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Multistability in a neuron model with extracellular potassium dynamics
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Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and
in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt
a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand
the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by
interstitial space in which potassium ions are able to accumulate. Potassium currents, Na+-K+ pumps, glial
buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced
model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models
are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics
can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence
of the complex behavior of multistability due to the dynamical [K+]o modulation on neuronal activities.
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I. INTRODUCTION

Intra- and extraneuronal ion concentrations are not always
constant. They are closely related to the behavior of electrically
excitable neurons and in turn affect neuronal activity. As
the main intracellular cation, the alteration of potassium
concentration is associated with abnormal functions in the
human body. In some pathological states of the central nervous
system, such as hypoxia-induced spreading depression, a
considerable rise of extracellular potassium was observed [1].
It has also been proposed that potassium concentration plays a
key role in diseases, including diabetes and arrhythmias [2–4].

In 1956, Frankenhaeuser and Hodgkin observed the potas-
sium accumulation during neuronal firing in the interstitial
space around a squid giant axon [5] and then a regenerative
hypothesis was proposed that the increased interstitial potas-
sium concentration ([K+]o) contributes to higher neuronal
excitability and a firing rate which in turn could create a
further rise in [K+]o [6]. It was observed that hippocampal
epileptic activity was induced by a direct application of a
high-potassium solution [7]. A later study argued that [K+]o

is only an influential factor in the course of neuronal firing,
but could not initiate seizure activity [8]. Recent experiments
showed that epilepsy is connected with a reduction of the
Na+-K+ pump [9] and impairment of the glial K+ uptake
[10]. More recently, extracellular potassium accumulation and
its function have attracted increasing attention. The effects
of extracellular potassium concentration on firing patterns
of low-calcium epileptiform activity have been investigated
in vivo [11,12]. It has been also shown that the elevation of
extracellular potassium concentration could play an active role
in the modulation of cortical oscillatory activities [12].

Since Hodgkin and Huxley presented the HH model in
1952 [13], numerous computer simulations on the electrical
behaviors of nervous system were carried out. Although most
of them ignored the elevation of extracellular potassium,
there have been some simulations taking into account the
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participation of potassium in neuronal behaviors. The mod-
eling studies pointed out the critical roles of potassium
concentration in modulating neuron dynamics. Based on
a single neuron model, it is shown that the changes of
[K+]o can modulate the frequency of bursting [14]. With
a two-compartment cortical neuron model, bistability with
hysteresis between tonic firing and bursting is observed for
elevated [K+]o [15]. Efficient control of [K+]o is shown to
be responsible for the normal stability of brain function [16].
Furthermore, the recurring seizurelike events in a single cell
are subject to local ion concentrations including [K+]o [17,18].

In network models with potassium diffusion, it is sug-
gested that [K+]o dynamics can raise cellular excitability and
influence neuronal behaviors in different stages of seizure
discharges and spreading depression [19]. The modeling
simulation also indicates that the balanced level of extracellular
K+ is needed to achieve local persistent activity that is stable to
perturbations [20]. Moreover, potassium lateral diffusion has
been proposed to be responsible for establishing a periodic
neuronal firing in a small network [21,22].

It has been revealed that incorporating dendrite compart-
ments alone accounts for qualitatively different activities at
different stimulus currents [23]. But in most of the above-
mentioned models with local ion concentration dynamics, the
dendritic morphology is ignored. Here we consider a more
biologically realistic neuron model with a dendritic structure
and discuss the different spiking patterns in responding to
a stimulus current with [K+]o as a dynamical variable. In
detail, we study a multicompartment hippocampal CA1 neuron
model in a zero-calcium condition to better understand the
effects of [K+]o on the modulation of seizurelike activities.
The model was suggested to simulate the CA1 neuron’s
electrophysiology including singlet, doublet, and triplet firing
patterns responding to different depolarizing dc currents [23].
The model neuron was then modified to incorporate interstitial
space around the soma to discuss the role of [K+]o in
nonsynaptic epilepsy [21].

In this paper, with the model in which the interstitial
potassium concentration [K+]o is allowed to evolve dynam-
ically [21], we discuss bifurcation diagrams of the membrane
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potential and interstitial potassium concentration as a function
of stimulus current. The dendritic neuron shows not only
singlet, doublet, and triplet firing patterns, but also a complex
round-shaped burst. Besides the bistability of tonic spikes
and bursts, a more interesting observation is that the [K+]o

dynamics can generate tristability over certain ranges of the
stimulus current. These different spiking patterns are discussed
with a reduced model in which [K+]o is a constant. Based on
a two-dimensional bifurcation analysis of the reduced model,
we show that the slow dynamics of the extracellular potassium
concentration is responsible for the multistability and plays
a crucial role for the selection of attractors in the dendritic
neuron.

II. CELL MODEL

The CA1 pyramidal model consists of 16 compartments
with ten compartments for apical dendrites, five compartments
for basal dendrites, and one single compartment for soma
[Fig. 1(a)] [23]. The extracellular solution of the model
neuron is characterized by zero-calcium concentration and a
constant sodium concentration of 140 mM. The local increase
in intracellular sodium concentration [Na+]i or interstitial
potassium concentration [K+]o leads to a lower sodium rever-
sal potential or higher potassium reversal potential, altering
cellular excitability. However, as suggested in Ref. [17], the
transient changes in [K+]o have a greater effect over neuronal
behavior than the changes in [Na+]i due to the relatively small
extracellular space. Therefore, only the interstitial potassium
accumulated around the cell body is incorporated in the model
[21,22].

In order to discuss the change of extracellular potassium
concentration, the extracellular space has separated into two
parts: the outside bath and the interstitial space (or K+ shell)
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FIG. 1. (Color online) Structure of CA1 pyramidal cell model and
schematic diagram of [K+]o-dependent mechanisms in the interstitial
space around soma. (a) The 16-compartment CA1 pyramidal model
includes ten compartments for the apical dendrites, five compartments
for the basal dendrites, and a soma compartment surrounded by
interstitial space. (b) During neuronal firing, three types of potassium
ionic currents (IKDR,IKA,IKM) result in K+ accumulation in the
interstitial space (blue/dark gray shell). Na+-K+ pumps and a glial
buffer are introduced to regulate K+ in the interstitial space. Potassium
ions could also diffuse between the interstitial space and the bath
where potassium concentration is considered constant.

immediately around the soma body [Fig. 1(b)]. In the bath
solution the potassium concentration is assumed to be fixed at 8
mM, while in the interstitial space the potassium concentration
[K+]o is a variable, depicting the accumulation of potassium
ions. Due to the fact that potassium ions accumulate more
intensively in somatic layers than in dendritic layers [24], the
K+ shell is assumed to surround only the soma of the CA1
pyramidal neuron for simplicity [21].

In the model, the somatic compartment contains active ionic
channels and only passive channels are included in dendrite
compartments. There are five active ionic channels in the
soma, i.e., a fast sodium current INa, a persistent sodium
current INaP, and three potassium currents including a delayed
rectifier current IKDR, an A-type transient current IKA, and a
muscarinic current IKM. The calcium and calcium-activated
K+ currents are not included under Ca2+-free conditions.
Then the dynamics of the membrane potential in the 16
compartments of the CA1 pyramidal model depends on the
following ordinary differential equations:

Cs
dVs

dt
= −(INa + INaP + IKDR + IKA + IKM + IsLeak + Ipump)

+ Isd + Istim, (1)

Cd
dVd,n

dt
= −IdLeak,n + Idd,n (where n �= 5, 0 � n � 15),

(2)

where Vs (soma) and Vd,n (dendrites) are the transmembrane
potential for the 16 compartments. Istim is the injected electrical
current applied to the somatic compartment. Isd and Idd

are conductance currents between adjacent compartments.
All these ionic and conductance currents for the soma and
dendrites are described by the equations given in Table I.

The gating variables for the active ionic channels are m, h,
w, n, a, b, and u. The corresponding dynamics is given by

dx

dt
= x∞(V ) − x

τx

= αx(V ) − x(αx(V ) + βx(V )), (3)

where x : m,h,w,n,a,b, and u. The detailed equations are
given in Table II. Although theoretical problems could arise at
certain values of Vs for several equations in Table II (i.e., both
the numerator and denominator are zero), a numerical calcula-
tion almost never makes the membrane potential exactly equal
to these values and so would not cause overflowing problems.

In the model neuron, by introducing a K+ shell, the outside
space of the soma is considered to consist of two parts: the
interstitial space and the bath. The potassium concentration in
the interstitial space can elevate from its resting value during
spikes due to the K+ release through potassium channels from
the cytoplasm. The accumulated potassium ions could diffuse
to the bath, while the Na+-K+ pump and glial buffer will react
to high [K+]o to remove excessive K+ out of the interstitial
space. Meanwhile, the continuously updated [K+]o is always
coupled with the membrane voltage via the Nernst equation.
Those mechanisms that modulate potassium concentration in
the interstitial shell surrounding the soma are depicted in
Fig. 1(b). Thus, [K+]o is a dynamical variable which is given
by

d[K+]o

dt
= Jaccumulation + J diffusion

bath−shell + Jpump + J
uptake
glial−buffer. (4)
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TABLE I. Currents and potassium flux.

Currents for dendrite compartments (μA/cm2)
IdLeak,n = gdLeak(Vn − EL)

(where n �= 5;n ∈ [0,15])
Idd,n = gn−1,n(Vn−1 − Vn) + gn,n+1(Vn+1 − Vn)

(where n �= 5;n ∈ [1,14])
Idd,0 = g0,1(V1 − V0)
Idd,15 = g14,15(V14 − V15)

Somatic currents (μA/cm2)
INa = gNam

3h(Vs − ENa)
INaP = gNaPw(Vs − ENa)
IKDR = gKDRn4(Vs − EK)
IKA = gKAab(Vs − EK)
IKM = gKMu2(Vs − EK)

where EK = 26.71 ln( [K+]o
140 )mV

IsLeak = gsLeak(Vs − EL)
Ipump = Imax/[1 + ([K+]eq/[K+]o)]2

Isd = g5,6(V6 − V5) + g4,5(V4 − V5)

Somatic potassium concentration flux (mM/ms)

Jaccumulation = (IKDR+IKA+IKM)×A×10−3

F×Volumeshell

Jpump = − 2×Ipump×A×10−3

F×Volumeshell

J
uptake
glial buffer = rb × ([B]max − [B]) − rf × [K+]o × [B]

where rf = rf0

1+exp[
[K+]o−[K+]th−1.15 ]

J diffusion
bath−shell = − ([K+]o−[K+]bath)

τbs

The four K+ fluxes are described by the equations given in
Table I.

The buffering interactions between the interstitial potas-
sium concentration [K+]o and the concentration of the free
buffer [B] is given by

d[B]

dt
= rb × ([B]max − [B]) − rf × [K+]o × [B], (5)

with binding and unbinding rates rf and rb, respectively.
This equation has been used to describe buffering in the
extracellular space [16].

The model parameters are shown in Table III. The area of
the compartments has been taken into account to calculate the
effective conductance and capacitance densities. All equations
and parameters used for describing the CA1 neuron model
come from Park et al. [21] with some necessary changes. For
the reason that the Na+-K+ pump generates an electrogenic

TABLE II. Kinetics for gating variables.

dm

dt
= 11.7(11.5−Vs)

exp( 11.5−Vs
13.7 )−1.0

(1.0 − m) − 0.4(Vs−10.5)

exp( Vs−10.5
4.2 )−1.0

m

dh

dt
= 0.67

exp( Vs+50.0
5.5 )

(1.0 − h) − 2.24
exp( 72.0−Vs

29.0 )+1.0
h

dw

dt
=

0.07

exp( −Vs−50.0
2.0 )+1.0

−w

0.2

dn

dt
= 0.00049Vs

1.0−exp( −Vs
25.0 )

(1.0 − n) − 0.00008(Vs−10.0)

exp( Vs−10.0
10.0 )−1.0

n

da

dt
= 0.0224(Vs+30.0)

1.0−exp( −Vs−30.0
15.0 )

(1.0 − a) − 0.056(Vs+9.0)

exp( Vs+9.0
8.0 )−1.0

a

db

dt
= 0.0125

exp( Vs+8.0
14.5 )

(1.0 − b) − 0.094
exp( −Vs−63.0

16.0 )+1.0
b

du

dt
= 0.0084 exp( Vs+26.0

40.0 )(1.0 − u) − 0.0084
exp( Vs+26.0

61.0 )
u

TABLE III. Parameter values.

R Radius of cell 8.9 × 10−4 cm
A Soma surface area 4πR2

F Faraday’s constant 96485 C/mol
[K+]bath Potassium concentration in the bath 8.0 mM
τbs Diffusion time constant 800 ms
rv Ratio (rv = Volumeshell/Volumecell) 0.15

Cs Soma capacitance 1.0 μF/cm2

Cd Dendrite capacitance 1.88 μF/cm2

gNa Fast Na+ conductance 20.0 mS/cm2

gNaP Persistent Na+ conductance 0.24 mS/cm2

gKDR Delayed-rectifier K+ conductance 22.0 mS/cm2

gKA A-type transient K+ conductance 3.0 mS/cm2

gKM Muscarinic K+ conductance 3.0 mS/cm2

gsLeak Soma leakage conductance 1.8 mS/cm2

g4,5,g5,6 Conductance between soma and dendrite 6.3 mS/cm2

gn,n+1 Conductance between dendrites 3.67 mS/cm2

gdLeak Dendrite leakage conductance 0.0292 mS/cm2

ENa Sodium reversal potential 65.0 mV
EL Leakage reversal potential −46.0 mV
Imax Pump maximal current 73.5 μA/cm2

[K+]eq Equilibrium potassium concentration [K+]bath

[B]max Maximal buffer capacity 265 mM
rb Backward rate of buffer mechanism 0.0008/ms
rf0 Forward rate of buffer mechanism 0.0008/mM/ms
[K+]th Threshold [K+]o for glial buffer 15 mM

factor because it exchanges two K+ ions for three Na+ ions, it
is thus reasonable that the potassium flux Jpump caused by the
Na+-K+ pump should be twice as large as the flux suggested
in Refs. [21,22] (see the corrected item for Jpump in Table I).

In this paper we focus on the dynamic stable states of the
neuron model responding to constant current. We found that
to reach the stable state a transient period of 200 s is generally
sufficient for the full model and 50 s for the reduced model.
Most of our simulations were carried out using C++ with a
Runge-Kutta fourth order algorithm and an integration time
step of 0.005 ms. Bifurcation plots were also computed and
confirmed by using XPPAUT [25] and OSCILL8 [26].

III. RESULTS

A. Analysis of the full model

We begin with a discussion of the system responding to
different depolarizing dc currents Istim. Figures 2(a)–2(c) show
the effect of stimulus current Istim on membrane potential Vs,
spiking frequency f , and interstitial potassium concentration
[K+]o of the CA1 neuron model, respectively. To various
intensities of the electrical stimuli, the model neuron responds
differently with multistability in certain ranges. In order to
plot Fig. 2, we first increase the values of Istim from 0 to
80 μA/cm2 with �Istim = 0.1 μA/cm2 and then decrease it
back to 0. At each Istim, the stable state is calculated after
running the program for 200 s as a transient state. A set
of values of the instantaneous stable state for the last Istim

is then used as the initial condition for the next Istim. Then
starting at Istim = 11.2 μA/cm2 with a stable triplet state as
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FIG. 2. (Color online) Bifurcation analysis of the full model
with membrane potential (a) and interstitial potassium concentration
(c) as a function of Istim. (b) shows the oscillation frequency of
the action potential. In each diagram (a), (c), the solid black line
represents the stable steady states and the dashed black line represents
the unstable steady states. The colored lines correspond to maximum
and minimum values of periodic oscillatory states. A particular color
denotes a certain type of neuronal firing pattern: green (gray) for
a singlet spiking (1s), orange (medium gray) for doublet spiking
(2s), and blue (dark gray) for triplet spiking (3s). Thus, three
regions are defined by four vertical dotted lines, corresponding to
multistability. For example, for the left region which is very narrow,
the orange (medium gray) and green (gray) lines coexist, denoting
the coexistence of singlet and doublet spiking.

the initial condition, we decrease Istim to obtain the full range
for triplet activity. The bifurcation plots were also computed
and confirmed by using XPPAUT.

For small depolarizing stimuli below 3.8 μA/cm2, the
neuron is fixed at stable equilibrium states [shown as a black
solid line in Figs. 2(a) and 2(c)]. At Istim ≈ 3.8 μA/cm2,
the stable equilibrium coalesces with a coexisting unstable
equilibrium [dashed line in Figs. 2(a) and 2(c)] in a subcritical
Hopf bifurcation. Then for Istim ∈ (3.8,63.9) μA/cm2,
oscillatory action potentials occur with oscillating [K+]o.
This is depicted in Figs. 2(a) and 2(c) by lines that mark
the maximum and minimum values of Vs and [K+]o. For
increasing values of Istim at Istim = 63.9 μA/cm2, the
oscillating attractor eventually merges with the coexisting
unstable equilibrium in another Hopf bifurcation. With
Istim > 63.9 μA/cm2, the system becomes fixed again at
stable equilibrium states, which are called depolarization
blocks or spreadinglike depolarization [1,16,27].

In the oscillatory regime, the neuron system displays four
qualitatively different firing patterns shown in Figs. 2(a) and
2(c) by different lines, including singlet spiking (1s, green/gray
lines), doublet spiking (2s, orange/medium gray lines), triplet
spiking (3s, blue/dark gray lines), and round-shaped bursting
(cyan/light gray lines). Four examples are plotted in Fig. 3
with traces of somatic membrane potential Vs and interstitial
potassium concentration [K+]o, including singlet [Fig. 3(a)],
doublet [Fig. 3(b)], and triplet [Fig. 3(c)] activities, and
round-shaped bursting [Fig. 3(d)]. Singlet mode activities
(1s) correspond to the largest range of stimulus values
[Istim ∈ (7.3,60.6) μA/cm2] [Fig. 2(b)]. Doublet mode (2s)
and triplet mode (3s) activities correspond to stimulus ranges
for Istim ∈ (2.7,11.1) μA/cm2 and Istim ∈ (7.9,18.1) μA/cm2

[Fig. 2(b)], respectively. For these simple firing patterns, [K+]o

oscillates within a small range of concentration. The complex
activities are found in a narrow range of stimulus values from
60.6 to 63.9 μA/cm2. As plotted in Fig. 3(d), the system shows
bursting activity with many spikes and an envelope of spiking
amplitudes in each burst gives a round shape [Fig. 3(d)].

Figure 2(b) shows that the system’s spiking frequency
increases monotonically with an increase of Istim. Although
the spiking frequency keeps increasing, [K+]o decreases with
increasing Istim at Istim > 15 μA/cm2 for singlet activity
[Fig. 2(c)]. This happens due to the decreased action potential
amplitude responding to the increasing Istim, which plays
a dominant role in modulating potassium concentrations at
Istim > 15 μA/cm2. A decreased action potential amplitude
and an almost constant interspike potential lead to smaller
outward potassium currents. As a result, the increased firing
frequency does not always correspond to increased [K+]o for
the singlet mode activity.

In this model neuron, the coupling between the excitable
membrane voltage and slow extracellular potassium not only
modulates the neuron’s spiking patterns, but also gives rise to
multistability between different spiking modes. Figure 2 shows
three regions of multistability between two or three different
spiking modes separated by vertical dotted lines. The system is
bistable with singlet and doublet activities for a stimulus value
ranging from 7.3 to 7.9 μA/cm2. Another bistable regime
where singlet and triplet activities coexist is observed at Istim ∈
(11.1,18.1) μA/cm2. A more interesting observation is that,
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FIG. 3. The full model displays activities of singlet (a), doublet (b), and triplet modes (c), and round-shaped bursting mode (d). The upper
and lower traces in each subfigure show the behavior of the action potentials and interstitial potassium oscillations, respectively. Responding
to Istim = 10 μA/cm2, three different spiking modes are observed, shown in (a)–(c) with the same voltage scale, the potassium scale, and the
time scale. For (d), Istim = 61.9 μA/cm2 with an inset of the enlargement of the rectangle part.

between these two bistability regions, i.e., the region at Istim ∈
(7.9,11.1) μA/cm2, tristability occurs where singlet, doublet,
and triplet activities coexist. For example, responding to
Istim = 10 μA/cm2, three qualitatively different firing patterns
are given in Figs. 3(a) and 3(b). One can also observe another
common bistability between a steady state and an oscillatory
state [Istim ∈ (2.7,3.8) μA/cm2]. Thus, our results show that
coupling of a simple [K+]o dynamics to the neuron system
may lead to a rich behavior with multiple stability.

Here we show that [K+]o is an important parameter to
determine the selection of attractors in the region of multiple
stability. As an example, we focus on the system at Istim =
10 μA/cm2 where three attractors are observed. As shown in
Figs. 2 and 3, the values of [K+]o for these three attractors
are in different ranges. In the simulation, we run the neuron
program according to the model equations, but fix [K+]o for
50 s at a constant value which is in the oscillating range of
an attractor. After 50 s, we let [K+]o also be freely updated
according to the equations. Then after a transient period we
check if the final attractor is still the attractor related to the
initially fixed [K+]o. Hundreds of trials with different initial
conditions show that the final attractors are typically the same
ones related to the initially fixed [K+]o. This result indicates
that [K+]o is a crucial parameter for the selection of attractors.

Then we discuss the size of the attraction basins of [K+]o

of the various attractors. Because there are 25 variables in the

system, it is difficult to discuss the attraction basin in detail. As
a simple example, we only consider the instantaneous stable
state when the somatic membrane is most polarized. We use
such an instantaneous state as the initial condition but reset
[K+]o ranging from 2 to 35 mM. Then after a transient period
we check which attractor the final stable state belongs to. Our
simulation results for Istim = 10 μA/cm2 are given as follows:
For the singlet instantaneous state, the final attractor is still the
singlet one if resetting [K+]o > 14.3 mM, while it becomes the
triplet attractor if resetting [K+]o < 14.3 mM. For the doublet
instantaneous state, the final attractor is still the doublet one
if resetting [K+]o < 14.9 mM, while it becomes the triplet
attractor if [K+]o > 14.9 mM. For the triplet instantaneous
state, the final attractor is always the triplet one for any
resetting [K+]o from 2 to 35 mM. These results indicate that
the triplet attractor has a large attraction basin of [K+]o at
Istim = 10 μA/cm2.

B. Analysis of the reduced model

1. One-dimensional bifurcation diagram

We have shown how the neuron system responds to stimulus
current with dynamical [K+]o. Different firing patterns and
multistability are found in the model. The full model can be
treated as a coupled model between a reduced neuron sub-
system given by Eqs. (1)–(3) and the extracellular potassium
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FIG. 4. (Color online) Bifurcation analysis of the reduced model with membrane potential as a function of Istim at [K+]o = 8mM (a), or as
a function of [K+]o at Istim = 10μA/cm2 (b). Solid black lines represent stable states, while dashed black lines denote unstable fixed points.
Periodic oscillatory behaviors are shown with maximum and minimum values. Spiking frequency, denoted by continuous black lines (c) and
(d), corresponds to (a) and (b), respectively. Besides, spiking frequency curves of the full model shown in Fig. 2(b) are replotted in (c) with
colored lines. Orange (medium gray), blue (dark gray), and green (gray) curves in (b) and open squares in (d) correspond to three spiking
patterns in Figs. 3(a)–3(c).

subsystem given by Eqs. (4) and (5). The reduced neuron
model is a fast subsystem, driving the extracellular potassium
dynamics. As a feedback, the change of extracellular potas-
sium concentration modulates the neuronal activity. To explore
the mechanism of [K+]o modulation in neuron behavior, we
consider the reduced model given by Eqs. (1)–(3) by setting
[K+]o at fixed values and discuss its dynamics.

Figure 4(a) shows the bifurcation diagram of the membrane
potential Vs as a function of Istim by holding [K+]o fixed
at a resting concentration of 8 mM. The black solid line in
Fig. 4(c) describes the spiking frequency as a function of Istim,
corresponding to the oscillatory region of Fig. 4(a). One can see
that with Istim very small or very large the reduced model shows
the steady state, and in between the periodic firing patterns are
observed, giving two modes only, singlet and doublet firing,
while for the full model with dynamically variable [K+]o,
four different firing patterns are observed (Fig. 3). Thus the
modulation of [K+]o enriches the neuronal spiking activities.

For comparison, the curves of spiking frequency via
stimulus are plotted for the reduced model (black curve)
and the full model (colored curves) in Fig. 4(c). The two
models show different frequency curves. It is shown that in
the oscillating region the spiking frequency of the full model
is typically larger than the reduced model. This is because

the current stimulus in the full model depolarizes the neuron
and then the extracellular potassium accumulation during the
neuronal firing causes the neuron to be further depolarized.
Thus, [K+]o and neuron depolarization feed on each other. As
a result, the full model typically shows a larger firing frequency
than that of the reduced model with a resting concentration
[K+]o = 8 mM, when both models are stimulated persistently
by a dc current with a particular intensity.

Now we discuss the dynamics of the reduced model
responding to different [K+]o. Figures 4(b) and 4(d) show a
bifurcation diagram of Vs and firing frequency f as a function
of [K+]o at Istim = 10 μA/cm2. It can be seen that periodic
firings are found for 3.8 mM < [K+]o < 29.1 mM, in which
the spiking frequency increases with an increase of [K+]o

and the neuron activity mode changes in order from singlet,
to multiple-spike bursts (from 2-spike to 5-spike bursts), and
finally to singlet.

For the full model, although [K+]o is a dynamical variable,
the change of [K+]o is typically limited in a narrow range
[Fig. 2(c)]. Thus the small oscillation of [K+]o in the full model
can be actually approximated by the reduced model with an
averaged and so fixed [K+]o. In order to clarify this argument,
we discuss a specific example at Istim = 10 μA/cm2. The
trajectory of membrane potential oscillations and [K+]o for the
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FIG. 5. (Color online) Two-dimensional bifurcation diagram of the reduced model with Istim and [K+]o as control parameters (a). The
dotted and dashed lines denoted by SN (saddle-node bifurcation), H1 or H2 (Hopf bifurcation) divide the Istim-[K+]o space into several regions,
including rest, spiking, and depolarization block regions. In the spiking region, the spiking mode (b) and the corresponding oscillation frequency
(c) are represented by gray degrees. Near the Hopf bifurcation curves, the dashed lines separate narrow regions of oscillatory behavior in which
a steady state coexists. (d) is an enlargement of (c) to show the region where round-shaped bursts (cyan/light gray lines) are observed in the
full model. The bifurcation diagram, i.e., the maximum and minimum of [K+]o, via Istim, of the full model [i.e., Fig. 2(c)] is also replotted in
(b)–(d). Thus the black, green (gray), orange (medium gray), blue (dark gray), and cyan (light gray) lines are for fixed point (F), singlet (1s),
doublet (2s), triplet (3s) spiking, and round-shaped burst of the full model, respectively. The oscillating ranges of [K+]o of the four examples
given in Fig. 3 are also plotted in (b)–(d) with short vertical lines a, b, c, and d.

full model shown in Figs. 3(a)–3(c) is projected on Fig. 4(b)
with orange (medium gray), blue (dark gray), and green
(gray) loops, representing doublet, triplet, and singlet modes,
respectively. We see that the dynamical evolution of [K+]o

is slow enough to allow the projected trajectory to exactly
follow the attracting periodic orbit predicted by the bifurcation
diagram of the reduced model. Thus the firing activities given
in Figs. 3(a)–3(c) for the full model with Istim = 10 μA/cm2

can accordingly be discussed by the reduced model with
constant [K+]o = 9.3, 10.1, and 19.9 mM, respectively. By
this means, the corresponding firing frequencies calculated
from the full model are plotted by open squares with orange
(medium gray), blue (dark gray), and green (gray) colors in
Fig. 4(d). One can see that these frequencies of the full model
can be predicted by the reduced model accordingly.

2. Two-dimensional bifurcation diagram

Now we discuss the reduced model responding to the
variation of both Istim and [K+]o. A two-dimensional

bifurcation diagram of the reduced model in Istim-[K+]o space
is shown in Fig. 5(a). One can see that the Hopf (H1, H2)
and saddle-node (SN) bifurcation curves are displayed as
gray dotted and red dashed lines, respectively. In the region
at the lower left of the Hopf bifurcation (H1) and saddle-node
bifurcation (SN) curves, the reduced model mainly shows
a resting steady state. The steady state of the depolarization
block is observed above the Hopf bifurcation curve (H2).
Between the resting and depolarization block states, the
reduced model exhibits spiking activity.

The reduced model shows different spiking modes
with different oscillation frequencies in the spiking region
responding to different Istim and [K+]o. As shown in Fig. 5(b),
besides the singlet mode activity, the bursts with multispikes,
as high as 5-spikes, are found in the reduced model. As plotted
in Fig. 5(c) with a gray degree, the oscillation frequency in the
spiking region increases with an increase of Istim and [K+]o.
One could clearly observe that not all of the gray points are
inside the spiking region defined in Fig. 5(a). These narrow
regions beyond the Hopf bifurcation curves show bistability
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between a silent and spiking state of the reduced model. Thus
the reduced model cell may also oscillate in some parts of rest
and depolarization block regions.

Here we show that the dynamics of the full model (Fig. 2)
can be understood based on the bifurcation diagram of the
reduced model (Fig. 5). The bifurcation diagram of [K+]o via
Istim for the full model [Fig. 2(c)] is overlapped in Figs. 5(b)–
5(d). The two branches of the steady states (F, black lines
in Fig. 5) for the full model are found in the regions of rest
and depolarization block of the reduced model. If the values
of [K+]o of the full model responding to a certain Istim are
within the spiking region of the reduced model, an oscillating
dynamics is typically observed for the full model.

For the full model, once a current stimulus Istim is given,
the possible values of [K+]o are then determined. Because the
dynamical ranges of [K+]o for the full model are typically
located in the regions of the 1s, 2s, and 3s modes of the
reduced model [Fig. 5(b)], thus we mainly observed in the
full model the spiking activities of singlet (1s, green/gray
lines), doublet (2s, orange/medium gray lines), and triplet
(3s, blue/dark gray lines). However, the 4-spike bursts or
bursts with more spikes observed in the reduced model are
not found in the full model. Because [K+]o oscillates within
a small range for the full model, its oscillating frequency
can be approached by the spiking frequency of the reduced
model at an averaged [K+]o [Fig. 5(c)]. As a result, for the full
model, the oscillations with 2s, 3s, and 1s modes have spiking
frequency ranges of 7.1 < f < 13.4, 15 < f < 26.5, and
50.1 < f < 70.6.

As for round-shaped bursts there is another scenario, which
is shown in Fig. 5(d) with cyan (light gray) lines. We can see
that the values of [K+]o during the round-shaped burst for
the full model traverse the Hopf bifurcation curve H2 of the
reduced model. In detail, the maximum and minimum values
of [K+]o for the full model are located in the depolarization
block region and the spiking region of the reduced model,
respectively [cyan/light gray lines in Fig. 5(d)]. Thus, driven
by Istim, the slow variable [K+]o oscillates between the spiking
region and the steady state region determined by the reduced
model. As a result, the full model shows a dynamics of
repetitive transition between the fixed points and oscillatory
spiking, leading to a round-shaped burst.

The bistability of a fixed point and an oscillatory state can
be observed near the Hopf bifurcation points [Figs. 4(a), 4(b),
and 5] in the reduced model. However, the reduced model does
not show any coexistence of multiple spiking modes. Thus it is
the dynamical [K+]o that generates the multistability in the full
model. The existence of the multistability between oscillatory
attractors in the full model is based on different potassium
levels. The potassium concentration dynamics is given by a
competition between fast potassium currents and slow currents
of sodium-potassium pumps, glia buffering, and extracellular
potassium diffusion. In particular, corresponding to Istim =
10 μA/cm2, the full model gains stability at three limit cycles
with different potassium oscillations. The oscillating ranges of
[K+]o of these three patterns are also plotted in Figs. 5(b) and
5(c) with vertical lines a, b, and c. Different oscillating modes
and firing frequencies in the full model are then determined by
different dynamical locations in the reduced model.

IV. DISCUSSION

It is widely known that, persistently stimulated by an
electrical stimulus, a neuronal activity will cause an increase
of interstitial potassium concentrations, in turn further de-
polarizing the membrane. An increase in [K+]o generates a
larger firing rate or even brings out a depolarization block.
In this paper, we showed that a single neuron model with
both dynamical interstitial potassium concentrations and two
dendritic branches exhibits four kinds of periodic firing
behaviors, including singlet, doublet, and triplet spikes, and
round-shaped bursts.

The full model is actually a coupled system between a
membrane neuronal subsystem which is dynamically fast and
the extracellular potassium subsystem which is dynamically
slow. In order to clarify how [K+]o dynamically modulates
the neuronal activity, we furthermore considered a reduced
model by freezing the extracellular potassium concentration
at a constant value. Our simulations showed that different
spiking activities are found in the full model with kinetic [K+]o

as a dynamical variable and the reduced model with constant
[K+]o as a control parameter. Only for the full model did we
observe multistability of spiking modes and a round-shaped
burst, while the 4-spike and 5-spike bursts are only found in
the reduced model.

Nevertheless, we suggest that, due to the oscillating range
of dynamical [K+]o being rather small, the dynamics of the full
model can be typically understood based on the discussion of
the reduced model. Based on the two-dimensional bifurcation
diagram of the reduced model on the plane of Istim and [K+]o,
we showed that singlet, doublet, or triplet spiking in the full
model can be traced back to the reduced model with [K+]o

fixed at different values, while the complex round-shaped
bursting mode in the full model can be explained by the
reduced model with [K+]o traversing slowly between a fixed
point and a spiking orbit. Similar round-shaped bursts were
also observed in experiments first [27,28] and then reproduced
in neuronal simulations [17,18,29]

The multistability of different spiking activities was also
observed in the model. The potassium-mediated bistability
between tonic firing and bursting activities has been described
in a cortical neuron with a burst generation due to the transition
between two fixed points [15] and in a model of a leech heart
interneuron due to the transition between a fixed point and
a periodic orbit of the fast subsystem [30]. In this paper, a
dynamics of potassium-induced multistability was discussed.
Our full model showed the coexistence of several spiking
or bursting activities when [K+]o is a dynamical variable,
while the reduced neuron model with constant [K+]o showed
no coexistence of multiple spiking modes. Thus, the bi- and
tristability between several firing modes in the full model are
a result of [K+]o as a dynamical variable. We reported on
the tristability induced by potassium dynamics in neuronal
activity.

In conclusion, our results show the following: (1) The
multistability, especially the tristability, with stable oscilla-
tory activities has been observed in a single neuron over
certain ranges of the stimulus current, (2) the dynamical
nature of the potassium concentration is responsible for this
multistability, and (3) the spiking pattern depends on the
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final average potassium concentration achieved by competition
between fast potassium currents and slow currents of sodium-
potassium pumps, glia buffering, and extracellular potassium
diffusion.

Simplification has been made in constructing the neuronal
model. The realistic gradient distribution of the extracellular
potassium concentration is simply digitized into binary values
with [K+]o in the interstitial space immediately around
the soma body as a variable. A more accurate method to
simulate the diffusion dynamics of extracellular potassium
should be considered in future models. We assume that
microenvironmental factors except for interstitial potassium do
not modulate the neuronal response. For example, intracellular
sodium accumulation could be considered to more accurately
model the dynamics of the system. The increase in [Na+]i will
lead to a lower sodium reversal potential, which drives less

sodium ions into the cell and consequently reduces neuronal
excitability. A more realistic model may provide deeper insight
on the effects of extracellular or intracellular ions on neuronal
activity.
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