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Abstract

Mixture of Experts(ME) is an ensemble of function ap-
proximators that fit the clustered data set locally rather than
globally. ME provides a useful tool to learn multi-valued
mappings(ambiguities) in the data set. Mixture of Experts
training involve learning a multi-category classifier for the
gates distribution and fitting a regressor within each of the
clusters. The learning of ME is based on divide and con-
quer which is known to increase the error due to variance.
In order to avoid overfitting several researchers have pro-
posed using linear experts. However in the absence of any
knowledge of non-linearities existing in the data set, it is not
clear how many linear experts could accurately model the
data.

In this work we propose a bayesian learning framework
for learning Mixture of Experts. Bayesian learning intrin-
sically embodies regularization and model selection using
Occam’s razor. In the past Bayesian learning methods have
been applied to classification and regression in order to
avoid scale sensitivity and orthodox model selection proce-
dure of cross validation. Although true Bayesian learning
is computationally intractable, approximations do result in
sparser and more compact models.

1 Introduction

Mixture of Experts, originally proposed by Jacob et
al.[3], provide a modular learning framework that involve
multiple function approximators, combined using a multi-
category classifier. The original EM algorithm for learning
ME maximizes the likelihood by decoupling the learning
process into regressor fitting and multi-category classifica-
tion tasks. Maximum Likelihood(ML) based learning meth-
ods typically lead to models with high variance and overfit-
ting. For regression problems ML underestimates the noise
level.

The learning in ME is essentially a divide and conquer

strategy to train on complex non-linear datasets by break-
ing it into multiple clusters and fitting surfaces within each
of the clusters. The statistical consequence of such a tech-
nique is favorable on error due to bias but tends to increase
the error due to variance. A simplistic approach to avoid
overfitting is to fit linear surfaces. However in the absence
of any information about the intrinsic non-linearities exist-
ing in the data set, it is difficult to decide on the number of
linear experts that can accurately model the data set.

Bayesian model selection offers an elegant solution
to avoid overfitting. Waterhouse et. al[12] proposed a
bayesian framework to learn mixture of experts with gates
obtained using Laplace’s approximation. The gate distri-
bution forms an integral component of ME and it is not
clear how well the gates are learned on multi-valued map-
pings. Bishop et al.[1] proposed a generic variational learn-
ing framework by optimizing a well defined variational
lower bound on the marginal evidence. The algorithm is
only suitable for logistic gates and cannot be extended to
multi-category gating nodes. They use hierarchical binary
tree based structure to learn complex division of input space
using binary splits. However no comparison between the
original mixture of experts in terms of model complexity
and results have been provided.

An important component of the Mixture of Expert im-
plementation is the gate distribution which learns the prior
conditional to classify an input x to the expert cluster. Jor-
dan et. al [3] proposed a double loop EM algorithm for
learning the gate distribution as a softmax function using
Iterative Reweighted Least Square(IRLS) algorithm. In or-
der to avoid double loop EM, Xu et al.[13] formulated gate
distributions as a joint distribution over the constant expert
weights and the conditional prior. The alternative method
used weighted gaussian distribution for the prior and could
be solved analytically.

In this work we propose Mixture of Experts
learned using Bayesian theory of model selection and
regularization[5]. The experts are learned as Non-linear
kernel basis function approximators and the gating network
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Figure 1. (Left) Clustering of the training
data(Right) Prediction using the most proba-
ble expert and the linear combination of the
experts.

is learned as a sparse bayesian multi-category classifier.
The supervised learning framework is formulated as
posterior maximization using the regularized Expectation
Maximization procedure[6]. The improvement in the
prediction accuracy and the model complexity are ade-
quately illustrated using empirical evaluation on the low
dimensional synthetic toy data sets. The inverse perspective
projection mapping from the 2D image to the 3D human
pose is intrinsically multi-valued. Bayesian Mixture of
Experts(ME) provides an improved mechanism to learn
these multi-valued mappings as 3D state conditionals. The
predictions are done based on gate distributions which are
learnt as a multi-category classifier. We demonstrate the
algorithm on reconstruction of 3D articulated human pose
from the 2D image silhouette features.

2 Bayesian Mixture of Experts

Mixture of Experts training involves learning the experts
and the gates distribution. The gate distribution gi is a
multi-category classifier to cluster the dataset into several
classes. The experts Ei are the regressors that fit each of
the clusters locally. Jordan et al. [3] proposed an Ex-
pectation Maximization(EM) algorithm based on likelihood
maximization for learning the gates gi and the experts Ei.
Given a set of observed variables, D, the EM algorithm
tries to estimate the unknown variables Z by maximizing
the expectation of the augmented likelihood �c(Ω : D,Z).
The unknown variables Z may denote the class to which
observed variables belong. The E-Step consists of estima-
tion of the expected value of the complete likelihood �c(Ω :
D,Z) using expected value of the hidden variables Z i.e.
Q(Ω,Ωk) = E [log {�c(Ω : Z)}|D,Ωk]. In the M step, the
parameters Ωk+1 are estimated by maximizing the complete
likelihood �c(Ω : D,Z) i.e. Ω(k+1) = arg maxΩQ(Ω,Ωk).
Increase in the expected complete likelihood Q implies in-
crease in the incomplete likelihood �(Ω : D). The standard
EM algorithm has slow rate of convergence around the max-
ima and also tends to overfit the data. We propose a learning

framework for ME using regularized EM[4] algorithm that
maximizes the penalized likelihood for estimating the ex-
perts and the gate parameters. The standard EM algorithm
is an instance of generic class of algorithms called Proxi-
mal Point Algorithms. Originally these algorithms were in-
troduced by Martinet[6] and Rockafeller[8] for solving ob-
jective function with convex constraints. A proximal point
algorithm is defined by the iteration in M Step as:

Ω(k+1) = arg maxΩ{�c(Ω) − ψkd(Ω,Ω(t))} (1)

where �c is the objective function to be maximized and
d(Ω,Ω(t)) is the penalizing function that satisfies the con-
dition d(Ω,Ω(t)) ≥ 0. ψk are iteration dependent posi-
tive parameters. It can be shown that the objective func-
tion �c(Ω) increases with the iterative M-Step (1) and the
EM iterations converges at faster rate compared to the stan-
dard EM algorithm [6, 8]. Proximal Point algorithms(PP)
constrains the search of parameters Ω in the proximity of
previous iteration parameters Ω(k) thereby yielding a sta-
ble iterative algorithm that is robust to divergence due to
improper initialization. In our formulation of regularized
EM, we maximize posterior distribution instead of the com-
plete data likelihood. This leads to a special case of prox-
imal point algorithm that promotes sparsity of weights at
every EM iteration of the learning process. In further anal-
ysis we assume M experts to be learned on a data set
(t,x) = {(t1, x1), (t2, x2), · · · , (tN , xN )}. The hidden
variables zi = {zi1, · · · , ziM} are the binary indicator vari-
ables that classifies the data point xi to one of the cluster.

2.1 Experts and Gates Likelihood

We assume the standard gaussian noise model for M
expert regressors with the ith expert Ei expressed as
kernel basis interpolant tn = {∑N

j=1 φi(x, xj) ∗ θij +
θi0} + N (0, σ2) = θTi ∗ Φ(x) where Θ = {θ1, · · · , θM}
are the weight vectors for each of the experts Ei.
The augmented likelihood P (tn, zn|xn,Θ,Λ) =∏M

i=1{P (tn|zni, xn, θi, σ
2)P (zni|xn, λi)}zni where

zn = {zn1, · · · , znM} are the hidden indicator vari-
ables representing the hard clustering of the data
point xn to the M clusters. P (zni|xn, λi) is the gat-
ing distribution that assigns a class to each input
xn. The expert likelihoods are gaussian distribution

P (tn|zni, xn, θi, σ
2) ∝ exp{− ‖tn−Φ(xn)T θi‖2

σ2 } with
variance as σ2.

2.2 Bayesian Multi-Category Classifica-
tion

Gate distribution forms an important component of
Mixture of Experts(ME) and is implemented as a
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Figure 2. (Left) Training Time on log scale in
seconds. (Right) Sparsity of the trained mod-
els

multi-category classifier. The multi-category classi-
fication learning can be formulated as marginal evi-
dence maximization [10, 7] problem. Likelihood is
formulated as a multinomial distribution P (D|Λ) =
P (zni|xn, λi) =

∏M
k=1

∏N
n=1 ρk {f(xn)}znk for M

classes and N observed data pairs (xn, zn) with canon-
ical link function as ρj{f(xn)} = e−fj(x)/

∑M
i e−fi(x)

where fi(x) =
∑N

n λn,iΦ(x, xn) = λT
i Φ(x),

is the kernel basis interpolant at N training points.
Λ = {λ1, λ2, · · · , λM} are the weight parameters for each
class and A = {γ1, γ2, · · · , γM} are the scale parameters
for the weight priors.

Assuming independent weight priors for classes,
bayesian learning proceeds by formulating the
log posterior distribution log{P (Λ|D,A)} =∑M

k=1

∑N
n=1 znk log{ρk{f(xn)}} − (

∑M
k=1 λ

T
k γkλk)

where γk = diag(γk1, γk2, · · · , γkN ) are the individual
prior scale parameters for each class k and N training basis
vectors. We use Laplace’s approximation to estimate the
posterior distribution as a gaussian distribution with strong
peak at ΛMP = {λ1,MP, · · · , λM,MP}
P (Λ|D,A) �

{∏M
k=1 P (λk,MP|D, γk)

}

exp

{
M∑

k=1

−1
2
(λk − λk,MP)TC−1

k (λk − λk,MP)

}
(2)

The covariance matrices Ck are evaluated as hessian of log-
posterior of class k. The block diagonal covariance matrix
C for the joint posterior P (Λ|D,A) is approximated as
diag{C1,C2, · · · ,CM} for M classes. Therefore we can
factorize the complex multi-variate gaussian (2) into inde-
pendent gaussians for every class. The posterior distribution
is centered around ΛMP which occurs at most probable pa-
rameters λk,MP for each class k. Maximizing (2) with re-
spect to γk gives a closed form update rule for each class k
that can be used to estimate weights Λk,MP and the scale
parameters γk

Fast Online Multi-Category Classification

The computational speed of the Multi-Category classifica-
tion can be substantially improved by using a bottom up ap-
proach (as opposed to pruning based, top-down approach)
by adding (or updating) a pool of basis vectors. The al-
gorithm is initiated with randomly selected basis vectors.
Multiple passes over the entire training set can be used to
add or delete the basis vectors, until the marginal evidence
undergoes no change [2]. The contribution of an individual
training point towards the marginal likelihood can be com-
puted by decomposing the covariance matrix Ck of (2) for
each class k[2, 1] as

Ck = Ck,−i + γ−1
i,kφi,kφ

T
i,k (3)

which expresses the covariance Ck as the sum of contri-
bution from the individual basis vector φi,k and the rest of
the model Ck,−i. The decomposition yields [2, 1] an aug-
mentation rule for adding new basis vectors to the pool of
basis vectors for maximizing the marginal evidence of the
hyper-parameters. The algorithm makes a single pass and
updates the classifier as it adds, deletes or updates pool of
basis vectors. Although suboptimal, the algorithm drasti-
cally improves training time without degrading the predic-
tion accuracy. However there is decline in the sparsity of
the model. Fig. 2 compares the computational time and the
sparsity of the generated models obtained from different al-
gorithms. We compare the results with the multi-category
SVM [11]. The classifiers were test on a sample data set
containing 7 classes and varying number of points. Training
time for multi-category classification algorithm is almost 15
times that of online training using 5 and 20 initial basis vec-
tor.

2.3 Regularized Expectation Maximiza-
tion Algorithm

Learning Mixture of Experts involves estimation of the
weight parameters θi and λi for the experts Ei and the gate
distribution g respectively.

Log Posterior: Assuming independent prior distri-
butions with quadratic weight decay, log{P (Θ)} =
−∑M

i=1 θ
T
i αiθi and log{P (Λ)} = −∑M

i=1 λ
T
i γiλi where

αi and γi are the hyper-parameters corresponding to the ex-
perts and the gate classifier. The log posterior is approxi-
mated around the modes of the hyper-parameters:

P (Θ,Λ|tn, xn, zn) � P (Θ,Λ|tn, xn, zn, αMP, σ
2
MP, γMP)

(4)
The modes of the hyper-parameter distributions are ob-
tained by maximizing the marginal evidence. Assuming in-
dependent posterior distributions for hyper-parameters and
uniform gamma hyper-priors [5]

{αMP, σ
2
MP, γMP} = arg maxα,σ2,γP (α, σ2, γ|t,x, z)
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Figure 3. (Left) Gate Distribution learned as softmax function using IRLS.(Middle) Gate Distribution
learned as log kernel Bayesian Multi-Category classifier. (Right) The analytical gate distributions

∝ arg maxα,σ2,γP (t|x, z,α, σ2)P (z|x,γ)P (α)P (σ2)P (γ)
This yields evidence maximization learning for pruning
weights and estimating the full posterior for {Θ,Λ}.
The log posterior is estimated log{P (Θ,Λ|tn, xn, zn)} ∝
P (Θ|tn, xn, zn)P (Λ|zn, xn) where P (Θ|tn, xn, zn) ∝

M∑
i=0

E[zni]log{P (tn|zni, xn, θi)} −
M∑
i=1

θT
i αi,MP θi (5)

and P (Λ|zn, xn) ∝
M∑
i=0

E[zni]log{P (zni|xn, λi)} −
M∑
i=1

λT
i γi,MPλi (6)

The hyper-parameters {αMP , σ
2
MP , γMP} are estimated

using type II Maximum Likelihood. The estimated hyper-
paramters are used to prune out weights and generate sparse
models at every EM iteration. For the M-Step in the EM
iteration we maximize the log posterior instead of the aug-
mented log likelihood. The M Step is equivalent to maxi-
mizing the penalized likelihood for a Proximal Point Itera-
tion (1) by searching in a region around 0 weights and pe-
nalizing non-zero weights. The conditions required for the
super-linear convergence are αi > 0 and βi > 0 and the
quadratic penalties θT

i αiθi > 0, λT
i γiλi > 0. These condi-

tions are always satisfied during the EM iteration loop.
Expectation Step: The expectation step involves com-

puting the expected values (denoted as E[x]) of the hidden
variable.
E[zni] = P (zni = 1|xn, tn, θi, λi) =

P (tn|xn, zni = 1, θi) ∗ P (zni = 1|xn, λi)∑M
m=1 P (tn|xn, zmn = 1, θi) ∗ P (zmn = 1|xn, λi)

(7)

E[zni] denotes the soft classification of a point (tn, xn) to
the ith cluster.

Maximization Step: The maximization step estimates
θi and λi for the expert Ei and the gate distributions gi re-
spectively, by maximizing the log posterior separately for
the experts(5) and the gates(6). The soft clustering com-
puted in the E-step are used to train a multi-category clas-
sifier for the gate distribution. A regressor is fitted within
each of the cluster obtained from the gate distribution.
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Figure 4. Convergence rates for various im-
plementations of ME

Bayesian Update for Experts: Maximizing (5) is
a weighted generalized least square problem and can
be solved by reweighting the data terms (tn, xn) with
(
√
E[zin]tn,

√
E[zin]xn) and fitting a kernel regressor us-

ing type II Maximum Likelihood. The weights are pruned
by thresholding the scale hyper-parametersα obtained from
evidence(marginal likelihood) maximization [5, 10].

Bayesian Update for Gates: Maximizing (6) has the
same analytical form as the weight posterior of the multi-
category classification problem. The gates are updated by
iterative evidence(marginal likelihood) maximization with
E[zn] as the target class for the input xn. The learning
framework sparsifies the regressors and the gates at each
EM iteration using type II Maximum Likelihood learning.
The Proximal Point step for every EM iteration yields a
super-linear convergence rate[6]. We test our formulation
on the toy data set where clear multi-valued mappings exist
between the predictor and the target variable[1]. The toy
data was generated by uniformly sampling 200 values of
target variable t in range {0, 1} and the predictor variable as
x = t + 0.3 ∗ sin(2πt) + N (0, 0.005). Fig. 1 shows the
clustering of the training data using conditional posterior
distribution obtained in the Expectation step(7). In Fig.4 the
convergence rate of our algorithm with various implemen-
tations of ME are compared. We used ridge regressor for
the Linear Experts and Kernel Bayes Expert used RBF ker-
nel regressors trained in bayesian framework. IRLS gates
denote softmax gates learned using Iterative Reweighted
Least Square optimization. Bayesian Log Linear Gates de-
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note softmax function learnt in Bayesian framework and
Bayesian Kernel Gates denote kernel function with softmax
link.

Fig.3(Left,Middle) compares the gate distributions. The
gate distribution due to log kernel basis functions learn
the class boundaries better in comparison with the soft-
max gates learned using IRLS([3]). Fig.3(Right) shows
the analytically computed gates obtained as likelihood
of the fitted regressors to the data set (g(xi) =
exp{− (ti−(0.3∗sin(2∗pi∗Ei(x))+Ei(x)))2

(2∗(0.005)) }). Clearly the log
kernel gates model the distribution more accurately com-
pared to log linear gate distributions. Notice the tails and
the sharp change on the cluster boundaries for the gate dis-
tribution learned using log kernel bayesian Multi-Category
classifier.

Expert No. 1 2 3 4 5

Gate Weights 0.04 0.08 0.52 0.01 0.35

Gate Weights 0.33 0.09 0.01 0.51 0.06

Figure 5. Predictions from the 5 experts on
ambiguous human poses

3 Learning Inverse Prespective Projection

Learning complex inverse mappings require appropriate
representations of ambiguities and probabilistic prediction
based on spatial and temporal cues. The statistical model
should be able to learn all possible ambiguous configura-
tions for an observed input. Learning to reconstruct 3D hu-
man pose from 2D image silhouette[9] involves inferenc-
ing inverse perspective projection function which is intrin-
sically ambiguous. Loss of information due to the projec-
tion causes forward backward flip ambiguities due to non-
observabilities of parts.

We demonstrate the use of Bayesian Mixture of Experts
to learn multi-modalities of 3D pose reconstruction using
2D real image silhouette. We train BME on specific poses,
using motion capture data, imported to realistically ren-
dered MAYA(Alias Wavefront) model. The 3D pose is rep-
resented as 56 joint angles with no global translation. We
use the trained model to predict 3D joint angles from real

image silhouettes. The silhouettes for the real images were
obtained using background subtraction. The shape con-
text features are extracted from the outermost contour. We
trained Bayesian ME on the database containing humans in
forward and backward poses and sidewalking poses. These
poses are difficult to infer from 2D image silhouettes due to
forward-backward and legs ambiguities. Fig.5(Top) shows
the outputs from the 5 experts for the subject facing the
camera. 3D configurations predicted from different experts
illustrate the ambiguities arising due to the 2D features. The
gate weights denote the probabilites associated with each of
the expert. Fig.5(Bottom) shows the leg ambiguities arising
from the walking sequence viewed from the side.

4 Conclusion

In this work we have proposed a framework to learn am-
biguities using sparse bayesian mixture of experts. The pro-
posed model can be used with any number of experts and
does not require hierarchical structure. We show empirical
results to demonstrate the improvement in the sparsity and
the representative power of the ME model.
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