
Dynamic Drawing of Clustered Graphs

Yaniv Frishman∗

Department of Computer Science

Technion - Israel Institute of Technology

Ayellet Tal†

Department of Electrical Engineering

Technion - Israel Institute of Technology

ABSTRACT

This paper presents an algorithm for drawing a sequence of graphs
that contain an inherent grouping of their vertex set into clusters. It
differs from previous work on dynamic graph drawing in the em-
phasis that is put on maintaining the clustered structure of the graph
during incremental layout. The algorithm works online and allows
arbitrary modifications to the graph. It is generic and can be im-
plemented using a wide range of static force-directed graph layout
tools. The paper introduces several metrics for measuring layout
quality of dynamic clustered graphs. The performance of our al-
gorithm is analyzed using these metrics. The algorithm has been
successfully applied to visualizing mobile object software.

CR Categories: I.3.8 [Computer graphics]: Applica-
tions; H.4.3 [Information systems applications]: Communica-
tions applications—Information browsers H.5.2 [Information in-
terfaces and presentation]: User Interfaces—Graphical user in-
terfaces C.2.4 [Computer-communication networks]: Distributed
systems—Distributed applications

Keywords: graph drawing, dynamic layout, mobile objects, soft-
ware visualization

1 INTRODUCTION

Graphs are an important data structure for describing relationships
between objects (e.g., [7, 10]). The need to draw (i.e. layout)
graphs appears in many applications and as such, is an active area
of research in information visualization [16]. In clustered graphs,
the vertices are divided between a set of components called clus-
ters, which form a partition of the vertex set. In some applications,
the graphs are inherently clustered [4]. In other cases, clustering
has been successfully used in order to aid in the visualization of
graphs [32].

Many applications require the ability of dynamic graph drawing,
i.e., the ability of modifying the graph [23, 9, 3]. Different types of
graph modifications may be performed: adding vertices and clus-
ters, moving vertices between clusters, removing edges, etc. The
challenge in dynamic graph drawing is to compute a new layout
that is both aesthetically pleasing as it stands and fits well into the
sequence of drawings of the evolving graph. The latter criterion
has been termed preserving the mental map [22] or dynamic stabil-
ity [23]. A short animation sequence showing incremental layouts
of clustered graphs computed by our algorithm is shown in Figure 1.
In this dynamic scenario, vertices move between clusters and thus
the size of clusters change, edges are added, and clusters are added
and removed. Yet, the relative locations of the clusters and the ver-
tices are preserved, while allowing changes in the size of clusters
when deemed necessary.

∗e-mail: frishman@tx.technion.ac.il
†e-mail:ayellet@ee.technion.ac.il

Figure 1: Snapshots from an animation sequence

One field in which clustered graphs arise is software visual-
ization, and in particular, visualization of mobile object frame-
works [17, 6, 21]. Such frameworks extend the distributed objects
concept [24, 26] in allowing the objects to migrate to remote hosts,
along with their state and behavior, while the application is execut-
ing (in order to speed up interaction).

In these frameworks, the notion of a dynamic clustered graph
arises quite naturally. Every object is represented by a vertex in
the graph. A machine is represented as a cluster that contains the
objects currently residing in it. The area occupied by a cluster is
used as a visual clue to the user regarding the number of objects lo-
cated in the machine represented by the cluster. Naturally, the graph
being visualized evolves with time, as objects migrate between ma-
chines and machines connect and disconnect from the network. Our
algorithm has been designed to show these interactions.

The general problem of drawing graphs, e.g., assigning coordi-
nates to graph vertices, edges and other elements, has been exten-
sively studied [27, 20, 8]. One popular technique is force-directed
layout, which uses physical analogies in order to converge to an
aesthetically pleasing drawing [2, 27, 19]. Drawing non-point ver-
tices using this approach is discussed in [13, 5, 15]. Extending
force-directed algorithms for drawing large graphs is discussed
in [14, 29].

Work on clustered graph drawing is less widespread. In [30],
a divide and conquer approach, in which each cluster is laid out
separately and then the clusters are composed to form the graph, is
used. In [11], a method of drawing the clustering hierarchies of the
graph using different Z coordinates in a 3D view is discussed. See

(a) Force-directed non-incremental layout

(b) Our incremental layout

Figure 2: Incremental vs. non-incremental layout (from left to right)

also [4, 1] for a discussion of clustered and compound graph layout.
Incremental drawing of directed acyclic graphs is discussed

in [23], which uses a modification of the Sugiyama algorithm [25]
in order to draw ranked digraphs. An algorithm for computing the
layout of a sequence of graphs offline is described in [9]. The al-
gorithm is based on using different adjustment strategies in order
to compute the new layout. The DA-TU system described in [18]
allows navigating and interactively clustering huge graphs. Finally,
some commercial graph layout packages such as [28, 31] contain
provisions for dynamic layout of graphs. As far as we know, none
of the above was designed to handle incremental drawing of clus-
tered graphs.

In this paper we propose a new algorithm for online incremental
layout of clustered graphs. The algorithm does not impose restric-
tions on the structure of the graph. It allows drawing of edges not
only between vertices but also between clusters, which is used to
convey information to the user. The algorithm provides a means of
separating the set of vertices in each cluster to a subset of vertices
that stay in the same cluster and a subset of vertices that might move
to a different cluster. The layout of the vertices inside the cluster is
influenced by this separation.

The major design consideration of our algorithm is preserving
the mental map while the graph is being updated. We show that
force directed layout techniques [2, 27, 19] can be used as a basic
building block. However, they cannot be used as is, as demonstrated
in Figure 2(a), where clusters and vertices move considerably be-
tween successive drawings. We propose a few enhancements to
existing algorithms in order to preserve the mental map, as shown
in Figure 2(b), where only small variations in cluster location and
size are exhibited. Also note the stability of the vertices inside the
clusters as opposed to the non-incremental layout.

A key consideration in designing algorithms is the desirable
properties of the results. This paper proposes several criteria for
evaluating the quality of dynamic clustered graphs. They include
space compactness, minimization of the changes between frames
and run-time efficiency. We demonstrate that our algorithm per-
forms well according to these properties. Moreover, we show that
this is the case when considering a software visualization applica-
tion.

The rest of this paper is structured as follows. Section 2 defines
the problem. Section 3 describes the algorithm. A software visu-
alization application is presented in Section 4. Finally, Section 5
concludes and discusses future directions.

2 PROBLEM STATEMENT

This section defines clustered graphs and possible graph updates.
It also discusses criteria by which the quality and stability of the
layout is evaluated.

Definition 2.1 Partition: A k-way partition of a set C is a family of
subsets (C1,C2, . . . ,Ck) such that

⋃k
i=1 Ci = C and Ci ∩ C j = /0 for

i 6= j.

Definition 2.2 Clustered Graph: A clustered graph is an ordered
quadruple G = (V,C,Ev,Ec), where V is the vertex set, C is a set of
clusters which form a partition of the vertex set V , Ev is the set of
vertex-vertex edges Ev ⊆

{

(vi,v j)|i 6= j,vi,v j ∈ V
}

and Ec is the
set of cluster-cluster edges Ec ⊆

{

(Ci,C j)|i 6= j,Ci,C j ∈C
}

.

Given a series of clustered graphs G1,G2, . . . ,Gn, the goal of
the algorithm is to produce a sequence of layouts L1,L2, . . . ,Ln,
where Li is a drawing of Gi, such that the sets Vi, Ci, Evi , Eci are
assigned coordinates. Since the sequence of graphs Gi is not known
in advance, the algorithm is an online algorithm. The updates Ui
that can be performed between successive elements Gi−1 and Gi
are: Adding or removing vertices, edges or clusters, and modifying
the partition of vertices into clusters (i.e. moving vertices between
clusters).

A key issue in incremental graph drawing is the stability of the
layouts [22, 23]. This is important since a user looking at a graph
drawing gradually becomes familiar with the structure of the graph.
We propose the following criteria for evaluating the quality of the
layout:

1. The movement of clusters between successive drawings
should be small. Specifically, clusters that are not modified
should remain in their previous position if possible.

2. The change in the size of clusters between successive draw-
ings should be minimal, when the number of vertices in the
cluster is similar.

3. Movement of vertices inside a cluster should be minimized.

4. The size of each cluster Ci should be proportional to the num-
ber of vertices it contains.

5. The drawing of each cluster Ci should be compact.

6. Overlapping between vertices should be avoided and overlap-
ping between cluster boundaries should be minimal.

Our application to software visualization adds an additional re-
quirement. The vertices in each cluster are divided into two subsets,
static objects that remain at the same cluster throughout the anima-
tion and movable objects. This should become visually apparent.

Note that there are classical aesthetic criteria such as the num-
ber of edge crossings, the total edge length, etc. which we ignore
here. However, the underlying static algorithm used addresses these
criteria.

3 THE ALGORITHM

Given a sequence of clustered graphs G1,G2, . . . ,Gn, our goal is to
compute a sequence of graph layouts L1,L2, . . . ,Ln, so as to adhere
as much as possible to the criteria discussed in Section 2. A pos-
sible approach is to develop an incremental algorithm for drawing
clustered graphs from the ground up. A different approach, which
we have pursued, is to use an existing non-incremental graph layout
algorithm as a basic block, and build the incremental layout capa-
bility on top.

Among the different classes of graph drawing algorithms, the
force directed algorithm class seems to be the natural choice in our
case [2, 27, 19, 7, 10]. Roughly speaking, this approach simulates
a system of forces defined on the input graph and outputs a local
minimum energy configuration. An edge is simulated by a spring
connecting its endpoint vertices. Edge length influences the opti-
mal spring length and edge weight determines its stiffness. The
algorithm converges towards a minimum energy position, starting
from an initial placement of the vertices. In our case, the previous
layout, Li−1, can be used as a starting position for the new layout,
Li. Extending a force directed algorithm to perform a layout of
clustered graphs is discussed in Section 3.2.

Our algorithm’s requirements from the underlying force-directed
static layout algorithm are that there exist ways to assign initial co-
ordinates to vertices, to restrict their movement, to set edge lengths
and to add support for drawing clusters. Since little assumptions
are made regarding the underlying layout algorithm, a wide variety
of existing layout tools can be used. As such, our algorithm can add
incremental layout capabilities to most existing packages.

In our implementation we use the GraphViz graph drawing pack-
age [12] and its force directed layout component, Neato [13, 19].
Neato avoids overlaps between vertices and allows setting preferred
edge lengths and weights. It also allows pinning down vertices.
Pinned vertices are not moved while the algorithm converges by
moving vertices according to the forces acting on them. However,
Neato neither supports clustered graphs nor does it support control-
ling the repulsive forces between vertices. These deficiencies are
addressed by our algorithm, as will be described next.

We adopt the proposition made in [23] that vertex stability is
more crucial than edge stability. Specifically, we prefer changing
edge lengths rather than moving vertices. Moreover, in our case,
cluster stability is more significant than vertex stability. Thus, our
algorithm utilizes the following key ideas.

First, dummy vertices and edges are used in order to create a
clustered structure. Since clusters are treated as vertices, their mo-
tion can be controlled. Second, invisible place-holder vertices are
used in order to minimize the movement of clusters and of ver-
tices within clusters. This is done while maintaining compactness
and keeping the size of the clusters proportional to the number of
vertices they contain. Third, edge length and weight are used as
a means of controlling the changes made to the layout. Fourth, to
achieve both dynamic stability and distinguish between stable and
movable vertices, the set of vertices is partitioned into two sub-sets

– stable and movable. The subsets are laid out in a structure that
approximates two concentric circles around the center of the clus-
ter. Static objects are placed in the inner circle and movable objects
in the outer one.

These ideas are elaborated in this section. After outlining the al-
gorithm, various phases and aspects of the algorithm are discussed
in detail, including cluster support, minimization of visual changes,
and animations of graph updates.

3.1 Overview

To compute layout Li, only the last layout, Li−1, and the new graph
that needs to be laid out, Gi, are used. This is a fast and simple ap-
proach that fits well with the view that incremental layout performs
some local changes in the graph. In other words, the previous lay-
out is considered as a good starting point for the new layout, with
some adjustments made according to the changes that occurred.

The first step in computing the new layout, described in Sec-
tion 3.4, is a merge stage, which merges layout Li−1 and graph Gi.
In the second stage, an actual layout, L1

i , is computed using a static
force directed layout algorithm with the modifications described in
Sections 3.2–3.3. In the third stage, the quality of this layout is
checked, as described in Section 3.5. If the layout is deemed sat-
isfactory, it is accepted and Li = L1

i . Otherwise, a second layout
attempt is performed, producing layout L2

i . During this attempt,
more freedom is given to the layout algorithm in terms of moving
vertices, at the expense of weakening the connection between the
old and the new layouts. The better of L1

i and L2
i is selected as the

final drawing Li. The final stage of the algorithm, described in Sec-
tion 3.6, animates the change between the drawings Li−1 and Li in
a smooth manner. The algorithm is summarized in Figure 3.

procedure incremental drawing (Li−1, Gi) {
Gm

i = merge graphs (Li−1, Gi)
L1

i = layout graph (Gm
i)

if (L1
i is good enough)
Li = L1

i
else {

L2
i = layout graph (modify graph (L1

i))
Li = better (L2

i , L1
i)

}
animate change (Li−1, Li)

}

Figure 3: Algorithm overview in pseudo-code

3.2 Supporting Clusters

Adding an invisible dummy attractor vertex to each cluster, to
which all of the vertices in the cluster are connected with invisi-
ble edges, is proposed in [4], where repulsive forces are also used,
in order to increase cluster separation. One of the approaches dis-
cussed is a divide and conquer algorithm, in which the clusters are
first laid out separately and then the different layouts are composed
together. A hybrid approach that solves the problem of neglecting
inter-cluster edges, caused by this algorithm, is discussed in [30].

We follow the approach of adding a dummy vertex to each clus-
ter. However, separation between the clusters and meeting the other
requirements described in Section 2, is achieved differently. It is ac-
complished through proper settings of edge lengths and weights, as
described below.

Five kinds of edge lengths are utilized and indicate the expected
level of proximity between their adjacent vertices. The shortest
length is assigned to the invisible edges connecting static vertices

to the dummy vertex of the cluster they belong to. The edges con-
necting movable vertices and the dummy vertex are assigned longer
lengths. This creates a layout that resembles two concentric circles.
The next type of edges is the edges between vertices. If both ver-
tices at the endpoints of the edge are contained in the same cluster,
a shorter length is set than if the vertices are in different clusters.
This increases the separation between clusters. The last kind of
edges are cluster-cluster edges. The length of these edges is vari-
able and depends on the requested proximity between the different
clusters, which is determined by the application, e.g., by the amount
of interaction between clusters.

Edge weights are also used in our algorithm. Higher edge
weights instruct the underlying force-directed algorithm to try
harder to generate edges with lengths close to the optimal lengths
supplied to the algorithm (as discussed above). Inter-cluster edges
are assigned lower weights than intra-cluster edges. This is done in
an attempt to give inter-cluster edges less influence on the layout.
This is important when vertices move between clusters. In such
cases, it is preferable to stretch or shorten the length of the edges
somewhat, rather than displace vertices.

In our implementation, the lengths assigned to the edges con-
necting a static vertex to a dummy vertex, a movable vertex to a
dummy vertex, two regular vertices in the same cluster and two reg-
ular vertices located in different clusters, are 1, 2, 1.5 and 4 units of
length, respectively. The lengths assigned to cluster-cluster edges
vary between 5 and 6 units, where the dummy vertices are used
as endpoints for cluster-cluster edges. The weight of intra-cluster
edges is set to 1 unit and the weight of inter-cluster edges is set to
2.5 units.

3.3 Minimizing Visual Changes

Invisible vertices, called spacer vertices, are added to each cluster,
in an attempt to reduce the change in clusters’ outlines and mini-
mize the movement of clusters between successive layouts.

The spacer vertices are used as place-holders for regular vertices
in a cluster. They are connected with invisible edges to the dummy
vertex of the cluster to which they belong, like any other vertex in
the cluster. When a vertex is removed from a cluster, a spacer vertex
is added to the cluster instead of it. The initial location of the spacer
vertex is set to be the location of the vertex that left the cluster. This
is done in order to keep the size of the cluster constant and in order
to reserve space for a new vertex that might be added to the cluster
in the future. When a vertex moves (or is added) to a cluster, the
spacer vertex that is closest to its previous location is replaced by
this new vertex.

However, when adding or removing spacers, the algorithm keeps
the number of spacers in a cluster between an upper and a lower
fraction of the number of vertices in the cluster. This is done in or-
der to give the algorithm breathing room when modifying clusters.
Moreover, the limits are set so as to avoid a case in which a clus-
ter with a very small number of regular, visible vertices occupies a
large area due to the many spacer vertices it contains.

When calculating the outline of each cluster, which is often sim-
ply the bounding box, the spacer vertices are taken into account as if
they were regular visible vertices. Obviously, this minimization of
the movements comes at the expense of extra screen space, which
is occupied by the spacers.

3.4 Merging Graphs

The first step in performing the incremental layout is merging the
new graph to be drawn, Gi, and the previous graph drawing, Li−1.
The result of the merge stage is a partially laid out graph, Gm

i , in
which some of the vertices are assigned initial coordinates. After
merging, the graph Gm

i is laid-out by the static layout algorithm.

The quality of the resulting incremental layout depends on the ini-
tial conditions computed by the merging algorithm.

Merging is performed in several steps. Unchanged and dummy
vertices are assigned initial coordinates from Li−1. Then, clusters
to which vertices were both added and removed are handled. The
added and removed vertices of a cluster are paired-up, and the initial
coordinates of an added vertex is set to the coordinates of a removed
vertex.

Then, vertices that were added to a cluster or removed from it,
but cannot be paired-up, are handled, as discussed in Section 3.3.
Next, the vertices in new clusters, that is clusters that exist in Gi but
not in Li−1, are inserted into the graph without initial coordinates,
along with new spacer vertices. The number of the latter is set to a
constant fraction of the number of vertices in the cluster.

The last stage of merging involves vertex pinning, which restricts
vertex movement, allowing it to move only as an indirect result of
the movement of an unpinned vertex. We have experimented with
several strategies for computing the set of vertices to be pinned.
Our conclusion is that pinning all vertices that were assigned coor-
dinates achieves good results in terms of the dynamic stability of
the layout. We have also observed that in most cases the resulting
layouts are aesthetically pleasing.

3.5 Improving the Layout

After computing the graph layout L1
i , a cluster density metric deter-

mines whether the layout is of satisfactory quality. For a cluster Ci,
we define

density metric(Ci) =
area(bounding box(Ci))

number o f vertices(Ci)
.

That is, the density metric of a cluster is the ratio between the area
of its bounding box and the number of vertices it contains. Higher
values imply that the vertices in the cluster are spaced further apart,
which is not desirable. For the entire graph G we define

density metric(G) = maxCi∈G{density metric(Ci)}.

Experience has shown that a correlation exists between high density
metric values and overlaps between clusters.

A second layout, L2
i , is computed if the value of the graph density

metric exceeds a threshold. To improve the layout, the restrictions
on vertex movement are relaxed. The layout algorithm is re-run
with the positions of the vertices in L1

i as the initial condition. This
time the vertices are not pinned down. This gives the layout al-
gorithm more freedom and allows it to converge to a better result.
The new layout L2

i still resembles L1
i because of the supplied ini-

tial condition. The final layout is selected as the layout with the
lower density metric between L1

i and L2
i . Clearly, the choice be-

tween L1
i and L2

i demonstrates the tradeoff between preserving the
mental map and creating an aesthetically pleasing layout. It should
be noted that initial attempts to use more relaxed constraints when
computing L2

i , such as removing some of the assigned vertex coor-
dinates, were counterproductive.

3.6 Display and Animation

We have investigated display in three dimensions, as illustrated in
Figure 4, in order to distinguish between vertex types and edge
types. Vertex-vertex edges are drawn on the lower plane, while
cluster-cluster edges are drawn on the upper plane. In 3D, a cluster
is drawn as a semi-transparent pyramid with the cluster’s dummy
vertex, which is the endpoint of cluster-cluster edges, drawn at the
apex of the pyramid. One of our guidelines in creating this visu-
alization is being able to collapse the 3D view into a 2D view in a
natural and comprehensible way, as illustrated in Figure 5, which

shows a 2D drawing of the graph from Figure 4. Color is also em-
ployed in order to help the user comprehend the image – each clus-
ter has a different color.

The transition between Li−1 and Li is performed using a se-
quence of intermediate drawings generated by a linear interpolation
of the coordinates of vertices, edges and cluster boundaries. (See
the attached movie.)

Figure 4: 3D view of a clustered graph

Figure 5: 2D view of a clustered graph

4 VISUALIZING MOBILE OBJECT SOFTWARE

Our layout algorithm has been used in the visualization of mobile
object applications [17, 6, 21]. This framework extends the dis-
tributed objects concept, where objects can migrate to remote hosts,
along with their state and behavior, during the execution of the ap-
plication. The visualization should expose the connections, interac-
tions and movements of the objects that are distributed throughout
a computer network.

In our visualization, every object is depicted by a vertex. Con-
nections between objects are drawn as vertex–vertex edges. Each
machine is represented by a cluster that contains all of the objects
currently residing on that machine. The set of cluster–cluster edges

is used to display physical connections between machines, as op-
posed to logical relations that exist between objects.

Our algorithm is demonstrated in Figure 6 as well as in Fig-
ures 1-2 and in the accompanying movie. It was tested on several
graph sequences. Some of them represent executions of real mobile
object applications and others represent simulated data.

To measure the quality of the resulting layouts, we identify sev-
eral criteria. The first is the density metric discussed in Section 3.5,
which is used to measure the compactness of the layout. The second
is the sum of displacement of clusters between each pair of succes-
sive layouts, which is used to measure the stability of the layout.
The third is the percentage of clusters with the same size between
successive layouts, which helps to demonstrate the effectiveness of
using spacer vertices in minimizing visual changes to the graph.

Figures 7-10 compare the performance of our algorithm to two
other algorithms. The first is a non-incremental algorithm and the
second is an incremental algorithm in which vertices are assigned
initial coordinates computed in the merge stage, but vertex pinning
and spacer vertices are not used.

The density metric is plotted in Figure 7. Higher values in the
graph represent sparse clusters, which should be avoided. All three
algorithms produce similar results, which means that the incremen-
tal algorithm manages to compute compact layouts of the graph.
Figure 8 shows the sum of the displacements of clusters between
each pair of successive layouts. Lower values imply higher sta-
bility in the location of clusters. As can be seen, our algorithm
outperforms the other algorithms. Figure 9 depicts the number of
clusters that maintain their size between each pair of successive lay-
outs. Higher values imply that there are less modifications to clus-
ter outlines. It is clear from the graphs that our algorithm produces
much better results than the other algorithms. Finally, Figure 10
depicts the running times of the algorithms. Both incremental algo-
rithms take more time to compute than the non-incremental algo-
rithm. This is mostly due to the extra processing done in the merge
stage.

Table 1 summarizes the average values of each of the above met-
rics. All algorithms produce similar cluster densities. The clus-
ter displacement of our algorithm is by far superior to the non-
incremental algorithm, averaging about one twelfth of the non-
incremental algorithm. Reducing the movement of clusters has in-
deed been one of the main design goals of the algorithm. The av-
erage percentage of clusters that remain with the same size in our
algorithm is about four times as much as the non-incremental al-
gorithm. This is facilitated by the spacer vertices that are used to
minimize visual changes to the graph. Finally, the running times of
both incremental algorithms is about twice the running time of the
non-incremental algorithm, which is reasonable.

5 CONCLUSION AND FUTURE WORK

We have presented an online algorithm for incremental layout of
clustered graphs. The algorithm uses a force directed static layout
tool as a basic building block. The key idea of the algorithm is to
establish priorities of avoiding changes. First and foremost, move-
ment of clusters should be avoided, because clusters give insight
into the basic structure of the graph. Then, movement of vertices
should be avoided, since vertices convey information regarding the
size of the clusters and aid in navigating the graph. Movement of
edges is considered the least critical.

To achieve this, our algorithm incorporates a few novel con-
cepts. First, crucial vertices (dummy and old) are pinned down.
Second, invisible place-holders are used to minimize changes. Fi-
nally, lengths and weights of edges are used to control both vertex
placement and graph modifications.

It has been demonstrated that the algorithm computes a compact
and space efficient graph layout, while minimizing the displace-

ment and changes to clusters between layout iterations.
The algorithm has been applied to the visualization of mobile

object environments, where both real and simulated data has been
tested. Good results have been achieved at the expense of higher
running times. This is due both to the added complexity of the
algorithm and to the fact that our implementation is only loosely
coupled to the underlying static layout tool.

In future research, we plan to investigate enhancements to our
3D display mode. We would also like to extend the spacer vertices
concept to drawing the cluster boundaries. Allowing some flexibil-
ity in fitting the boundary around the vertices in the cluster might
improve the layout. An additional layout stage where each clus-
ter is modeled as a non-uniform node could help improve cluster
separation [5]. Finally, using stronger constraints when a second
layout is necessary might further improve the dynamic stability of
the algorithm.

Acknowledgements

This work was partially supported by European FP6 NoE grant
506766 (AIM@SHAPE) and by the Israeli Ministry of Science,
grant 01-01-01509.

REFERENCES

[1] F. Bertault and M. Miller. An algorithm for drawing compound
graphs. In J. Kratochvı́l, editor, Proc. 7th Int. Symp. Graph Draw-
ing (GD 1999), number 1731 in Lecture Notes in Computer Science,
LNCS, pages 197–204. Springer-Verlag, 2000.

[2] U. Brandes. 4. drawing on physical analogies. Lecture Notes in Com-
puter Science, LNCS, 2025:71–86, 2001.

[3] J. Branke. 9. dynamic graph drawing. Lecture Notes in Computer
Science, LNCS, 2025:228–246, 2001.

[4] R. Brockenauer and S. Cornelsen. 8. drawing clusters and hierarchies.
Lecture Notes in Computer Science, LNCS, 2025:193–227, 2001.

[5] J. H. Chuang, C. C. Lin, and H. C. Yen. Drawing graphs with nonuni-
form nodes using potential fields. In G. Liotta, editor, Proc. 11th Int.
Symp. Graph Drawing (GD 2003), number 2912 in Lecture Notes in
Computer Science, LNCS, pages 460–465. Springer-Verlag, 2004.

[6] W. R. Cockayne and M. Zyda, editors. Mobile Agents. Prentice Hall,
1998.

[7] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system
for graph-based visualization of the evolution of software. In S. Diehl,
J. T. Stasko, and S. N. Spencer, editors, Proceedings ACM 2003 Sym-
posium on Software Visualization, pages 77–86. ACM, 2003.

[8] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
drawing graphs: An annotated bibliography. Computational Geome-
try: Theory and Applications, 4(5):235–282, 1994.

[9] S. Diehl and C. Gorg. Graphs, They Are Changing - Dynamic Graph
Drawing for a Sequence of Graphs. In M. T. Goodrich and S. G.
Kobourov, editors, Proc. 10th Int. Symp. Graph Drawing (GD 2002),
number 2528 in Lecture Notes in Computer Science, LNCS, pages
23–31. Springer-Verlag, 2002.

[10] T. Dwyer. Three dimensional UML using force directed layout. In
P. Eades and T. Pattison, editors, Australian Symposium on Informa-
tion Visualisation, (invis.au 2001), volume 9 of Conferences in Re-
search and Practice in Information Technology, pages 77–85, Sydney,
Australia, 2001. ACS.

[11] P. Eades and Q. W. Feng. Multilevel visualization of clustered graphs.
In S. C. North, editor, Proc. 4th Int. Symp. Graph Drawing (GD 1996),
number 1190 in Lecture Notes in Computer Science, LNCS, pages
101–112. Springer-Verlag, 18–20 September 1996.

[12] J. Ellson, E. R. Gansner, L. Koutsofios, S. C. North, and G. Wood-
hull. Graphviz — open source graph drawing tools. In P. Mutzel,
M. Jünger, and S. Leipert, editors, Proc. 9th Int. Symp. Graph Draw-
ing (GD 2001), number 2265 in Lecture Notes in Computer Science,
LNCS, pages 483–484. Springer-Verlag, 2002.

[13] E. R. Gansner and S. C. North. Improved force-directed layouts. In
S. Whitesides, editor, Proc. 6th Int. Symp. Graph Drawing (GD 1998),
number 1547 in Lecture Notes in Computer Science, LNCS, pages
364–373. Springer-Verlag, 1998.

[14] D. Harel and Y. Koren. A Fast Multi-Scale Algorithm for Drawing
Large Graphs. J. Graph Algorithms Appl., 6(3):179–202, 2002.

[15] D. Harel and Y. Koren. Drawing graphs with non-uniform vertices.
In Proc. Working Conference on Advanced Visual Interfaces (AVI’02),
pages 157–166. ACM Press, 2002.

[16] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transactions
on Visualization and Computer Graphics, 6(1):24–43, 2000.

[17] O. Holder, I. Ben-Shaul, and H. Gazit. Dynamic layout of distributed
applications in fargo. In Proceedings of the 1999 International Con-
ference on Software Engineering, pages 163–173. IEEE Computer So-
ciety Press / ACM Press, 1999.

[18] M. L. Huang and P. Eades. A fully animated interactive system for
clustering and navigating huge graphs. In S. Whitesides, editor, Proc.
6th Int. Symp. Graph Drawing (GD 1998), number 1547 in Lecture
Notes in Computer Science, LNCS, pages 374–383. Springer-Verlag,
1998.

[19] T. Kamada and S. Kawai. An algorithm for drawing general undi-
rected graphs. Information Processing Letters, 31(1):7–15, April
1989.

[20] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and
Models. Number 2025 in Lecture Notes in Computer Science, LNCS.
Springer-Verlag, 2001.

[21] D. Lange and M. Oshima. Seven Good Reasons for Mobile Agents.
Communications of the ACM, 42(3):88–89, 1999.

[22] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment
and the mental map. Journal of Visual Languages and Computing,
6(2):183–210, 1995.

[23] S. C. North. Incremental layout in dynadag. In F. J. Brandenburg, ed-
itor, Proc. 3rd Int. Symp. Graph Drawing (GD 1995), number 1027 in
Lecture Notes in Computer Science, LNCS, pages 409–418. Springer-
Verlag, 1995.

[24] Object Management Group. The Common Object Request Broker:
Architecture and Specification. Revision 2.2, February 1998.

[25] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual under-
standing of hierachical system structures. IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-11(2):109–125, February 1981.

[26] Sun Microsystems, Inc. Java Remote Method Invocation (RMI) Spe-
cification, December 1997.

[27] I. G. Tollis, G. Di Battista, P. Eades, and R. Tamassia. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[28] Tom sawyer graph layout toolkit, 2004. Currently Available at
http://www.tomsawyer.com.

[29] C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Draw-
ing. J. Graph Algorithms Appl., 7(3):253–285, 2003.

[30] X. Wang and I. Miyamoto. Generating customized layouts. In F. J.
Brandenburg, editor, Proc. 3rd Int. Symp. Graph Drawing (GD 1995),
number 1027 in Lecture Notes in Computer Science, LNCS, pages
504–515. Springer-Verlag, 1996.

[31] R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization and
automatic layout of graphs. In P. Mutzel, M. Jünger, and S. Leipert,
editors, Proc. 9th Int. Symp. Graph Drawing (GD 2001), number
2265 in Lecture Notes in Computer Science, LNCS, pages 453–454.
Springer-Verlag, 2001.

[32] R. Wilson and R. Bergeron. Dynamic hierarchy specification and vi-
sualization. In Proc. IEEE Symp. Information Visualization, InfoVis,
pages 65–72, 1999.

Figure 6: Sample animation sequence (from left to right and top to bottom)

0 5 10 15 20
0.5

1

1.5

2

2.5
x 104 a) Non−incremental

Layout number

De
ns

ity
 m

etr
ic

[ar
ea

/no
de

s]

0 5 10 15 20
0.5

1

1.5

2

2.5
x 104 b) Without vertex pinning

Layout number

De
ns

ity
 m

etr
ic

[ar
ea

/no
de

s]

0 5 10 15 20
0.5

1

1.5

2

2.5
x 104 c) With vertex pinning

Layout number

De
ns

ity
 m

etr
ic

[ar
ea

/no
de

s]

final
layout1
layout2

Figure 7: Density metric

0 5 10 15 20
0

2

4

6

8

10

12
a) Non−incremental

Layout number

Di
sp

lac
em

en
t

0 5 10 15 20
0

2

4

6

8

10

12
b) Without vertex pinning

Layout number

Di
sp

lac
em

en
t

0 5 10 15 20
0

2

4

6

8

10

12
c) With vertex pinning

Layout number

Di
sp

lac
em

en
t

Figure 8: Sum of cluster displacements

0 5 10 15 20
0

1

2

3

4
a) Non−incremental

Layout number

Nu
mb

er
of

clu
ste

rs

0 5 10 15 20
0

1

2

3

4
b) Without vertex pinning

Layout number

Nu
mb

er
of

clu
ste

rs

0 5 10 15 20
0

1

2

3

4
c) With vertex pinning

Layout number

Nu
mb

er
of

clu
ste

rs

Figure 9: Number of clusters with the same size

0 5 10 15 20
0

500

1000

1500

2000

2500
a) Non−incremental

Layout number

Tim
e [

ms
.]

0 5 10 15 20
0

500

1000

1500

2000

2500
b) Without vertex pinnning

Layout number

Tim
e [

ms
.]

0 5 10 15 20
0

500

1000

1500

2000

2500
c) With vertex pinning

Layout number

Tim
e [

ms
.]

merge
layout1
layout2

Figure 10: Running times

Average \ Algorithm non-incremental without vertex pinning with vertex pinning
density metric [area\vertices] 1.2516x104 1.1994x104 1.1936x104

cluster displacement [distance] 4.0193 1.4118 0.3311
fraction of clusters with the same size 0.1575 0.23 0.615
running time [ms.] 492 1076 1084

Table 1: Average results of an animation sequence

