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Abstract—Next generation network offers virtual networks on
demand, each one with its own features and Quality of Service
(QoS) requirements. Besides, live-migration provides a flexible
and seamless topology remapping feature for virtual networks,
but it is usually limited to a local area network. In this paper, we
propose XenFlow, a hybrid virtualization system, based on Xen
and OpenFlow technologies. XenFlow main goals are threefold.
First, it provides a flexible virtual network migration primitive,
as it deploys a Software Defined Networking between virtual
machines, based on OpenFlow. Second, it provides a strong
isolation of virtual networks, avoiding deny of service caused
by interference of other virtual networks. Third, XenFlow offers
inter-network and intra-network QoS provisioning by a consistent
resource controller. We developed a prototype and our results
show that the proposed system performs better than native
mechanism of Xen virtual machine migration. XenFlow allows
virtual router migration between different local area networks
without creating tunnels or losing packets. Our experiments also
show that resource usage controller meets QoS requirements and
outperforms other techniques while it redistributes idle network
resources.

I. INTRODUCTION

The next generation network foresees a pluralist model, in
which users open specific and customizable virtual networks
on demand to comply their needs [1]. To this end, the plu-
ralist network model requires a virtual network architecture
capable of providing flexible topology mapping and secure
and coherent Quality of Service (QoS) provisioning. The
most promising techniques for the pluralist model are network
virtualization, available through machine virtualization, and
Software Defined Networking (SDN). Machine virtualization
allows many different and isolated guests to share the same
physical substrate. SDN allows programming network general
purpose elements. Two important platforms for virtualizing
and for providing Software Defined Networking are Xen [2]
and OpenFlow [3]. Xen is a virtualization platform designed
for server consolidation. Xen creates virtual environments that
simulate entire physical machines, called virtual machines.
OpenFlow is an Application Programming Interface (API),
which implements network control in an independent and
centralized node, called OpenFlow controller. The controller
defines forwarding for all network nodes.

Both network virtualization and SDN decouple the network
function from its physical realization [4]. Therefore, both of
them introduce a new management primitive: the migration
of virtual networks [5]. Migration is relocating the logical
topology over the physical topology. Migration may be used in

different contexts, such as, the maintenance of network nodes
and provisioning energy efficient networks. Nevertheless, vir-
tual link live-migration, that stands for remapping a virtual link
on physical links, and reducing the time that a virtual node
is unavailable during migration are still challenges of virtual
network migration.

In this paper, we propose XenFlow, a hybrid network virtu-
alization system that allows creation of highly programmable
virtual networks. XenFlow supports seamless virtual network
migration of both virtual network elements and links, without
any packet losses or virtual topology changes. XenFlow also
guarantees Quality of Service (QoS) provisioning and isolation
between virtual networks through an efficient network isolation
mechanism and a resource controller. XenFlow uses QoS
parameters of virtual routers to manage available resources
on physical substrate, and redistributes idle resources between
virtual routers considering virtual router priorities. XenFlow
applies the plane separation paradigm to enhance performance
of virtual networks. Plane separation divides the routing func-
tion into two planes, the control plane and the data plane.
The control plane is responsible for network control functions,
such as routing calculation. The data plane is responsible for
forwarding packets according to control plane policies and
QoS parameters. The proposed system consists of hybrid vir-
tualization architecture combing Xen and OpenFlow platforms
to provide a programmable environment of virtual networking.
Therefore, control planes of virtual networks are implemented
in Xen virtual machines, while a shared data plane is deployed
as an OpenFlow-compliant switch in each physical node.

The proposed system monitors resource usage of each
virtual network and, based on these data, calculates the redistri-
bution of idle resources between virtual networks. A XenFlow
prototype was built to validate the system architecture. Our
results show that the redistribution algorithm reduces idleness
of network resources, when compared to other techniques,
and assigns the reserved bandwidth for each virtual network
in proportion to the amount hired by each network. Experi-
ments also show that the system provides a robust migration
primitive, as there are no packet losses or routing service
interruptions during the virtual network migration. When we
compare XenFlow migration and Xen virtual machine native
migration, XenFlow shows zero packet losses, while Xen
native migration loses a significant amount of packets and
presented a longer period of control plane interruption.

The remainder of the paper is organized as follows. The
discussion of the system design and its main components



are showed in Section II. Section III presents an analysis
of experimental results. Section IV discusses related works.
Conclusions and future works are discussed in Section V.

II. XENFLOW ARCHITECTURE

XenFlow provides a network virtualization system that
enables isolating, providing Quality of Service, and migrat-
ing virtual networks. XenFlow ensures isolation of virtual
networks since it provides address space isolation among
virtual networks and it enforces resources sharing for each
virtual network [6]. Thus, a virtual machine can only access
virtual machines that belong to its virtual network and, also, a
virtual network cannot use resources of other virtual networks.
The system also offers Quality of Service through mapping
parameters of Service Level Agreements, defined as control
plane directives, to parameters of the data plane, controlling the
resources usage of each virtual network. The basic resources
controlled by XenFlow are processing, memory, and bandwidth
of virtual networks, as those are the resources that can be
locally controlled [7].
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Figure 1. XenFlow node architecture. XenFlow Server runs on physical
router that hosts a set of virtual routers running a XenFlow Client instance
over each one. POX controller runs in a single centralized node. All other
XenFlow nodes connect to it.

The system applies the plane separation paradigm to
achieve higher performance on forwarding packets [2], [1].
Virtual machines act as the routers control plane, running
routing protocols. Besides, data planes of all virtual routers
run centrally in the Domain 0, which is a virtual machine with
special privileges that directly accesses the physical network
interfaces. This paradigm, however, forces all virtual networks
to share the same data plane, violating the requirement of
isolation between virtual environments.

XenFlow employs an OpenFlow switch as the routers’
data plane. XenFlow manages the flows of each virtual router
on a single OpenFlow switch on the privileged Domain 0.
Therefore, resource isolation in XenFlow requires dedicated
forwarding mechanisms to each virtual router in data plane and

also control mechanisms. XenFlow isolates virtual networks
associating each virtual router to a queue, or a set of queues,
compliant with HTB (Hierarquical Token Bucket) control
policies.

The XenFlow node architecture, shown in Figure 1, con-
sists of a personal computer with commodity hardware run-
ning the Xen virtualization platform and a packet forwarding
module compliant with OpenFlow Application Programming
Interface (API). The packet forwarding module can be a
software switch, like Open vSwitch [8]; a hardware-based
switch; or a high-performance commercial OpenFlow solution.
The virtual routers consist of Xen virtual machines running
routing protocols. In this work, we use the extensible routing
platform XORP (eXtensible Open Router Platform) [9] to
deploy into virtual routers the main routing protocols and to
allow the inclusion of new protocols. As the virtual routers may
use legacy routing protocols, XenFlow can be incrementally
deployable.Virtual routers run the XenFlow Client module,
which checks for updates in its routing table and ARP table
(Address Resolution Protocol). The routing table stores the
information about routes calculated by the routing protocols,
which run in the virtual router. ARP table stores the mapping
of IP address to MAC addresses known by the virtual router.
Collected information in the virtual machine is then sent to
XenFlow Server module that runs in Domain 0. The XenFlow
Server module generates information summaries for all virtual
routers and sends them to XenFlow App application, creating
a Routing Information Base for each virtual router. XenFlow
App application runs on top of POX controller!, which controls
the Open vSwitch of Domain 0.

It is worth mentioning that whole process of communica-
tion between modules in XenFlow is encrypted and authen-
ticated using the scheme of Public Key Infrastructure and
follows the standard SSL 3.0 (Secure Socket Layer).

A. From Routing Information to Flow Mapping

XenFlow forwards data packets as follows. As a packet
arrives at node data plane, XenFlow forwards it directly if
the packet matches any flow in OpenFlow flow table. If the
packet header does not match any flow, the packet header
is sent to controller to define packet’s next hop. When the
controller receives a packet header, the XenFlow App identifies
the Routing Information Base it has to consult regarding
that packet header. The XenFlow App queries the Routing
Information Base to infer the output interface and next hop,
and then inserts a new flow in the flow table. Packets arrive
at XenFlow nodes with the destination MAC address of the
virtual router. Thus, this address has to be modified to the next
hop MAC address and the source MAC address has to be set
to the address of the virtual router output interface. The next
hop MAC address is extracted of ARP Table copy on XenFlow
App. This procedure also maps a virtual link into one or more
physical links, since it may introduce layer-2 forwarding flows
in flow table, as if two routers, in two different networks, had
a common link between them.

'POX is an open source OpenFlow controller. It enables to develop
Python applications to control an OpenFlow network. POX is available at
http://www.noxrepo.org/pox/about-pox/.



B. Virtual Network Isolation

The main challenge of isolation between virtual networks
is to use data plane primitives to tag which packets belong to
each virtual network. Thus, XenFlow is able to route packets
directly in the data plane. XenFlow access information about
Ethernet, VLAN and IP layers, through the twelve fields
of OpenFlow specification. The key idea of isolating virtual
networks is to insert a VLAN tag in each packet that leaves a
virtual machine and remove the tag as the packet goes to the
virtual machine. Thus, a VLAN tagger acts between the virtual
network interfaces and the OpenFlow switch. As a packet that
enters or leaves a virtual machine, it is tagged or untagged with
the VLAN ID of the virtual network that it belongs to. The
VLAN tagger is configured at the VM creation time swith the
identifier (ID) of the virtual network that each virtual network
interface belongs to. The operation of the VLAN tagger is
out of the virtual machines, thus it is transparent to virtual
machines. The VLAN tagger is also responsible for ensuring
that packets that do not belong to a given virtual network
reaches other virtual networks, because the VLAN tagger drops
packets that arrive to it, but do not have the VLAN tag with
the correct identifier.

Nevertheless, routing packets occurs between different net-
works and, thus, between different VLANs. As XenFlow App
identifies the output interface of the virtual router that the
packet should be forwarded, it also identifies the output VLAN
of a flow. Therefore, XenFlow App query which the marker is
associated with the VLAN virtual interface network, in which
the packet would be sent if it were actually sent by the virtual
machine, retrieves the new VLAN identifier of the packet and
adds the new flow in plan OpenFlow data. The new flow is
introduced according to the fields of the packet that triggered
the calculation and the actions associated with this new flow
are changing the source MAC addresses and destination of the
package, changing the VLAN identifier of the package and,
finally, forward the packet to the output port proper.

C. Virtual Router Migration

In XenFlow, a virtual link can be mapped into one or
more physical links. The routing function is performed by a
flow table dynamically controlled by POX and the topology
of the virtual network is decoupled from its physical realiza-
tion [4]. As a consequence, migrating virtual routers, shown
in Figure 2, consists of three steps: migration of control plane,
reconstruction of data plane, and migration of virtual links.
The control plane is migrated between two physical network
nodes through the live-migration mechanism of conventional
Xen virtual machines [10]. Then, the reconstruction of data
plane is performed as follows. XenFlow Client connects to the
Domain 0 daemon, XenFlow Server, and sends all routes that
are known by the virtual machine. When the XenFlow Client
detects a connection disruption with the Domain O caused by
a migration, the application reconnects, now on the new server
in which the virtual router is hosted, and sends all information
about its routing and ARP tables. Upon receiving such in-
formation, Domain O reconfigures the XenFlow App, running
over POX controller, to execute the data plane according to the
control plane of the migrated virtual router. Thus, all packets
that arrive at the physical machine are handled according to
the control information computed by the control plane that

was previously migrated. Note that these packets are addressed
to the migrated virtual router and that the physical machine
is the one which the virtual network router was migrated.
After migration of the control plane and reconstruction of the
data plane, links are migrated. The links migration occurs in
OpenFlow switches (Open vSwitch) instantiated in Domain 0
of physical servers and other switches in the network. Link
migration occurs in order to create a switched path between
all neighbors of the migrated virtual router, in the virtual
topology, to the physical router that hosts the virtual router
after migration. Thus, the migrated virtual router sends an ARP
reply packet with a predefined destination MAC address
(AA:AA:AA:AA:AA:AR). In a XenFlow network, this MAC
address is reserved and this packet has priority in being
processed over other packets sent on the network. Predefined
ARP reply packets are processed at the first switch that
they arrive and, then, they are dropped. As a consequence,
the migrated virtual router announces where it is available
from now on using this special packet. This procedure updates
the location of a virtual router in the network associating link
migration with a dual behavior, router and switch, of XenFlow
nodes. The dual behavior results in a migration primitive of
virtual routers that has no packet loss or interruption of packet-
forwarding services.
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Figure 2. Three steps of the XenFlow virtual topology migration. XenFlow
first migrates the virtual machine running routing protocols. Secondly, it
rebuilds the data plane based into control plane information. Afterwards,
XenFlow migrates links sending a predefined ARP Reply message.

D. Resource Isolation

XenFlow resource control focus on memory, processor, and
bandwidth per network interface used by each virtual router.
Memory isolation is done in two levels. Firstly, Xen memory
isolation mechanism limits the physical memory dedicated for
each virtual router. Besides, XenFlow modules limits the num-
ber of routes reported to XenFlow Server and the number of
flows inserted into flow tables by XenFlow App. As XenFlow
may reject some routes or flows, a default route and a wildcard
flow are inserted into XenFlow modules to avoid packet losses.
Processor usage isolation is deployed as a static control. Xen



native scheduling mechanism is enough to ensure processor
usage isolation between virtual routers [1]. Nevertheless, plane
separation introduces a processing overhead on Domain 0,
which is not controlled by Xen scheduling mechanism, but,
as it depends on packet forwarding rate, it may be controlled
by bandwidth limitation mechanisms. Bandwidth control for
each virtual router is done by associating virtual machines
to queues in OpenFlow forwarding mechanism. OpenFlow
supports creating isolated queues in each network interface.
Each queue has two tresholds: the minimum and the maximum
bandwidth values. The minimum value is the minimum band-
width guaranteed for that queue on link sharing. The maximum
value is the ceiling transmission rate that a queue can take.

Queue control applied by the OpenFlow, however, is static
and does not consider the priority of queues to redistribute the
idle link capacity [11]. Therefore, one of the contributions of
this paper is a queue controller that performs the redistribution
of idle capacity of a link in accordance with the priority of each
queue and inversely proportional to how much bandwidth a
virtual network is using beyond its hired capacity.

E. Bandwidth Control

The queue controller acts on two levels. The first level
is when the total capacity of the link is greater than the
aggregated minimum guaranteed values of all queues within a
link. In this case, the controller acts on the minimum value
guaranteed for each queue. The second case is when each
queue has its minimum capacity defined, but the total usage of
the link is smaller than the sum of the minimum guaranteed
bandwidth values of all queues. In this case, the controller acts
on the maximum bandwidth allowed for each queue. In both
cases, the redistribution considers the priority of each network,
and, in XenFlow, the priority of a network is the relative value
of minimum bandwidth guaranteed for a given network divided
by the sum of the amounts of bandwidth guaranteed for all
networks sharing the same link. The controller measures the
usage of each queue regularly every t,,.q seconds, stores the
last ky,eq values for each queue, and calculates the redistribu-
tion of idle capacity.

The minimum threshold control redistributes resources not
allocated to queues according to two criteria: (i) a virtual router
that hires a greater routing capacity gets greater weight in the
redistribution of idle resources; (ii) the virtual router that is
using relatively more resources than it has contracted gets a
lower weight in the redistribution of idle resources.

The control of the maximum bandwidth allowed for each
virtual network aims to optimize the use of the link idle
capacity according to the priority of each virtual network. We
calculate the link idle capacity adding the average load of all
queues in a link and, after that, subtracting it from the value of
the link bandwidth capacity. The resulting value is the amount
of resources that should be redistributed. Redistribution, given
by

MiNgueue

margueue = MiNgueue +C i
i min;

where C' is the link idle capacity, ensures that resources allo-
cated for a queue, and not used, are allocated proportionately

to the other queues. The redistribution is proportional to the
minimum bandwidth hired by each queue.

F. Quality of Service Provisioning

Bandwidth controller provides Quality of Service in Xen-
Flow. The bandwidth controller guarantees a minimum QoS
level for each virtual network and also guarantees that the
idle resources are redistributed accordingly to the priority of
each virtual network. Moreover, depending on how mapping
between virtual networks and queues is done, it is possible
to define two different levels of QoS in virtual networks:
(i) Inter-network Quality of Service is reached when each
virtual network is associated with a single queue. In this case,
the QoS parameters are only defined for the virtual network,
allowing differentiated services of a virtual network from other
services; (ii) Intra-network Quality of Service is reached
when a set of queues is associated with a single virtual router.
Each queue has its own QoS parameters and, depending on the
configuration of each virtual router, a set of flows is mapped
to each queue of the virtual router. Mapping a set of flows
in a queue allows guarantying an amount of bandwidth for
sensitive flows within a single virtual network. Intra-network
QoS is a generalization of inter-network QoS for a set of flow
and, therefore, they are not mutually exclusive.

Mapping flows to queues is accomplished by XenFlow App
that runs on top of POX. Definiting which queue is dedicated to
each virtual router, and, when considering intra-network, what
flow characteristics are considered to map each flow in a queue,
are configured in XenFlow Server module that communicates
with XenFlow App.

III. EXPERIMENTAL RESULTS

We prototype XenFlow using Xen 4.0 to provide control
plane and the Open vSwitch 1.2.2 to provide data plane
forwarding functions. The Open vSwitch [8] is configured to
act as OpenFlow switch, controlled by POX. The application
that performs the plane separation and redirects packets to
appropriate queues in the data plane is written in Python and
runs on top of POX. The Quality of Service controller, which
performs the setting of maximum and minimum thresholds
of each queue, was written in Python and interacts directly
with the configuration interfaces of Open vSwitch. The tools
Iperf? and Tcpdump® were employed to measure system
performance.

Four personal computers compose the experimental sce-
nario of the experiments. All computers are equipped with Intel
Core 2 Quad 2.4 GHz and 4 GB of RAM. Each computer has
at least three network interfaces all of which are configured
to operate at 100 Mb/s, since there was 1 Gb/s and 100 Mb/s
interfaces. XenFlow server hosts three virtual machines that
perform as routesr. Each virtual machine is configured with one
virtual CPU, 128 MB of RAM and runs Debian Linux 2.6-32-
5. The virtual machines run routing protocols over XORP [9],
however, while running tests, we configured static routes. The
results presented in this section are averages of 10 rounds of
each experiment, with a confidence interval of 95%.

2http://iperf.sourceforge.com.
3http://www.tcpdump.org.
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XenFlow proportionally redistribute unused resources with two virtual networks (VN 1 and VN 2). a) Comparison between XenFlow and Open

vSwitch resource sharing. b) QoS controller fitness to the proportional redistribution statement. ¢) XenFlow migrates virtual router without stopping forwarding.

The redistribution of idle resources of a link must respect
the priority of each virtual network. To evaluate how fair
XenFlow respects the priority of each virtual network, we
defined the metric

Bandwidthptgined

fitness =1 — |1 (2)

" Bandwidthezpected |

which calculates the percentage of accuracy of the resource
redistribution according to the priority of each network. The
fitness metric determines how close the bandwidth, des-
tined to a virtual network, is to its optimal calculated value.

The first experiment verifies the efficiency of the QoS
controller, considering the proportional and differential redis-
tribution of resources, referenced in Figure as XenFlow, and
compares the results with the distribution of the idle resources
on Open vSwitch, referenced as OVS. We set up Open vSwitch
to direct the flows of each virtual network to a particular queue
and set up a guaranteed minimum bandwidth of each queue,
according to the definition of the network, and the maximum
ceiling value, to be a fairly comparison, was configured for
the link maximum bandwidth, 100 Mb/s. In XenFlow, we
defined the minimum bandwidth reserved for each queue and
the maximum bandwidth is set by the controller. Figure 3(a)
shows the experiment for two UDP flows of 1472 B packets,
for two different virtual networks, VN 1 and VN 2, with a
minimum of 20 Mb/s and 40 Mb/s, respectively. The dynamics
of the experiment is as follows. The experiment starts at O s.
At the beginning of the experiment, no bandwidth limit is set
and the link is fully shared by the two networks. In 30 s, it is
set the minimum and maximum thresholds of the queues, on
Open vSwitch setting up, and the controller of QoS is started
on XenFlow setting up. The experiment ends at 60 s.

Figure 3 shows the effectiveness of the proportional and
differentiated redistribution of resources to Service Layer
Agreement specified in XenFlow approach. The higher mini-
mum bandwidth network is forwarded by higher priority queue
and, therefore, accesses a larger slice of bandwidth allocation
of the idle resource portion of the link. Native Open vSwitch
approach shares free resources equally divided among all
queues. Figure 3(b) shows the fitness, after defining the
thresholds of each queue. The XenFlow fitness is around

14% higher than the Open vSwitch fitness, reaching 97%.
Therefore, the XenFlow QoS controller is more able to provide
Quality of Service to priority flows than simply applying
OpenFlow QoS primitives, implemented by the Open vSwitch.

Our next experiment evaluates XenFlow live migration.
Two physical machines forward packets, while the two other
machines generate and receive packets. A virtual machine
performs as a router. The experiments use two additional ma-
chines to generate or receive packets, each one communicates
with both physical routers. The experiments consist of virtual
router forwarding a 6 Mb/s UDP flow, with 1472 B packets,
which is the most common size of Ethernet MTU (Maximum
Transmission Unit). While virtual router is forwarding packets,
after 30 s, it is migrated from source physical machine to
the destination one, using both Xen native migration and our
proposed XenFlow migration. Results, shown by presents our
results of the experiment, indicate that the migration performed
by native-Xen application, referenced in figure as Xen, implies
the interruption of data forwarding for approximately 50 s.
This interruption occurs due to deactivation of the virtual
machine while its memory is transferred from source physical
server to destination physical server. Thus, as native Xen
necessarily forwards packets throw the virtual machine, stop-
ping the virtual machine results in the interruption of packet
forwarding. Migration is only possible without packet loss
when applying plane separation paradigm, because packets
are forwarded by Domain 0, data plane. Therefore, while
the virtual machine is migrated, data plane remains active in
source physical server, forwarding packets thorn previously
established connections. XenFlow employs plane separation
paradigm and Figure 3(c) shows that migration of a virtual
router occurs with no packet loss, referenced in figure as
XenFlow.

The evaluation of the delay introduced by XenFlow for-
warding mechanism considers the round-trip time (RTT) of
ICMP Echo Request and Echo Reply. Figure 4(a) compares
the delay introduced by XenFlow, referred to as Isolated;
routing without adding VLAN tag, referred to as texttt Non-
Isolated; and the delay of the Open vSwitch acting as soft-
ware switch, referred to as OVS. Open vSwitch configuration
refers to packet switching between physical node interfaces.
Although XenFlow engine uses the Open vSwitch, it also
realizes the plane separation based on the XenFlow App,
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(30 Mb/s) and VN 2 (50 Mb/s); c) isolated networks - each virtual network receives only packets that are intended to its. VN 2 receives a rate of 50 Mb/s.

controling the OpenFlow data plane. The experiment only
considers the packet delay introduced by the instantiation of
the flow in the OpenFlow data plane. Figure 4(a) indicates that
the delay introduced XenFlow App, even without isolation,
is of the order of 20 ms. When handling packets and defining
the VLAN in which the packet should be forwarded, the delay
of the first packet arises to approximately 30 ms. The delay,
however, is related to the forwarding the first packet of each
flow for POX, which is the usual flow installation process in
OpenFlow. Routing the following packets introduces the same
delay for all three approaches, which shows that the forwarding
delay is due only to the forwarding mechanism.

The last experiment verifies the effectiveness of the isola-
tion of virtual networks, when an attacker tries to eavesdrop on
communications from another virtual network or inject traffic
on another network. The key idea of this experiment is to
define two virtual networks, and then we try to inject traffic
from one network into the other. The Virtual Network 1 (VN 1)
consists of a virtual machine hosted on Physical Router 1. The
Virtual Network 2 (VN 2) consists of a virtual machine hosted
on Physical Router 1 and another hosted on Router Physical 2.
Both nodes on Router Physical 1 are sending 1500 B UDP
packets. All virtual machines were configured to belong to the
same IP address space and send data to the same destination
IP. However, as the virtual networks are isolated, it is expected
that the flow of the VN 1 does not interfere with the flow of the
VN 2. Figure 4(b) shows that the scenario without our isolation
mechanism, the receiving node of VN 2 receives packets from
both, VN 2 and VN 1, indicating the absence of isolation in IP
address spaces, and being able to eavesdrop flows from other
virtual networks. On the other hand, Figure 4(c) demonstrates
that XenFlow isolates the address space of each virtual network
because the traffic of VN 1 does not interfere with traffic from
VN 2, since the VN2 receiver only receives packets belonging
to its own network.

IV. RELATED WORK

Virtualization technology enables the Future Internet plu-
ralist approach of several virtual networks running over the
same physical substrate. Besides, there are proposals for SDN
that stands for programming general purpose network devices.

Isolation, QoS provisioning, and virtual topologies migration,
however, are still being challenges [1].

Distributed Overlay Virtual Ethernet (DOVE) [12] is a pro-
posal of network virtualization that provides isolation by using
a network identifier that is added to the envelop DOVE header,
creating an overlay network. Isolation is also achieved using
VXLAN encapsulation [13]. VXLAN also adds to each Eth-
ernet frame an outer Ethernet header, followed by an external
IP, UDP and VXLAN headers. Network Virtualization Generic
Routing Encapsulation (NVGRE) [14] also encapsulates to
allow multitenancy in public or private clouds. Both VXLAN
and NVGRE use 24 bits to identify the virtual network that
a frame belongs to. Nevertheless, these proposals create an
overlay network that interconnects the nodes of the virtual
network. Such proposals fail to apply the paradigm of planes
separation, as these proposals do not provide a mechanism
to directly forward packets between different networks in
the data plane. On the other hand, XenFlow isolates virtual
networks in link layer, even in the plane separation scenario.
The proposal inserts a VLAN tag in packets of each virtual
network, eliminating the need to create an overlay network.
An major contribution of the paper is to perform the isolation
of virtual networks through primitive of the data plane, like
VLAN tagging. It is worth mentioning that XenFlow keeps
all the packets at the link layer, Ethernet, since there is no
encapsulation of frames per network layer protocols, leaving
all fields of the original package of the virtual network visible
to the OpenFlow controllers, while other proposals hide above-
layer fields of the original packet, as it is encapsulated in a new
packet whose destination are the edges of the created tunnels.

Houidi et al. propose an adaptive system for provisioning
virtual networks [15]. The key idea is to provide resources
on demand for virtual networks, as soon it detects service
degradation of each virtual network, or after a resource failure.
OMNI (OpenFlow Management Infrastructure) [16] also pro-
vides Quality of Service to OpenFlow networks [3]. Actions
taken by OMNI, however, are restricted to flow migrations.
Besides, Kim er al. propose mapping QoS parameters on
resources available on OpenFlow switches, such as queues and
rate limiters [11]. The proposal main goal is to provide QoS
to scenarios in which the physical infrastructure is shared by
virtual networks with different workloads. Nevertheless, the



control of QoS parameters and QoS mapping are centralized
on the OpenFlow controller node.

Wang et al. present OpenFlow as a network management
tool [17]. Wang et al. propose a load balancer based on pro-
gramming low cost OpenFlow switches to multiplex requests
among different server replicas. The proposal, however, does
not guarantee the reservation of resources, nor QoS of flows.
Hao et al., in their turn, present the infrastructure VICTOR
(Virtually Clustered Open Router) [18] which is based on
creating a cluster of datacenters via a virtualized network
infrastructure. The central idea of this approach is to use the
OpenFlow as the basic network infrastructure of datacenters
to allow moving a virtual machine from one physical location
to another.This proposal optimizes the datacenter network
usage performing server migrations, but it does not guarantee
Quality of Service of each flow, and also does not isolate the
use of resources from different virtualized servers. XenFlow,
in turn, ensures isolation of resources shared by the virtual
routers. It performs efficient sharing of idle resources and
supports applying to Service Level Agreements (SLAs), such
as guarantying a minimum bandwidth to a virtual router.

V. CONCLUSION

In this paper, we propose the XenFlow system, which
is a hybrid virtualization and Software Defined Networking
system. XenFlow implements a commodity hardware routing
architecture, combining Xen virtualization technology and
OpenFlow API. Our routing architecture is backward com-
patible and incrementally deployable, as the current protocols
can communicate with XenFlow virtual routers running current
protocols. Likewise, XenFlow employs OpenFlow switches to
forward traffic, which enables the gradual adoption of SDN
techniques. XenFlow isolates the resource consumption of
each virtual network and also provides Quality of Service
(QoS). XenFlow also implements zero packet loss virtual
router migration and eliminates the need of tunnels or external
mechanisms for link migrations. We developed a prototype
and analyzed it. Our results show that the XenFlow has no
data plane downtime, while native Xen migration introduces
up to 30 s of data plane downtime, which confirms the zero
packet loss virtual router migration of XenFlow. Evaluating
the QoS capability, the XenFlow resource controller reached
the maximum utilization of the link and achieved an efficient
proportional distribution of resources of approximately 97%,
which is 14% higher than the result obtained with the Open
vSwitch. At last, our experiments also confirm that XenFlow is
able to isolate two virtual networks even when both networks
share the same IP address space. As a future work, the VLAN
tag will be replaced by a Multiprotocol Label Switching
(MPLS) tag, whose semantics of virtual circuit identifier will
be overloaded and it will address up to 8 million possible
virtual networks, using 23 available bits in MPLS header. We
will also develop optimization algorithms for allocating virtual
networks on the physical network infrastructure.
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