses the same GMMR regression, but has gesture based features.

vowels and diphthongs than for stop-consonants, nasals and approximants.
This is probably be due to the better modeling of transients by the Gesture
based method. One can also observe that the largest error in terms of RMSE
is for the tongue tip which has the maximum variance among the different
articulators which is in accordance with previous observations.

9 Discussion and Conclusions

This article proposes a method of acoustic-to-articulatory inversion based on
mapping acoustic gestures to their corresponding articulatory trajectories.
The ‘Gesture’ based method follows a different paradigm than the traditional
frame-based method. It draws its inspiration from the Direct Realist theory
which supposes a direct correspondence between acoustic and articulatory
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Fig. 11. The RMSE in mm for individual phonemes and different articulators, from
bottom to top: Lower Jaw (LJ), Upper Lip (UL), Lower Lip (LL), Tongue Tip (TT),
Tongue Body (TB), Tongue Dorsum (TD) and Velum (V)
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gestures. The machine learning algorithm used was exactly the same as the
traditional frame-based methods. The only difference was in the types of units
used for mapping and their parametrization. The frame-based method made
use of every single frame of corresponding acoustic features and articulatory
positions for making the inversion, while the Gesture based method made use
of longer segments of acoustics and articulatory movements, thereby reducing
the load on the machine learning algorithm. There was a 4-fold reduction in
the number of instances used for training in the Gesture based method which
correspondingly reduces the training time for the machine learning based re-
gression models.

While the overall performance of the Gesture based method was comparable
with the the frame-based method with dynamic features, the performance over
different phoneme classes was found to be more or less even in the Gesture
based method. The frame-based methods were found to be partial to vowels
and diphthongs which, being longer, contribute to a larger percentage of the
frames in the database. The Gesture based method tries to provide only one
sample of correspondences for every occurrence of a phoneme thereby avoiding
any bias towards particular types of phonemes.

In spite of different types of parameters selected for the gesture detection
and their differences in performance, the inversion results were more or less
unaffected. This may be attributed to the definition where adjacent gestures
overlap with each other. Due to this, small errors in gesture detection may
not have a contribution to the inversion. So in principle, any segmentation
algorithm may work equally well for Gesture based inversion as long as there
is sufficient overlap between adjacent segments. The minimum jerk smoothing
with multiple hypothesis could be an important contribution to the overall
performance, although it is not easy to speculate on the extent of the impor-
tance.

It would be interesting to see the scalability of the Gesture based method
towards speaker adaptation. In addition to different sizes and shapes, different
speakers may have different strategies in co-articulation. The Gesture based
method may be more suitable to model various co-articulation strategies than
the frame-based method.

While this paper does not claim to prove the direct realist theory conclusively
as against other theories of speech perception, it provides a basis for pursuing
research in this direction. This may be an alternative to traditional short-
time stationary (frame-based) approaches towards speech signal processing.
While there seems to be a high correlation between gestures in the articula-
tory domain and gestures in the acoustic domain, the study also finds a high
degree of variability in the types of gestures. Earlier studies (Ananthakrishnan
et al., 2009; Neiberg et al., 2008) have shown a non-uniqueness in the mapping
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between acoustic frames and positions of the articulators in continuous (nat-
ural) speech, which may be treated as evidence against the motor-theory of
speech perception. It remains to be seen whether this sort of non-uniqueness
can be observed even at the gestural level, thus either corroborating or con-
tradicting the direct realist theory.

The gesture based method may be more useful than the frame-based one
while driving virtual oro-facial agents (avatars) with articulatory or visual
features in cases where the speed of the animation needs to be changed. The
different articulatory gestures can be independently controlled quite easily.
For example, a gesture corresponding to a particular phoneme may be made
slower than others in order to stress on a particular aspect of the utterance.

There are three main contributions from the paper. The first is a method of
unsupervised segmentation of gestures (or critical point detection) which can
be applied in the same way on both the articulatory and acoustic spaces. The
second contribution is the parametrization of acoustic segments using length-
independent 2D-cepstral coefficients. This form of parametrization using 2D-
DCT is suitable for both acoustics and articulatory trajectories. The final
contribution is the critical trajectory error measure CTE which could project
the error of the estimation in terms of asynchrony between the trajectories,
thus giving a more intuitive idea about the level of errors made. The paper
also provides insights on two aspects, i.e. the relationship between the critical
points in the articulatory and acoustic spaces and also between the gestures.
Finally, the paper shows that there is no statistical significance between per-
forming acoustic-to-articulatory inversion using the traditional frame-based
method with dynamic constraints on the articulation and the gesture based
method using the same machine learning algorithm (GMMR).

Future work will be directed towards speaker adaptation, verifying whether
non-uniqueness exists between the mapping of Gestures and implementation
of a system which can be used for pronunciation feedback in the form of
articulatory gestures.
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