Using Fuzzy Policies to Improve Context Interpretation in
Adaptive Systems

Lucas Provensi, Frank Eliassen and
Roman Vitenberg
Department of Informatics
University of Oslo, Norway
{provensi, frank, romanvi}@ifi.uio.no

ABSTRACT

Adaptation is an increasingly important requirement for soft-
ware systems executing in large-scale, heterogeneous, and
dynamic environments. A central aspect of the adaptation
the methodology is management of contextual information
needed to support the adaptation process. A major design
challenge of managing contextual data lies in the fact that
the information is partial, uncertain, and inherently suitable
for diverging interpretations. While existing adaptation so-
lutions focus on techniques, methods, and tools, the chal-
lenge of managing and interpreting ambiguous contextual
information remains largely unresolved. In this article, we
present a new approach to knowledge management in adap-
tation feedback control loops that aims to overcome these
issues by applying fuzzy set theory and approximate rea-
soning. Our new knowledge management scheme interprets
imprecise information and effectively integrates this infor-
mation into the adaptation feedback control loop. To test
and evaluate our solution, we implemented it in an adap-
tation engine to perform rate control for media streaming
applications. The evaluation results show the benefits of our
approach in terms of flexibility and performance when com-
pared to more traditional methods, such as TCP-friendly
rate control.!

Categories and Subject Descriptors

C.2 [Computer-Communication networks]: Distributed
Systems

Keywords

adaptation; fuzzy rules; rate control;

1. INTRODUCTION

With the ubiquitous proliferation of large-scale software sys-
tems operating in highly dynamic environments, autono-

!Copyright is held by the authors. This work
is based on an earlier work: SAC ’'13 Proceed-
ings of the 2013 ACM Symposium on Applied Com-
puting, Copyright 2013 ACM 978-1-4503-1656-9/13/03.
http://doi.acm.org/10.1145/2480362.2480447

Romain Rouvoy
Inria Lille-Nord Europe
University of Lille, France
romain.rouvoy@lifl.fr

mous system execution in presence of everchanging oper-
ational settings and personalized user requirements become
increasingly important. Design of modern software systems
consequently emphasizes self-adaptive capabilities whose goal
is to provide one or more of the self-* properties (self-config-
uration, self-healing, self-optimization, and self-protection).

In order to support the control tasks that constitute the
adaptation process, there is a need to collect, store, and
interpret relevant contextual information. A major design
challenge of managing contextual data lies in the fact that
the information is partial, uncertain, and inherently suitable
for diverging interpretations. For example, media streaming
applications may need to adapt the streaming protocol and
its configuration parameters when the packet loss fraction
becomes “high” or the amount of bandwidth available on a
shared link becomes “low”. Yet, the threshold for being high
or low depends on a great deal of factors and settings that
vary at runtime whereas the assessment of runtime param-
eters (such as a packet loss fraction or available bandwidth)
is essentially partial and imprecise. This challenge is further
aggravated by the need to maintain the adaptation process
over time and evolve its individual elements independently
of the rest of the system: When new versions of the stream-
ing protocol become available, it may be beneficial to start
using them under the same conditions of packet loss and
bandwidth. Monitoring of runtime parameters may need to
be dynamically adjusted. New rules that trigger the adapta-
tion can be added on the fly. If multiple rules can be applied
to the same situation, then which rules to be applied need
to be effectively resolved. In fuzzy logic this issue can be
addressed by assigning relative weights to the rules and by
dynamically adjusting the them. If the network link is up-
graded or if the media streaming application updates the re-
quirements (e.g., because of switching to a different encoder
or a different video client), this will affect the interpretation
of “low” bandwidth for the same rule.

In this article, we propose a complete yet highly modular
approach for knowledge management in adaptive systems
that facilitates interpretation of imprecise or vague contex-
tual information. The approach is based on applying fuzzy
set theory [23], which allows the separation of knowledge
from its interpretation, so that the interpretation can be
independently formulated and updated. Additionally, the
knowledge management approach comprises a variation of
the well-known MAPE-K control loop [8] adapted for deal-
ing with fuzzy knowledge. The MAPE-K model aims at
separating the concerns of the adaptation process from the



application logic, improving the reusability of the middle-
ware framework. The modularity of our approach promotes
individual evolution of different aspects of knowledge man-
agement: formalization of a shared vocabulary, imprecise
interpretation of concepts, definition of strategies/policies,
and specification of the adaptation mechanism, as we fur-
ther discuss and illustrate in Section 5.

While there exist a few works that employ principles of fuzzy
set theory in connection with adaptation, each of these works
only focuses on a particular adaptation aspect without con-
sidering how fuzzy set theory can be weaved into the entire
adaptation control loop in a modular way. In [5, 22, 10] the
authors implement heuristic controllers based on imprecise
information. However, these controllers are based on fixed
ad-hoc knowledge management, which might compromise
the solution reusability and its ability to evolve. Fuzzy sets
and fuzzy logic have also been applied to develop specifica-
tion languages for presenting adaptation requirements and
goals [20, 1]. While these languages provide a systematic
way of describing uncertain knowledge, it may be non-trivial
to implement them and support these goals at runtime.

In order to validate the proposed approach, we have inte-
grated it into a adaptive video streaming application sce-
nario and evaluated its impact on the performance of the
application. We demonstrate how the approach allows the
construction of an adaptation engine that effectively controls
the streaming rate according to bandwidth availability. To
concretely show the efficiency of this engine, we evaluate
its performance through a set of simulations (using the ns-
2 network simulator), and compare it with an alternative
implementation that uses the standard network level TCP
Friendly Rate Control (TFRC) protocol [7]. The simulation
results confirm that our adaptation method is capable of pro-
ducing smoother bitrate changes while keeping the loss rate
acceptable. We also evaluate the benefits of the achieved
bitrate in terms of the quality of the corresponding video
stream according to a set of standard metrics, such as Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dezx (SSIM). Considering the same encoding reconfiguration
method for both protocols, we show that the video streams
produced using the proposed fuzzy logic control generally
achieve a 10% to 30% better quality than the video streams
produced using the TFRC protocol.

The rest of the article is organized as follows. Section 2
presents two application scenarios that illustrate the poten-
tial benefits of the proposed approach. Section 3 discusses
knowledge management in our approach, showing how a
shared vocabulary is specified and used to build adaptation
policies. Section 4 describes how a fuzzy inference engine
can be integrated into a MAPE-K adaptation loop, while
in Section 5 the main advantages of the proposed modular
approach are discussed. Section 6 presents the evaluation of
our approach for the video streaming application scenario.
Section 7 discusses related work, and finally Section 8 pro-
vides some concluding remarks and outlook to future work.

2. APPLICATION SCENARIOS

In this section we present two application scenarios where
the proposed approach can be applied to improve context

interpretation is adaptive software systems. The first one
is adaptive video streaming, which is the main scenario dis-
cussed throughout the article and used in our extensive eval-
uation. The second scenario is planning-based adaptation,
in which we discuss how our approach can be used as an
alternative to utility equations.

2.1 Adaptive video streaming

The application scenario that is used throughout this arti-
cle consists of a video streaming application, in which client
nodes can connect to media servers to receive video streams
in real time. Figure 1 shows the main components executing
on the server and client nodes. This illustration is represen-
tative of many existing media streaming applications (e.g.,
VLC Media Player and Darwin Streaming Server) and the
components are based on commonly used technologies and
protocols. The server is composed of an H.264 [21] com-
ponent, responsible for encoding raw video data into Net-
work Abstraction Layer (NAL) units, suitable for streaming,
and a Real Time Streaming Protocol (RTSP) [17] compo-
nent, that packages and transmits the NAL units to client
nodes. During a streaming session, RT'SP components also
exchange Real-Time Transport Protocol (RTP) control re-
ports, which contain useful information for controlling the
session quality, such as packet loss fraction and inter-arrival
jitter.

Since clients and server may be connected through a net-
work with variable bandwidth availability, the application
needs to continually adjust the streaming rate to match the
network characteristics. This article evaluates adaptation
scenarios that focus on the bitrate produced by the encoder
component as the primary quality dimension. Nevertheless,
the proposed methods for knowledge management presented
in Section 3 and control loop construction in Section 4 are
generic, and can be used to implement new adaptation poli-
cies (or extend existing ones) that consider other video qual-
ity dimensions, such as resolution and frame rate.

There are different approaches for implementing rate adap-
tation in this type of application. One approach is to rely
on network level protocols for congestion control (such as
increase/decrease algorithms) to obtain a target bitrate, and
adapt the encoder accordingly [14]. Protocols such as TFRC,
use loss rate, round-trip time and packet size as parameters
of throughput equations, designed to obtain a more accurate
estimate of the available bandwidth. TFRC is arguably the
best option for media streaming, however its throughput
equation cannot be easily modified to reflect specific fea-
tures of the application model (such as encoder tolerance to
packet loss). Another approach is to completely implement
the adaptation at the application level, with algorithms to
scale up or down the video quality based on different net-
work conditions, such as the one presented in [18].

A fundamental problem when adapting this application (at
the network or application layer) is the imprecision of the
information used in the reasoning and decision making pro-
cesses. First, it is not possible for the application to precisely
calculate the currently available bandwidth, and this infor-
mation needs to be inferred from context data fed back from
clients to servers (e.g., through the mentioned RTCP re-
ports), which in turn, may not be accurate. Second, the de-



N
Video Capturlng Application H264 RTSP | Video Stream RTSP H264 Video Renderlng Application
Raw V,deo File Encoding Server ¢ 2rp reports Client Decoding Save Vldeo to File
N v

Figure 1: Media Streaming Application

sirable state (adaptation goal) needs to be expressed in terms
of imprecise context situations. For instance, does a packet
loss measurement necessarily mean congestion? What is the
acceptable loss fraction considering measurements inaccu-
racy? Therefore, the adaptation result may not be optimal
(e.g., bitrate overshoots and oscillations).

2.2 Planning-based adaptation

The second scenario is planning-based adaptation, where a
software configuration (components and their interactions)
is evaluated and adapted at runtime to provide the best
possible utility to end-users [16]. Different configurations
of a given application can satisfy different constraints and
provide different Quality of Service (QoS) depending on the
operating conditions and user preferences. Changes in the
operating environment or user requirements will trigger the
planning mechanism, which consists of computing the utility
of all possible configurations and selecting the one that is
most suitable for the current situation (highest utility).

One example of such an application is the Travel Assistant,
which helps travellers with route planning, ticket vending,
detecting delays, etc. This application was originally devel-
oped using the MUSIC middleware, and a more complete
description can be found in [15]. The Travel Assistant runs
in a mobile device and consists of a set of interacting compo-
nents implementing different aspects of the application, such
as route planner and geographical location. Variations of
the same component type can provide the same service with
different quality levels, and the middleware is responsible to
identify relevant context changes and find the most useful
configuration according to the new context. The utility of a
given configuration is influenced by the device context (bat-
tery level, GPS signal, etc.) and user preferences regarding
cost, accuracy, and resources consumption.

The problem of imprecision can also be found in this sce-
nario: First, QoS prediction models are used to determine
the new values for the configurations properties when a con-
text change occur (e.g., how much battery will a given con-
figuration consume under the new operating conditions?).
Second, subjective user preferences are used to determine
which quality properties are more important (e.g., the user
prefers high accuracy over low battery consumption). Pre-
dictions and subjective preferences are imprecise and un-
certain by nature, but nevertheless, utility functions are
described as mathematical equations that try to precisely
quantify these properties and preferences. The result is the
selection of optimal configurations given the assumption of
a precise quality model. In reality, it is difficult to verify if
the optimal configuration is really better than a sub-optimal
one, since the difference might be too small to be perceived
by users. If the difference is not perceivable, than the cost
of reconfiguring the application might exceed the benefits
of the new configuration. The imprecision problem is un-

avoidable in both scenarios, but it should at least be con-
sidered in the development process, so that the imprecision
is made explicit in the system design and correctly reflected
in the adaptation behavior. In Section 3.2 we show how we
can make the imprecision explicit in both scenarios by using
fuzzy adaptation policies.

3. KNOWLEDGE MANAGEMENT

In this section, we present our approach for systematically
organizing the adaptation knowledge. As discussed in Sec-
tion 1, we have augmented the knowledge management of a
MAPE-K loop to support imprecision by applying fuzzy set
theory. Traditional set theory assumes a precise model with
no ambiguities and well known parameters, e.g., an element
either belongs to a set or does not. In cases where these
assumptions do not hold, which is often the case for adap-
tive systems with partial knowledge, we suggest the use of
fuzzy set theory to quantify the model’s imprecision. In the
fuzzy set theory, an element belongs to a set to some degree,
defined by a membership function. Consider, for instance,
the statement: “The packet loss fraction is high”. Using tra-
ditional set theory, a given fraction belongs either to the low
set or to the high set (boolean membership relation). Using
fuzzy set theory, since high is a subjective concept and can-
not be precisely determined, a given fraction belongs to the
high set to some degree, but at the same time, it can also
belong to the low set to some degree (fuzzy membership
relation).

3.1 Structuring Application Knowledge

Most adaptive systems employ ad hoc solutions for knowl-
edge management, where the knowledge is scattered through-
out different models, making it difficult for independent en-
tities (such as adaptation managers and individual control
tasks) to share and reuse common concepts. In our ap-
proach, the knowledge is described using domain specific
ontologies, which help in solving issues such as ambiguity,
data organization and semantic interoperability. The result
is a shared vocabulary, describing all the important concepts
in the application domain. The vocabulary can be enhanced
with imprecision and vagueness, by associating the interpre-
tation of specific concepts with fuzzy sets.

Figure 2 shows a concept from the vocabulary used for the
streaming application. The event concept corresponds to
any relevant information observed by the adaptation engine.
The loss event concept describes information about packet
losses experienced by the application, which is used by the
adaptation controller to reason about the network condition.
The loss fraction property indicates the fraction of packets
that were not received by the client since the last report.
This vocabulary is then extended with fuzzy predicates, so



sub-concept

property
-—==> —_—

fuzzy predicate

Figure 2: Loss event concept

c o o
N o » =
L L L

membership degree

e
X}
.

0051 2 3 4 5 6 7 8 9 10
loss fraction (%)

| N (o N acceptable [N high |

Figure 3: Loss fraction membership functions

that the loss fraction property can be classified as high, ac-
ceptable and low (with different confidence levels obtained
by applying the corresponding membership functions).

Figure 3 shows the membership functions used to interpret
the loss fraction concept, corresponding to the predicates
in Figure 2. In this case, we have used piecewise linear
functions for simplicity, although other types of functions
can be used (Gaussian, sigmoidal, etc.). Piecewise linear
functions are easier to specify and computationally efficient
(the imprecision regions between no membership and full
membership are captured by simple linear functions), and
are frequently used in fuzzy systems.

It is important to notice that membership functions rep-
resent the developer’s knowledge about the application do-
main. The developer of the adaptive streaming application,
for instance, knows that 10% is definitely a high value for
loss fraction and 0% is a low value. He/she also knows that,
in some cases, values between 0 and 2% can be tolerated by
the video decoder (although the exact values are uncertain),
and uses a trapedoizal shape for the acceptable function, as
shown in Figure 3. In later development phases, these func-
tions can be fine tuned to reflect new knowledge and better
understanding of the application behavior.

3.2 Fuzzy Adaptation Policies

The shared vocabulary constructed with fuzzy concepts al-
lows the introduction of fuzzy logic into the adaptation rea-
soning process. Instead of using conventional boolean state-
ments (e.g., loss fraction > 2.0%), it is now possible to apply
fuzzy logic statements containing linguistic predicates (e.g.,
loss fraction is high). Fuzzy statements are employed in our
approach to create rules, which can be grouped into high-
level policies to drive the adaptation process. For example,

by using the loss fraction concept described earlier, a simple
increase/decrease rate control policy could be built with the
following set of rules:

RULE 1: IF loss_fraction IS low

THEN adjustment IS positive;
RULE 2: IF loss_fraction IS high

THEN adjustment IS negative;
RULE 3: IF loss_fraction IS acceptable

THEN adjustment IS null;

In the above rules, adjustment is the rate adaptation pa-
rameter (related to a reconfiguration method), and positive,
negative and null indicate respectively an increase, decrease
or no change in the rate. The evaluation of this set of rules
will produce membership degrees for all three rate adapta-
tion possibilities, that will finally have to be converted to
a single crisp value through a process called defuzzification,
discussed in Section 4.

We have extended the above simple policy to implement
a fuzzy proportional-integral-derivative (PID) controller to
adapt the video streaming application. The proportional
term is already captured by the increase/decrease rules, since
the rate adjustment is proportional to the loss fraction. The
integral term represents the accumulation of the losses over
time, and can help in stabilizing the adaptation process.
The derivative term represents the rate of change, and can
make the adaptation more responsive to considerable loss in-
creases. The integral and derivative terms are also described
as properties of the loss event concept shown in Figure 2,
and are associated to fuzzy predicates describing the mem-
bership to the appropriate fuzzy sets: positive and negative
for the integral term (accumulated loss) and increasing and
decreasing for the derivative term (change rate).

The complete set of rules is presented below. The rules
are weighted (using the keyword WITH) to give different
importance to the PID terms, and round-trip time (RTT)
information is included to prevent possible latency increase
caused by buffering.

RULE 1: IF loss_fraction IS low AND
RTT IS NOT high THEN
adjustment IS positive WITH 0.4;
RULE 2: IF accumulated_loss IS negative
AND RTT IS NOT high THEN
adjustment IS positive WITH 0.2;
RULE 3: IF change_rate IS decreasing
AND RTT IS NOT high THEN
adjustment IS positive WITH 0.4;
RULE 4: IF loss_fraction IS high THEN
adjustment IS negative WITH 0.4;
RULE 5: IF accumulated_loss IS positive THEN
adjustment IS negative WITH 0.2;
RULE 6: IF change_rate IS increasing THEN
adjustment IS negative WITH 0.4;
RULE 7: IF loss_fraction IS acceptable
THEN adjustment IS null;

Note that these rules use the vocabulary defined in the do-
main ontology (Figure 2), and offer a description of the adap-
tation process that is linguistically close to how a human
would describe them. Also, since the only numerical values
used are the relative weights, the set of rules is likely to re-
main the same as the application evolves, while the member-



ship functions would be changing to reflect new knowledge
with more precise values.

One recurrent problem with traditional adaptation policies
is the possibility of conflicts, which is aggravated by the
boolean nature of the decision making process. This prob-
lem can be alleviated with fuzzy logic, where the evaluation
of each rule results in a degree of truth instead of true and
false values, facilitating the choice and prioritization of the
actions. For instance, when evaluating the set of rules de-
scribed above, adjustment can be positive and negative at
the same time, with different degrees of truth for different
rules. By applying simple methods for accumulation and de-
fuzzification, the results can be combined and converted to
a single adjustment value, as will be discussed in Section 4.
If there are multiple policies resulting in multiple conflicting
actions, then a strategy to prioritize actions should be ap-
plied, such as executing only the action with highest degree
of truth. In the video streaming application scenario, since
the adaptation consists of adjusting only a single parame-
ter, policies implemented as fuzzy rules are sufficient and
conflicts are not likely to happen.

The presented knowledge model also supports the use of
fuzzy rules as an alternative way of expressing goal policies
and utility functions, producing approximate solutions in-
stead of optimal ones, as we are going to show next using
the Travel Assistant application discussed in Section 2.2.
The utility of a given configuration of the Travel Assistant
application is defined as a function of the accuracy that the
configuration can provide (in terms of map detail, route re-
liability and location precision) and how much battery the
configuration might consume: wtility = wace * accuracy +
Wpat * (1 —battery). In this function, the user preferences are
captured in form of relative weights (wace and wpat). The
main assumption used to formulate the utility function is
that “the user always prefers high accuracy and low battery
consumption” [15]. However, the imprecision of the low and
high concepts in this statement is not preserved in the util-
ity function. The same assumption can be easily converted
into a set of fuzzy rules that, unlike the utility equation,
preserves the imprecision of the statement:

RULE 1: IF accuracy IS high AND battery IS low
THEN utility IS high;

RULE 2: IF accuracy IS low AND battery IS high
THEN utility IS low;

RULE 3: IF accuracy IS high AND battery IS high
THEN utility IS medium;

RULE 4: IF accuracy IS low AND battery IS low
THEN utility IS medium;

These rules are independent of the interpretation of the
low and high terms for the accuracy and battery proper-
ties, which can be formulated as membership functions. The
membership functions can also reflect the user profile, since
the high and low predicates for each property may be ad-
justed according to the user preferences. Nevertheless, rela-
tive weights can also be used to devise rules that give prefer-
ence to either battery consumption or accuracy individually
and build fuzzy policies that can produce results closer to
weighted sum equations:

RULE 1: IF accuracy IS high
THEN utility IS high WITH w_acc;

RULE 2: IF battery IS low

THEN utility IS high WITH w_bat;
RULE 3: IF accuracy IS low

THEN utility IS low WITH w_acc;
RULE 4: IF battery IS high

THEN utility IS low WITH w_bat;

By replacing utility equations with fuzzy policies, we make
the imprecision of relevant properties explicit, and sepa-
rate the interpretation of these imprecise properties (ontol-
ogy concepts) form the adaptation policies. This approach
presents several benefits for the evolution of the application,
as is further discussed in Section 5. Another benefit is the
stabilization of the adaptation process. In a dynamic envi-
ronment, the application context is constantly changing and
therefore adaptation mechanism will be activated frequently.
When using utility equations, the optimal configuration is
always applied even when the utility difference between the
current configuration and the new one is very small. By
using fuzzy sets instead of numeric utility values, we can
reduce the number of reconfigurations, since different con-
figurations that are part of the same utility fuzzy set can be
considered equally useful to users.

4. FUZZY ENGINE AS A MAPE-K LOOP

In this section, we propose a new effective way of introduc-
ing approximate reasoning into a MAPE-K adaptation loop,
by exploiting the imprecise nature of fuzzy policies. We will
use only the video streaming application as example in this
section, but the general adaptation loop can also be applied
in combination with a planning-based adaptation middle-
ware. To help us to describe and construct a control loop
for the streaming application, we have developed a proto-
type of a flexible framework for adaptation, which is based
on a conceptual model defined in a previous work [13]. The
framework provides support for the description and imple-
mentation of MAPE-K control tasks as semantic enabled
services (using OWL-S notation [11]), allowing us to make
design decisions at the level of individual control tasks. The
adaptation loop is therefore described and executed as a
composite service, which in this case implements a fuzzy
inference engine capable of interpreting imprecise concepts
and evaluating fuzzy policies. Figure 4 illustrates the adap-
tation loop where the steps of the fuzzy inference process
are mapped to the appropriate control tasks of a MAPE-K
loop.

The adaptation process assumes a shared knowledge base,
as shown in Figure 4. We have implemented the knowledge
base as a simple repository service, that feeds adaptation
rules to the control tasks forming the adaptation loop. The
other elements of the shared knowledge, such as the domain
specific ontology discussed in Section 3.1, are made available
as web resources. The tasks are configured to use those re-
sources as part of their own vocabulary, so they can correlate
the linguistic terms used in the rules with the corresponding
concepts in the ontology.

The feedback control loop starts with the monitoring task,
which aggregates context data received from sensors de-
ployed in the application. For the streaming application,
the sensors are simple plug-ins that intercept RTCP reports



reconfiguration

Sensor

rnpons! l

Manitor
1

EVE‘I"IISJ l

I
Plan ¢ Accumulation Fuzzification ||
i e

Rule Evaluation

Figure 4: Control loop for the application scenario

Analyze

Defuzzification

and forward them to the monitoring task. This task extracts
the context information from the reports (loss fraction and
RTT), derives other required inputs (accumulated loss and
change rate) and produces the events consumed by the ana-
lyzing task. At this point, the loss event contains only crisp
(i.e., raw) numerical values for its properties.

The analyzing task is responsible for the inference process,
converting the crisp context data into membership degree
values (fuzzification) and evaluating the rules. Events are in-
terpreted according to the shared vocabulary, and the fuzzy
predicates (with the appropriate membership function) are
applied to obtain the membership degrees. After evaluat-
ing all the rules, the results should be combined in order
to obtain a single membership value for each possible ac-
tion (i.e., the results of rules 1,2 and 3 need to be combined
to obtain the membership degree for the positive set). The
combination is done by using the rule weights (if present)
in a sum function that aggregates the membership degrees
for each action. This aggregation method is closer to the
PID method, but can also be configured statically or dy-
namically, as a parameter to fine tune the adaptation loop.
Yet another configurable parameter is the method used to
implement the fuzzy operators. We have applied the tradi-
tional min and mazx implementation of the AND and OR
operators, respectively [23].

The planning task determines what action should be taken,
considering the membership values of all possible actions
provided by the analyzing task. The planner implements
the defuzzification method, which is also a configuration pa-
rameter of the control task. There are many defuzzification
methods that can be applied, such as center of mass, cen-
ter of gravity and diverse maxima methods [23]. There are
also different criteria for selecting the appropriate method,
such as continuity and computational efficiency [9]. The
developer can select the appropriate method based on the
characteristics of system, for instance, if the adaptation loop
is running on a resource constrained device (e.g., the Travel
Assistant application), a method that satisfies the computa-
tional efficiency criteria would be preferable. For the video
streaming application scenario, we have selected the center

of gravity (COG) method as it satisfies the continuity cri-
teria. This criteria is important for control systems, and
states that small variations in the inputs should not cause
big changes in the output. With COG, the output of the
planning task is affected by the membership values of all
possible actions, and not only by the one presenting the
maximum degree.

Once the planner finishes the defuzzification process, it noti-
fies the acting task of the selected action and the final crisp
value (percentage to increase or decrease). The acting task
executes the adaptation through a set of actuators plugged
into the application. If the resulting output belongs to the
null set, then no action is taken. If the output belongs to
the positive or negative sets, the actuator is invoked to ap-
ply the rate adjustment using the reconfiguration method
offered by the H.264 encoder. The described control loop
is reusable and does not require any particular program-
ming model, making its integration into legacy systems eas-
ier. However, extra development effort is required to plug
the controller into the managed system, as sensors and ac-
tuators are application-specific.

5. ADVANTAGES OF THE PROPOSED MOD-

ULAR APPROACH

The modular nature of our approach enables the individual
evolution of different aspects of knowledge management in
adaptive systems. The first aspect is the shared vocabulary,
which is specified as domain specific ontologies. Those on-
tologies can be formulated and evolved independently of the
adaptation controller, and can be reused by various control
tasks and in different adaptation policies. The loss event
presented in Figure 2, for instance, could have been initially
defined as containing only the Loss Fraction property, and
later evolved (as a consequence of new requirements and
adaptation knowledge) to include the Accumulated Loss and
Change Rate properties, needed by the rules implementing
the PID controller. Without using a modular approach, the
adaptation knowledge would have been scattered among dif-
ferent policies and at the risk of developing incompatible
vocabularies.

The second aspect is the interpretation of concepts. In our
approach the fuzzy sets can evolve independently of the
adaptation rules using them. One example is the accept-
able fuzzy set shown in Figure 3: a particular loss fraction
measurement can be interpreted as acceptable if it presents
a high degree of membership to this set. By adjusting the
membership function that defines the acceptable fuzzy set,
the adaptation behavior can be changed to be less tolerant
to packet loss, without the need to modify any of the adap-
tation rules. Likewise, in the Travel Assistant scenario, the
membership functions for the battery consumption and ac-
curacy properties can be adjusted to be more strict (closer
to precise optimal values) or more tolerant (imprecise, with
more overlapping areas). Using conventional adaptation
rules (boolean logic) or utility equations, the interpretation
is a fixed part of the rules/equation, making it difficult to
reason about and evolve adaptation knowledge that is inher-
ently imprecise.

The third aspect is the specification of adaptation policies.



By separating the interpretation of concepts from the policy
definition, we make it possible to specify complete and se-
mantically correct rules with only partial knowledge about
the adaptation domain. The evolution of adaptation poli-
cies is then done at an higher abstraction level (without hav-
ing to deal with numerical precision): Adding and removing
rules, augmenting existing rules with new fuzzy statements
and changing relative weights. As an example, the relative
weights that have been assigned to the rules implementing
the PID controller, can be modified in later development
iterations to give different importance to the PID terms.
This modification does not affect the interpretation of the
concepts used by the rule, but just the final accumulated re-
sult of the rule set. Another possible modification is the use
of fuzzy adverbs, such as using “utility IS very high” ,
instead of using the numerical weights in “utility IS high
WITH w_acc”. The wqc. weight is a numerical value, and re-
placing it by a linguistic modifier can further improve the
separation of the concepts used in the rules and their inter-
pretation.

The fourth aspect is the specification of the adaptation en-
gine. The modularity of our approach enables the definition
of configurable MAPE-K loops with loosely coupled control
tasks, that can be easily modified according to different ap-
plication requirements. The adaptation loop implementing
the fuzzy inference engine, for instance, can be reconfigured
with different implementations for the accumulation and de-
fuzzification methods. As an example, a more lightweight
implementation of the adaptation loop could have been im-
plemented by selecting only less complex and computation-
ally efficient methods.

6. EVALUATION

In this section we present the evaluation of the proposed
knowledge management approach for the video streaming
scenario. We have selected this scenario because it is possi-
ble to quantify the performance gain and compare it to ex-
isting approaches that use precise models. While the perfor-
mance gain cannot be directed linked to the advantages pre-
sented in Section 5, the proposed modular approach makes
it easier to tune the adaptive behavior toward the target
performance. In the video streaming scenario, for instance,
given that the high level policy described in Section 3.2 is
correct, tuning the adaptive behavior consists of adjusting
only the membership functions. In our experience, this tun-
ing would otherwise involve a more complex redesign of the
adaptive behavior. Therefore, the objective of the evaluation
is to show the benefits that our approach brings to the video
streaming application, in terms of bandwidth utilization and
media quality. We compared the performance of the applica-
tion built using our approach with an application that uses a
conventional implementation based on TFRC protocol. The
evaluation is divided into two parts: Section 6.1 evaluates
the adaptation loop performance at the network level and
Section 6.2 evaluates the quality gain of the produced video
streams. For the first part, we simulate different network
conditions (using the ns-2? discrete event simulator), and

*http://www.isi.edu/nsnam/ns/

compare the loss pattern and bitrates achieved by using the
fuzzy method and the ones achieved by the TRFC protocol.
For the second part, we have modified the video streaming
application to reproduce the same network conditions by re-
playing the recorded simulation traces, resulting in adapted
video sequences. The adapted video sequences are stored
by the receiver, and we evaluate their quality using a set of
standard video quality metrics.

6.1 Network behavior

For the first part of the evaluation, we extended ns-2 with
the RTP and TFRC implementation proposed in [2], and
with the adaptation mechanism presented in Section 4. We
have used dumbbell topologies as illustraded in Figure 5a to
simulate bottleneck links between two Internet routers (r1
and r2) connecting a video stream sender and receiver. Some
simulations also include n other data streams with different
characteristics competing for the same bottleneck link be-
tween r1 and r2. We have also used parking lot topologies
as illustrated in Figure 5b, which introduce n intermediate
routers (r1 to r, in the figure) into the link. In this case,
there are producers (Pi, P,...) and consumers (C1,Co2,...)
of data traffic connected to different routers across the link,
resulting in multiple bottlenecks with cross traffic traversing
all the routers in the path. These topologies are commonly
used to simulate bandwidth-limited bottleneck links. We
have tested a broad range of network conditions, with vary-
ing link capacities (0.5 to 10 Mbits) and number of flows
competing for the link (up to 20 flows).

Figures 6(a) and 6(b) show the results obtained with the first
(and simplest) ns-2 simulation scenario using the dumbbell
topology, where the link capacity is fixed and there are no
competing streams. The streaming session lasts about 10
minutes and, since there is no initial assumption about the
link capacity, the session starts at low bitrate (100 kbps).
From the figures, it is possible to see that the fuzzy rate
adaptation utilizes the whole link capacity at the cost of
a constant acceptable loss fraction (less than 1% average),
while TFRC produces large oscillations, with considerable
bitrate reductions when a loss event is detected.

Figures 7(a), 7(b) and 7(c) show the results of a simulation
scenario involving the competition for the link capacity be-
tween a FTP flow (TCP), a constant bitrate flow (UDP)
and the video stream (RTP). For this simulation, we have
used the Linux implementation of the TCP protocol (TCP-
Linux), with the new reno® congestion control algorithm.
The upperbound for the TCP congestion window was set
to a value large enough to allow the full utilization of the
link. This scenario shows that the fuzzy method produces
higher bitrates with less oscillations than TFRC, while keep-
ing the loss fraction (0.49% avarage) close to the acceptable
fuzzy set. However, it should be noted that when the fuzzy
method is applied the bandwidth sharing is not fair, and at
some point the RTP flow will be consuming more bandwidth
than the TCP flow. If fairness is one of the application re-
quirements, the adaptation rules and/or membership func-
tions should be adjusted to achieve a fair behavior, otherwise

Shttp://www.ietf.org/rfc/rfc2582.txt



Bottleneck link

Video stream Receiver

51

Competing stream 1 /7

Competing stream n

p)

Competing stream 1

Competing stream n

(a) Dumbbell topology

r1 ] rZ
Video

stream l

G

Video
l l stream

CZ Cn-l

(b) Parking lot topology

Figure 5: Network topologies used in the simulations

the fuzzy method is not recommended.

Figures 8(a) and 8(b) show the average goodput (application
level throughput) and loss fraction, achieved in simulations
with fixed link capacity and increasing number of competing
TCP flows. From the graphs it may be noticed that, with
less competition and as long as the loss fraction is acceptable,
the fuzzy method displays a more aggressive behavior than
TFRC, achieving considerably higher goodput. With a high
competition, the achieved goodput is lower than the one
produced by TFRC, but the loss fraction is also lower, to fit
the acceptable set.

A number of other simulation scenarios were evaluated, and
the results were consistent with the ones presented in this
article. Figures 9(a) and 9(b) show the simulation results
when we applied the parking lot topology. In this case, the
traffic between adjacent routers is generated in bursts, with
sending and idle times taken from a Pareto distribution. The
bursts are intermittent and the traffic could be already inter-
rupted when a rate adaptation occurs, which might result in
inaccurate adaptive behavior. In addition, the context inter-
pretation becomes more challenging as we add more interme-
diate routers, which increases the total latency experienced
by the application and the chances of having a congested
link in the path between sender and receiver. With increas-
ing number of intermediate routers, the simulation results
show that, even with intermittent traffic and increasing la-
tency, the fuzzy method is able to keep the loss rate within
the acceptable set and achieve a considerably higher goodput
than TFRC in general.

6.2 Media Quality evaluation

In the second part of the evaluation, we generated adapted
video sequences using the bitrate variations and loss pat-
terns obtained with the simulations. We used uncompressed
video sequences? as input for the application. The encoding
process is done at runtime to generate NAL units accord-
ing to the target bitrate. When the bitrate is adapted, the

“Obtained from http://media.xiph.org/video/derf/

encoder is reconfigured to reduce the encoding quality for
the video frames while maintaining the same resolution and
frame rate. The loss pattern is applied to the streaming ses-
sion, so the client stores the adapted video without the NAL
units lost during transmission.

We applied a set of metrics to evaluate the video quality ob-
tained with the fuzzy method in comparison with the quality
obtained with TFRC. The chosen metrics were Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM),
Spatial-Temporal SSIM (stSSIM), which considers tempo-
ral distortions, and the DCT based Video Quality Metric
(VQM). PSNR is the most commonly used metric for the
evaluation of the quality difference among video frames, but
it is known to have poor correlation with subjective metrics
(the ones based on human perception) [19]. To have a more
reliable indication of the video quality, we have also applied
SSIM, stSSIM and VQM. Furthermore, we have shown that
the intensity of the adaptation and the frequency of change
per report interval are reduced when using the fuzzy method
(as can be seen in Figure 7). The amplitude and frequency
of adaptations are know to have significant impact on the
subjective quality [12], thus we believe that our approach
can improve subjective user satisfaction as well.

Table 1 summarizes the quality evaluation of video sequences
obtained from some of the simulation scenarios discussed
above. The values shown in the table are the average scores
of the adapted video sequences compared with the original
uncompressed sequences. Different portions of the sequence
may present different scores, depending on the characteris-
tics of the frames and the target bitrate. In general, the
fuzzy method produces better video quality than TFRC ac-
cording to all metrics tested. However, it should be noted
that this is only possible with the appropriate decoding sup-
port (the H.264 decoder can tolerate NAL losses).

7. RELATED WORK

In this section, we present related works that apply fuzzy
logic concepts to deal with uncertainty when specifying adap-
tive behavior and discuss how these works differ from our



Table 1: Video Quality Evaluation

Metric Scenario 1 (No competing flows) | Scenario 2 (Figure 5) | Scenario 3 (10 TCP flows)
Fuzzy Method TFRC Fuzzy Method | TFRC | Fuzzy Method TFRC
PSNR (higher is better) 33.07 29.77 35.02 32.77 26.17 25.24
SSIM (higher is better) 0.91 0.82 0.97 0.89 0.76 0.78
stSSIM (higher is better) 0.53 0.32 0.61 0.49 0.34 0.26
VQM (lower is better) 1.69 2.20 1.52 1.58 2.31 2.53
TFRC
2 i T T 4r ‘ T
ii ---------------- link capacity 35 available bandwidth | |
i fuzzy rate control ' = =~ UDPflow
15¢ i: ________ tfre i 3l TCP flow i
= i . — RTPflow
2 et - gtk pima 2
g 1 .= l ,."- i _."' : P _f" i ‘.""‘E ,"' : ,-"-i A s
s i A SN A
© ! N A L b
05 A i i
! ' W :
0 : : : : ' o ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 0 100 200 300 400 500
time (s) time (s)
(a) Achieved throughput. (a) TFRC
8 v r Fuzzy Rate Adaptation
71 fuzzy rate control | | al ‘ ! ' ]
S T T S tire a5l available bandwidth i
IS ’ ~ — ~ UDP flow
= 5t 3r TCP flow 1
2 @ o5l —— RTP flow |
2 h
% 3l | :
35l . i €
1r N rmp—nn—ns WHMM E: ~N n
ol A Y [N i i
0 100 200 300 400 500
time (s) % 100 200 300 200 500
time (s)

(b) Observed packet loss.

Figure 6: Simulation results of the fuzzy rate adaptation vs.
TFRC for the first scenario.

approach. In our previous short paper [13], we outlined the
idea of a flexible framework for self-adaptation. However,
while [13] discusses flexibility and evolvability at a concep-
tual level, this work is focused on a concrete approach for
knowledge management using fuzzy set theory.

The RELAX language by Whittle et al. [20], deals with un-
certainty when defining adaptation behavior. The focus is
on requirements specification using structured natural lan-
guage, that can be relaxed at runtime based on environment
changes. RELAX is in principle a language independent of
specific adaptation mechanism, therefore a runtime system
needs to be able to interpret and maintain the requirements.
The work in [6] shows how RELAX can be integrated into
the KAOS goal modeling framework. Nevertheless, the goal
model still requires runtime adaptation support.

In [1], the authors show how an augmented KAOS model to-
gether with the RELAX notation could be integrated with
a BPEL engine, to transform the system specification into
running service compositions. These works deal with adap-

(b) Fuzzy Rate Adaptation

Packet loss
4 T T T

TFRC
fuzzy rate adaptation

loss fraction (%)

il [ el e B I Tr urr =
100 200 500

i
300
time (s)

(c) Packet Losses

Figure 7: Simulation results of TFRC (a) and fuzzy rate
adaptation (b) for the scenario with competing TCP and
UDP flows, and the observed packet loss values (c)

tation behavior specification at a different abstraction level
(requirement elicitation) than ours, and we see them as com-
plementary approaches, as the development process advo-
cated by our framework can be modified to integrate struc-
tured languages used to specify requirements and goals.



6000 T T T T T
TI)\ K. . .
2 e link capacity
g 4000 - % """ - fuzzy rate control 1
5 1 e - tfrc
Boao00p T TR 1
S + f SN o
""""" e
0 . . . . .
2 4 6 8 10
number of tcp flows
(a) Fuzzy Rate Adaptation vs. TFRC.
2 T T T
rrrrrr - fuzzy rate control
SR - tfre 1
£ 4| e 4
5 e P A *
8 os} e 1
1 + .
0 L e 4 L L L
2 4 6 8 10

number of tcp flows

(b) Observed packet loss.

Figure 8: Average goodput (a), and the observed packet
loss (b) for simulations with increasing number of competing
TCP flows.

6000 ]
so00f | link capacity i
v — * — fuzzy rate control
5 4000} -+ = tfrc 1
<
ésooo» e ke N ]
¥~ LN
Q Lo~ * —%
g, 2000¢ T, e
T RS
1000} * S R |
0 ‘ ‘
5 10 15 20

number of intermediate routers

(a) Fuzzy Rate Adaptation vs. TFRC.

1 T
— * — fuzzy rate control
. 08f -+~ tfre )
X
~ *
SO6h A #oy T by R
g2 N K4
S 04t b
0 ' *
@\ \ K 0
o 02} + —¥ \_l,"" 4\\+ +/+\+ /*\"( \30_
— -~y
0 ‘ ‘
5 10 15 20

number of intermediate routers

(b) Observed packet loss.

Figure 9: Average goodput (a), and the observed packet loss
(b) for simulations with increasing number of intermediate
routers in a parking lot topology.

The work by Chauvel et al. [5] presents an approach for
qualitative description of adaptation policies, specified at
design time and interpreted at runtime. The policies can be
composed using two different types of fuzzy rule sets: local
reconfiguration rules, for adjustment of local system proper-
ties, and architectural reconfiguration rules, which describe
the utility of a specific architecture reconfiguration. Other

control-based approaches that make use of fuzzy set the-
ory to deal with ambiguity and imprecision include [10, 22].
These works are similar to ours in the use of fuzzy rules for
describing adaptation behavior, whereas no special attention
is given to knowledge management. The adaptation loop is
also implemented as a rigid controller, resulting in reusabil-
ity issues and reducing the system’s capacity to evolve.

Our work is also related to context awareness and more
specifically to Quality of Context (QoC) [4], which defines
precision as a property of the context information. The
problem of imprecision in context acquisition is aggravated
when this information is aggregated from various sources,
and the precision and accuracy of each sensor component
need to be taken into consideration. In [24], fuzzy logic is
used to obtain a reliability measure of aggregate context in-
formation. In our approach, the focus is on the knowledge
imprecision as a consequence of human interpretation, and
the membership functions represent the developer’s under-
standing of the context situation (which includes his/her
knowledge about sensor precision and accuracy). This way,
we avoid the complexity of defining precision boundaries for
individual sensors and managing reliability of aggregated
context, while providing support to behavior evolution based
of human knowledge.

Another relevant work, reported by Bridges et al. [3], is a
fuzzy-based framework to control a video streaming applica-
tion. While the focus of this work is on strategy composition
and coordination, less attention is given to knowledge man-
agement and interpretation of contextual information. Fur-
thermore, the authors only provide indications of the effec-
tiveness of adaptation composition and coordination, but do
not show any improvements regarding the video rate adap-
tation, since the application displays similar behavior as the
increase/decrease protocol.

8. CONCLUSION

In this article we have presented our approach for adapta-
tion in presence of inherently imprecise/vague information.
We have proposed a method for organizing knowledge and
its interpretation that preserves the imprecise nature of con-
textual information, and demonstrated how to effectively in-
tegrate this method into a MAPE-K adaptation loop. We
have applied fuzzy set theory and domain specific ontologies
to separate the high level adaptation knowledge (adaptation
rules and policies) form its interpretation (fuzzy predicates).
We discussed how this approach can be used in two distinct
application scenarios and its benefits for the evolution of
adaptive applications.

We have evaluated the knowledge management approach for
the case of video streaming applications, and we showed that
it generally brings benefits in terms of achieved throughput
and resulting media quality when compared to a conven-
tional implementation using TFRC. By using the proposed
approach, we were able to identify and make contextual im-
precision explicit in the adaptation knowledge for the eval-
uated application. In our experience, this way of describing
and evolving adaptation knowledge considerably helps the
process of tuning of the adaptive application, resulting in
the performance gain presented in Section 6.



As future work, we intend to explore other application sce-
narios and also investigate knowledge evolution at runtime.
We believe that by dynamically changing the membership
values, we can achieve more accurate situation dependent
adaptations. For instance, the membership function defin-
ing what is high and low battery consumption may change
at runtime depending on the current battery level. When a
device is running out of battery, it is reasonable to adjust the
high membership set to involve a bigger area of the battery
consumption space, and the low set a smaller area, because
now low consumption is critical.

9. ACKNOWLEDGEMENTS

We would like to thank Amirhosein Taherkordi for useful
comments about the presented work.

10. REFERENCES

[1] L. Baresi and L. Pasquale. Adaptation goals for
adaptive service-oriented architectures. In Relating
Software Requirements and Architectures. Springer
Berlin Heidelberg, 2011.

[2] C. Bouras, A. Gkamas, and G. Kioumourtzis.
Extending the functionality of rtp/rtep
implementation in network simulator (ns-2) to support
tcp friendly congestion control. In 1st International
Conference on Simulation Tools and Techniques for
Communications, Networks and Systems. ICST, 2008.

[3] P. Bridges, M. Hiltunen, and R. Schlichting. Cholla: A
framework for composing and coordinating
adaptations in networked systems. Computers, IEEE
Transactions on, 58(11), 2009.

[4] T. Buchholz, A. Kiipper, and M. Schiffers. Quality of
context: What it is and why we need it. In
Proceedings of the workshop of the HP Open View
University Association, 2003.

[5] F. Chauvel, O. Barais, I. Borne, and J. Jezequel.
Composition of qualitative adaptation policies. In 23rd
IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 2008.

[6] B. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A
goal-based modeling approach to develop requirements
of an adaptive system with environmental uncertainty.
Model Driven Engineering Languages and Systems,
pages 468-483, 2009.

[7] M. Handley, S. Floyd, J. Padhye, and J. Widmer. Tcp
friendly rate control (tfrc): Protocol specification.
RFC 3448, 2003.

[8] J. Kephart and D. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41 — 50, Jan. 2003.

[9] W. Leekwijck and E. Kerre. Defuzzification: criteria
and classification. Fuzzy sets and systems,
108(2):159-178, 1999.

[10] B. Li and K. Nahrstedt. A control-based middleware
framework for quality-of-service adaptations. Selected
Areas in Communications, IEEE Journal on,
17(9):1632-1650, 1999.

[11] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith,
M. Paolucci, K. Sycara, D. Mcguinness, E. Sirin, and

N. Srinivasan. Bringing semantics to web services with
owl-s. World Wide Web, 10(3):243-277, 2007.

[12] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and
P. Halvorsen. Flicker effects in adaptive video
streaming to handheld devices. In 19th ACM
international conference on Multimedia. ACM, 2011.

[13] L. Provensi and F. Eliassen. Towards a flexible and
evolvable framework for self-adaptation. Electronic
Communications of the EASST, 43(0), 2011.

[14] R. Rejaie, M. Handley, and D. Estrin. Layered quality
adaptation for internet video streaming. IEEE Journal
on Selected Areas in Communications, 2000.

[15] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen,

S. Hallsteinsen, J. Lorenzo, A. Mamelli, and U. Scholz.
Music: Middleware support for self-adaptation in
ubiquitous and service-oriented environments. In
Software engineering for self-adaptive systems, pages
164-182. Springer, 2009.

[16] R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, and
E. Stav. Composing components and services using a
planning-based adaptation middleware. In Software
Composition, pages 52—67. Springer, 2008.

[17] H. Schulzrinne, A. Rao, and R. Lanphier. Real time
streaming protocol (rtsp). Internet Engineering Task
Force, RFC 2326, 1998.

[18] G. Toma, L. Schumacher, and C. De Vleeschouwer.
Offering streaming rate adaptation to common media
players. In Multimedia and Ezpo (ICME), 2011 IEEE
International Conference on, pages 1-7. IEEE, 2011.

[19] Y. Wang. Survey of objective video quality
measurements. EMC Corporation Hopkinton, MA,
1748, 2006.

[20] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and
J. Bruel. Relax: Incorporating uncertainty into the
specification of self-adaptive systems. In 17th IEEE
International Requirements Engineering Conference.
IEEE, 2009.

[21] T. Wiegand, G. Sullivan, G. Bjontegaard, and
A. Luthra. Overview of the h. 264/avc video coding
standard. Clircuits and Systems for Video Technology,
IEEFE Transactions on, 13(7):560-576, 2003.

[22] Z. Yu, N. Lin, Y. Nakamura, S. Kajita, and K. Mase.
Fuzzy recommendation towards qos-aware pervasive
learning. In International Conference on Advanced
Information Networking and Applications, pages
604-610. IEEE, 2007.

[23] L. Zadeh. Fuzzy sets*. Information and control,
8(3):338-353, 1965.

[24] T. Zimmer et al. Qoc: Quality of context-improving
the performance of context-aware applications.
Advances in Pervasive Computing, 2006.



