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Summary. A major goal of evolutionary biology is to understand the dynamics of natural selection within populations.
The strength and direction of selection can be described by regressing relative fitness measurements on organismal traits
of ecological significance. However, many important evolutionary characteristics of organisms are complex, and have corre-
spondingly complex relationships to fitness. Secondary sexual characteristics such as mating displays are prime examples of
complex traits with important consequences for reproductive success. Typically, researchers atomize sexual traits such as
mating signals into a set of measurements including pitch and duration, in order to include them in a statistical analysis.
However, these researcher-defined measurements are unlikely to capture all of the relevant phenotypic variation, especially
when the sources of selection are incompletely known. In order to accommodate this complexity we propose a Bayesian
dimension-reduced spectrogram generalized linear model that directly incorporates representations of the entire phenotype
(one-dimensional acoustic signal) into the model as a predictor while accounting for multiple sources of uncertainty. The first
stage of dimension reduction is achieved by treating the spectrogram as an “image” and finding its corresponding empirical
orthogonal functions. Subsequently, further dimension reduction is accomplished through model selection using stochastic
search variable selection. Thus, the model we develop characterizes key aspects of the acoustic signal that influence sexual
selection while alleviating the need to extract higher-level signal traits a priori. This facet of our approach is fundamental and
has the potential to provide additional biological insight, as is illustrated in our analysis.

Key words: Acoustic; Bayesian model averaging; Classification; Empirical orthogonal functions; Functional data; Mating
calls; Nonstationary; Stochastic search variable selection.

1. Introduction
A major task of evolutionary biology is to describe patterns
of phenotypic variation and understand their evolutionary im-
plications (Björklund, 2003). In particular, studies of pheno-
typic selection—how fitness covaries with variation in traits
and trait combinations—estimate the strength and direction
of selection acting in natural populations (Kingsolver et al.,
2001). One challenge in characterizing selection is that many
phenotypes of evolutionary interest are complex, consisting
of multiple subordinate traits (Swallow and Garland, 2005).
Current approaches to studying the fitness consequences of
complex traits begin by atomizing the phenotype into a set of
measurements chosen by the researcher. The choice of mea-
surements is often to some extent arbitrary, particularly when
the sources of selection are unknown. Furthermore, it may be
difficult to determine when enough measurements have been
made to capture all of the relevant trait variation (Michelle-
Olds and Shaw, 1987). Because our ability to correctly infer
the nature of phenotypic selection is contingent on adequate
trait descriptions at this first stage of analysis, the characteri-
zation of complex phenotypes is an important problem within
evolutionary biology.

The issues arising from phenotypic complexity are par-
ticularly acute in studies of sexual selection, which favors

elaborate displays and other phenotypes used in mate acqui-
sition (Andersson, 1994). It is increasingly clear that sexual
selection on males is a multivariate process, influenced by
multiple traits in combination (Gerhardt and Huber, 2002;
Brooks et al., 2005; Bentsen et al., 2006). However, it is diffi-
cult to fully characterize the variation in traits such as acous-
tic signals; for example, one study of sexual selection in frogs
used 15 variables to describe a one-half-second mating call,
and even then the authors acknowledged that some aspects
of the call were omitted (Ryan and Rand, 2003). Other stud-
ies narrow the focus to a small subset of signal traits thought
to be important (e.g., Rodŕıguez, Ramaswamy, and Cocroft,
2006) or rely on qualitative descriptions such as the number
of different signal elements in a repertoire (Searcy, 1992).

These studies exemplify a major obstacle in relating varia-
tion in complex phenotypes to outcomes such as female choice,
survival, or other measures of fitness. That is, some of the phe-
notypic variation is discarded by the investigator prior to the
analysis. This filtering increases the likelihood that important
traits are omitted from the analysis, which complicates the in-
terpretation of measures of selection (Lande and Arnold, 1983;
Michelle-Olds and Shaw, 1987) and may be especially prob-
lematic in the case of multivariate sexual selection (Bentsen
et al., 2006).
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The type of model we propose, regression of scalar response
(e.g., mating success) on signal predictors, can be thought of
as signal regression (see Reiss and Ogden, 2007, and the ref-
erences therein) and is often referred to as a functional data
analysis (Ramsey and Silverman, 2005). Specifically, we de-
velop a functional generalized linear model (GLM; Ramsey
and Silverman, 2005) that is novel in several respects. First,
our model induces a dimension-reduced representation of the
spectrogram that is especially useful for characterizing non-
stationary bioacoustic signals (mating calls). In addition, the
spectrogram provides a highly interpretable time-frequency
representation of the nonstationary signal (see Gröchenig,
2001, and references therein) that can be viewed as an image
with its x-axis corresponding to time and y-axis corresponding
to frequency. However, such a representation is high dimen-
sional and difficult to incorporate into a complex statistical
model. To reduce the dimension, we treat each spectrogram
as an “image” and decompose the image using a Karhunen-
Loève representation (Wikle and Cressie, 1999; Ramsey and
Silverman, 2005).

In general, the empirical version of the Karhunen-Loève
decomposition, often referred to as empirical orthogonal
functions (EOFs) in spatial statistics, can be considered a
form of functional principal component regression (FPCR;
Ramsey and Silverman, 2005; Reiss and Ogden, 2007). How-
ever, rather than merely choosing the k-components in the
customary manner, the components with the largest variance,
we choose our components via a two-stage procedure. First,
we achieve a substantial dimension reduction by considering a
low-rank EOF representation. Then, given this representation
the final model is selected through stochastic search variable
selection (SSVS; George and McCulloch, 1993). In this sense,
our variable selection approach is more similar, in principal,
to functional partial least squares (FPLS), where the strategy
is to choose components that are most relevant to predict-
ing the outcome (see Reiss and Ogden, 2007, and references
therein).

In an example related to our work, Wang, Ray, and Mallick
(2007) develop a unified hierarchical model that encompasses
wavelet-based function estimation and a logistic classification
model. However, our approach differs from Wang et al. (2007)
in several respects. First, prior to implementing our variable
selection procedure, we apply a dimension reduction step in
which we project the time-frequency decomposition onto a
dimension-reduced set of EOFs (Wikle and Cressie, 1999;
Banerjee, Carlin, and Gelfand, 2004, p. 257). Additionally,
we include biologically relevant covariates and allow them to
interact with the signal predictor (mating call) during the fi-
nal variable selection stage. More importantly, the results of
our approach provide an easily interpretable image that bi-
ologists can use to determine which aspects of the signal are
important. Furthermore, the models we propose for classifi-
cation take advantage of Bayesian model averaging (Hoeting
et al., 1999). As a result, we reduce the underestimation of
uncertainty at the model-selection stage as well as achieve
better classification. Finally, when conducting classification,
we present a distribution of probabilities of group mem-
bership, which provides a measure of uncertainty associ-
ated with group membership assignment. Of course, this
aspect is a natural consequence of the Bayesian approach

(Gelman et al., 2003); nonetheless, in the case of border-
line group assignments, this aspect proves to be especially
informative.

Our approach represents the first attempt at using
dimension-reduced bioacoustic predictors for measuring sex-
ual selection. While it is becoming more common to consider
spectrogram representations for bioacoustic signals (see, for
example, Valente et al., 2007, and the references therein),
usually this is done on a subject-by-subject basis and the
inclusion of spectrogram representations in a more general
modeling framework is still lacking. Thus, our motivating ap-
plication demonstrates a unique approach to animal com-
munication modeling through the development of Bayesian
hierarchical models with dimension-reduced spectrogram
predictors.

The remainder of this article is organized as follows. Sec-
tion 2 describes the motivating data—modeling mating suc-
cess in an insect that uses acoustic signals to attract mates.
Section 3 describes our statistical modeling approach for
this problem including dimension-reduced spectrograms. Sec-
tion 4 discusses specific modeling considerations and imple-
mentation details. The details of an extensive simulation are
presented in Section 5. Section 6 provides results from an
analysis of our motivating data using a time-frequency spec-
trogram GLM that classifies and characterizes insect mating
success as a function of vibrational signaling and other rele-
vant fitness covariates. A concluding discussion is provided in
Section 7. Finally, supplementary material is included in the
Web Appendix.

2. Phenotypic Selection Application
Measuring sexual selection on signals requires a study or-
ganism for which we can easily obtain both mating signals
and a measure of reproductive success for a large number
of individuals. The empirical system of signal evolution we
analyze meets both of these criteria. The study animals are
small plant-feeding insects known as treehoppers (Hemiptera:
Membracidae). Males compete for mates using plant-borne
vibrational signals (Sattman and Cocroft, 2003; Rodŕıquez,
Sullivan, and Cocroft, 2004; Cocroft and McNett, 2006), a
widespread communication modality in insects (Cocroft and
Rodŕıguez, 2005). Females choose males on the basis of vari-
ation in their vibrational signals, and comparative evidence
suggests that female mate choice is an important agent of
signal evolution (Rodŕıguez et al., 2006). Furthermore, diver-
gence in mating signals is important in speciation in the clade
containing the study species, so understanding the nature of
selection on signals is important for understanding the pro-
cess of diversification in this group (Cocroft, Rodŕıguez, and
Hunt, 2008).

The approach we propose is well suited for investigating
selection in the species being studied (Enchenopa binotata
Ptelea). The overall strategy is to consider recorded vibra-
tional signals of males as predictors of mating success as mea-
sured in outdoor experimental populations; a typical signal is
displayed in Figure 1. There are several aspects of the in-
sect’s biology that are important for our analysis. First, there
is significant repeatability of signal traits over the duration
of the mating season (Sattman and Cocroft, 2003). Second,
adults live for only one breeding season and females mate
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Figure 1. Representative mating signal, with three components indicated in the waveform (top): a frequency-modulated
sinusoidal component (whine), a brief series of broadband clicks near the start of the whine (clicks), and a series of pulses at
the end (pulses). Associated spectrogram (bottom); note that the lighter the image, the more power is associated with that
portion of the time-frequency domain.

only once, so the number of matings a male obtains during
the breeding season is a reliable index of his lifetime repro-
ductive success (Wood, 1993). In addition, individuals will
readily colonize host plants in outdoor enclosures, allowing
documentation of the mating history of marked individuals
under conditions that closely mimic those of natural popu-
lations. This experimental design removes the confounding
effect of correlations among environmental and phenotypic
variation (Michelle-Olds and Shaw, 1987).

Our data come from a two-year experiment (though in our
analysis we only consider 1 year) in which male E. binotata
Ptelea had their signals recorded and mass measured prior to
introducing them into outdoor cages one week preceding the
start of mating. The sex ratio in the cages was 1:1, matching
that of the source population (Sullivan-Beckers, 2008). Typi-
cally, only 5–10% of the females mated per day, and thus, over
time there was an opportunity for individual males to attract
and mate with multiple females.

Specifically, N = 160 males and females were marked and
established in 10 outdoor enclosures, each simulating a natu-
ral population. Over the course of the experiment, individual
mating behavior was recorded in 90-minute intervals during

daylight hours (see Sullivan-Beckers, 2008, for a comprehen-
sive discussion). Previous analysis of selection on these data,
using standard GLM methodology (McCullagh and Nelder,
1989) on researcher-chosen measurements of male signals,
identified several signal traits as targets of selection (Sullivan-
Beckers, 2008).

Although the standard measurement approach used by
Sullivan-Beckers (2008) has yielded insights into sexual se-
lection on mating signals in Enchenopa treehoppers, these
measurements are unlikely to capture all of the signal vari-
ation relevant to female choice. In fact, additional impor-
tant variation is suggested by the examination of female
responses to playback: although computer-generated signals
based on the population average for five signal measure-
ments reliably invoke responses, natural, recorded signals
evoke more responses (R. Rodŕıguez and R. Cocroft, un-
published manuscript). Accordingly our approach incorpo-
rates the dimension-reduced time-frequency representation
(discussed in Section 3) of the signal that frees the practi-
tioner from choosing measurements a priori; thus we can po-
tentially gain deeper insights into the nature of selection on
the signal phenotype.
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3. Statistical Modeling
3.1 Functional Signal Representation
Time-frequency analysis is an important component of signal
analysis. In many cases, the global Fourier transform is of
little interest when analyzing the spectrum of a long time
series. In particular, nonstationary signals, such as bioacoustic
signals, require a notion of frequency analysis that is local in
time.

Our method takes advantage of the time-frequency repre-
sentation of the signal. Specifically, we consider the spectro-
gram associated with each nonstationary signal. For example,
Figure 1 displays a representative acoustic signal (mating call)
and its corresponding spectrogram.

The spectrogram relies on a local time-frequency represen-
tation known as the short-time Fourier transform (STFT)
and provides information about local properties of a signal
f (where, in this case, f denotes the acoustic signal). Specifi-
cally, in order to produce a “local frequency spectrum,” f is
restricted to an interval and the Fourier transform is com-
puted. However, the functions resulting from this segmenta-
tion are not periodic. Consequently, the Fourier transform will
interpret these boundary jumps as discontinuities or as sharp
variations in the signal, leading to large Fourier coefficients
at high frequencies. These undesirable artifacts can be allevi-
ated by introducing the concept of windowing. Rather than
localizing the signal f by a rectangular function (the case of
no smoothing), the signal f is localized using a smooth cutoff
function as a “window,” which approaches one near the ori-
gin and decays toward zero at the boundaries. Several pop-
ular windows have been proposed for this purpose including
the Hamming, Hanning, Bartlett, and Kaiser windows. See
Feichtinger and Strohmer (1997) for further discussion. The
window used in our analysis, the Hamming window, has the
following form:

wn =

{
0.54 − 0.46 cos(2πn/M ); 0 � n < M,

0; otherwise,

where M is the length of the impulse–response function.
The particular forms for the other windows mentioned and
a comprehensive discussion of their usage can be found in
Oppenheim, Schafer, and Buck (1999).

Let g �= 0 denote a fixed window function. Then, for time x
and frequencies ω such that x, ω ∈ R

d , the STFT of a function
f with respect to g is defined by

Vg f (x, ω) =
∫

Rd

f (t)g(t − x)e−2π i ·ω dt, (1)

where i =
√
−1 and g(−x) = g∗(x) denote complex conjuga-

tion (cf. Definition 3.1.1, p. 37, Gröchenig, 2001). Note that
in this context, (1) can be thought of as the Fourier transform
of a segment of f centered at time x evaluated at frequency ω
(assuming g is compactly supported). Further, let g ∈ L2(Rd )
denote a window function such that ||g||2 = 1. Then, the spec-
trogram of f with respect to g is defined by SPECgf (x, ω) =
|V gf (x, ω)|2 (cf. Definition 4.1.1, p. 60, Gröchenig, 2001).

In our biological problem of interest (see Section 2), the
time-frequency representation of the signal is extremely high
dimensional. For example, the spectrogram representation
shown in Figure 1 consists of 87 time points by 129 fre-

quencies and thus produces 11,223 possible time-frequency
covariates. Although it is possible to reduce the dimension by
downsampling the signal in time and/or by considering fewer
frequencies, such techniques might potentially eliminate crit-
ical signal components. However, the time-frequency “pixels”
are not independent, as they result from covariance present in
the original signal and from a smoothing procedure that uses
overlapping windows. In fact, the spectrogram presents coher-
ent “patterns” that should be accounted for. These patterns
are analogous to what ones sees in spatial images.

To address the dependence in the spectrogram, we treat
each spectrogram as an “image” and decompose it as
a Karhunen-Loève representation (Ramsey and Silverman,
2005). In practice, we vectorize the spectrogram image and
find its EOFs as is common in spatial statistics (Wikle and
Cressie, 1999). Let ws, i denote the vectorized spectrogram.
Then,

ws ,i = Ψ̃x̃s ,i =
N∑

j=1

ψj xs,ij , (2)

where Ψ̃ = [ψ1, ψ2, . . . , ψN ] are the EOFs (eigenvectors from
the empirical covariance matrix of the vectorized spectro-
grams), and x̃s ,i = [xs,i1, xs,i2, . . . , xs,iN ]′ are the correspond-
ing spectral coefficients (i.e., principal components) given by
x̃s ,i = Ψ̃

′
ws ,i . Although in our application we make use of

EOFs, other basis functions could be used in (2) as the criti-
cal aspect here is “lossless” dimension reduction.

It is important to note that although the EOFs can be
viewed as spatial images analogous to spectrograms, in gen-
eral, these images lack the interpretability associated with the
original spectrogram. As with principal components, the lack
of interpretability arises from imposing orthogonality con-
straints in the eigenvector decomposition (e.g., Mardia, Kent,
and Bibby, 1979). The only EOF that does not suffer from
this lack of interpretability is the first EOF. Even though it
is often illuminating to examine the first EOF, our approach
primarily focuses on interpreting the reconstructed signal that
results from our modeling approach. This distinction is cru-
cial as the reconstructed signal is highly interpretable and “fil-
ters” out spectral content not believed to be driving mating
success.

3.2 Dimension-reduced Spectrogram GLMs
The basis functions in expansion (2) correspond to “spatial
patterns” in the spectrogram. For example, Web Figure 6
shows two eigenvectors (EOFs) from the data set considered
here. Note that these individual EOFs can be viewed as spa-
tial “images” analogous to the spectrograms. The areas of rel-
atively large magnitude in these images correspond to those
portions of the spectrogram that load highly onto the given
eigenvector. Thus, the associated expansion coefficients con-
tain essential information that can be used as signal regressors
in a GLM. As with principal components, the EOF coefficients
are listed in a decreasing order of variance accounted for in
the spectrogram. In this regard, there is a tremendous dimen-
sion reduction in considering the first k (k � N ) EOFs. For
example, in the application considered in Section 2 we see
that the first 5 EOFs account for 51% of the variation in the
spectrogram whereas the first 50 coefficients account for 86%.
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Although the time-frequency decomposition that we have
introduced provides dimension reduction in terms of account-
ing for variation, there is no reason that the coefficients as-
sociated with EOFs that account for more variance should
be the important coefficients in terms of measuring sexual
selection on signals. Thus, we require a method of variable se-
lection capable of identifying the important EOFs in terms of
predicting mating success. We therefore propose a Bayesian
hierarchical model and employ Bayesian SSVS as presented
in George and McCulloch (1993, 1997).

In general, suppose we have a binary response variable Y i =
{0, 1} (where, in our case, 1 denotes mating success and 0 de-
notes no mating success) and covariates xi for the ith subject.
Additionally, as in Albert and Chib (1993), define a continu-
ous latent variable Z i such that if Z i is positive then Y i = 1,
otherwise Y i = 0, where Z i is related to the covariates xi by
a normal regression model. In other words, let

Yi =

{
1; if Zi > 0,

0; if Zi � 0,
(3)

where

Zi |β ∼ N (x′
iβ, 1) (4)

with xi and β both p × 1. Note, this is equivalent to a probit
model on a Bernoulli response (Albert and Chib, 1993). Al-
though we provide explicit details in terms of a GLM having
a probit link, straightforward modifications allow for the use
of other link functions.

Next, we specify a SSVS prior for the components of β.
Specifically, for j = 1, . . . , p we have

βj | γj ∼ γj N
(
0, cj τ

2
j

)
+ (1 − γj )N

(
0, τ 2

j

)
γj

iid∼ Bern(πj ),

where cj , τ j , and πj are all fixed hyperparameters and γ j = 1
indicates that the jth variable is included in the model.

To implement the SSVS sampler, several choices of hyper-
parameters must be made. Based on the guidance given by
George and McCulloch (1993), we want τ j to be small (yet
positive) so that when γ j = 0 it would be reasonable to esti-
mate β j by something close to zero. Similarly, we would like
cj to be large (and greater than 1) so that we would expect
a nonzero β j in the model when γ j = 1. Note that πj can be
viewed as the prior probability that β j should be in the model.
George and McCulloch (1997) discuss various approaches for
selecting these parameters.

In our problem xi ≡ [x′
b, i , x′

s, i ]
′ and β = (β′

b , β′
s)

′ where
the subscripts “b” and “s” correspond to biological and signal
covariates, respectively, and x′

s, i = [xs, i1, xs, i2, . . . , xs, ik ]
′ . In

this case, xs, i =Ψ
′
ws, i where ws, i is the vectorized spectro-

gram and Ψ = [Ψ1, . . . , Ψk ] are the first k EOFs (k � N )
obtained from Ŵ = Ψ̃Λ̃Ψ̃

′
. It should be noted that in our

context the spectrogram has not been estimated within the
Bayesian framework. Estimation of the spectrogram within
the Bayesian framework would make the approach fully
Bayesian but this aspect currently requires further develop-
ment and investigation.

The model, as it is proposed here, yields conjugate full con-
ditionals for all of the parameters. Therefore, estimation pro-
ceeds by a straightforward application of Gibbs sampling (see,

for example, Gelman et al., 2003). The exact forms for all of
the full conditionals can be found in Web Appendix A.

4. Model Implementation
Initially, each of the N = 137 signals was of length 37,912 af-
ter registration. Although the original experiment consisted of
N = 160 insects, males that did not live through the first day
were removed from the analysis, see Sullivan-Beckers (2008)
for a comprehensive discussion. These signals were downsam-
pled every eighth observation (creating series of length 4739)
and the spectrogram calculation was based on this downsam-
pled series. There was no appreciable difference between the
original signal and its downsampled equivalent since the mea-
surement process oversamples the signal in this application.
Specifically, the highest frequency in the signal is less than
4–5 kHz while the sampling rate was 44.1 kHz.

The spectrogram for each signal (subject) was calculated
using the spectrogram (STFT) function in the Matlab R© signal
processing toolbox. By default, this procedure uses a mov-
ing Hamming window, a popular choice in speech processing
(Oppenheim et al., 1999), chosen to be of length 64 in
our case. The resulting power spectral density is then con-
verted to decibels (dB) by taking 10 times the base-10 log
of the modulus of the power spectral density and EOFs are
calculated.

We conducted a sensitivity study on the downsampling and
window length (window lengths of 16, 32, 64, and 128 were
considered) in the spectrogram calculation and did not find
any appreciable difference with regards to parameter estima-
tion, model selection, or classification when considering no
downsampling and downsampling up to every eighth observa-
tion using different window widths. Thus, we are comfortable
that our results are robust to these specifications.

In addition to the signal covariates, we considered several
nonsignal-related biological covariates for possible inclusion
in the model. These variables were selected based on previous
analyses (Sullivan-Beckers, 2008). In particular, we included
variables related to the survival of the insect (number of days
that the male survived during the experiment) and the in-
sect’s weight (just prior to the start of the experiment). We
standardized these variables and also included a quadratic
term for each.

The modeling was split into two parts. First, the SSVS was
performed where the possible variables include the first 50
EOF coefficients as well as the four biological covariates. Note
that for sensitivity purposes we included different number of
EOF components (25, 50, 100) and found no appreciable dif-
ferences in the results. The results of an extensive sensitivity
analysis can be found in Web Appendix B.

Several choices of hyperparameters must be made to im-
plement the SSVS sampler (see Section 3). Since we are
interested in classification, we felt it would be expedient to
consider various possible values for these hyperparameters
that improved classification. Thus, we performed sensitivity
analyses, considering the factorial combinations when τ =
(.01, .1, 1, 10), c = (0.1, 1, 10, 100), π = (0.2, .5, .8) (see
Web Appendix B). Judging the classification results for the
“model-averaged” SSVS and the “best” model (see the sec-
ond part of the analysis discussed below), the parameters τ =
0.1, c = 10, π = 0.5 yield good results overall. Although these
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parameters could be tuned further, our experience is that such
tuning leads to minimal classification gains in our application.
The SSVS sampler results are based on 10,000 iterations with
a 1000 iteration burn-in.

In the first part of the analysis, we kept track of the classifi-
cation rate on the holdout sample based on mean probability
(pi ) over all iterations of the SSVS Markov chain Monte Carlo
(MCMC) run. The classification threshold was simply set to
1 (success) if this probability was greater than or equal to 0.5,
and was set to 0 (not success) if this probability was less than
0.5. This classification represents a “model averaging” over all
possible covariates, and accounts for their relative importance
through the stochastic search procedure.

The second part of the analysis was a classification based
on the variables selected in the SSVS. That is, we took the
top np variables based on the posterior mean of γ i (the prob-
ability of a variable being in the model). Although this does
not guarantee that the chosen variables are necessarily “op-
timal,” it does provide a good basis for the selection of vari-
ables for the model. For sensitivity evaluation, the number
np of selected variables was chosen to be 7 and 17. These
variables were then used in a Bayesian hierarchical probit
regression and the classification results and posterior distri-
butions of the β parameters were evaluated. Note, this hi-
erarchical probit regression was formulated as above, with
the exception that the priors were specified to be β i ∼ N (0,
σ2

i ), and σ2
i

iid∼ IG(mean = 2, var = 100). Again, the classifi-
cation threshold was set to 1 if the classification probability
was greater than or equal to 0.5 and set to 0 otherwise. The
Gibbs sampler for this portion of the analysis was based on
5000 iterations and a 1000 iteration burn-in.

Both parts of the analysis considered classification in terms
of cross-validation of a holdout sample. In particular, we held
out three subjects (chosen with uniform probability) and
repeated the analyses (MCMC runs for the SSVS and the
Bayesian probit model) 500 times.

5. Synthetic Signal Simulation Study
To illustrate the effectiveness of our approach, we conducted
a simulation study by creating a large sample of synthetic
signals whose traits have a defined relationship to fitness.
The synthetic signals were similar to those of the Enchenopa
treehoppers studied by Sullivan-Beckers (2008), except that
the synthetic signals consisted only of a frequency-modulated
whine, without the initial or terminal pulses present in natu-
ral insect signals. The amplitude envelope of all signals con-
sisted of a gradual rise in amplitude, reaching a peak at t =
80% of the total signal duration, followed by a gradual fall
(Figure 2 (top)). Signals varied in beginning frequency, end-
ing frequency, and duration. The mean and standard devi-
ation were defined for both winners and losers (fitness = 1
vs. 0, respectively), and then a sample of winning and los-
ing signals were generated using a custom-written program
in Matlab R©. These signals were then analyzed in the same
manner as the natural insect signals (see Section 4 above;
note that aside from a fitness value of 0 or 1, there were no
biological covariates for the simulated signals).

We simulated two scenarios. In the first, individuals with
higher fitness had signals that were shorter and lower-pitched

than those with lower fitness. In the second, individuals with
high and low fitness had the same mean values, but individu-
als with values closer to the mean had higher fitness (this sim-
ulated the action of female preferences for trait values close to
the population mean, resulting in stabilizing selection). The
first scenario was chosen to illustrate a hypothetical relation-
ship between signal variation and fitness, while the second was
chosen because stabilizing selection on signal frequency is ex-
pected based on female preferences for male signal frequency
(Rodŕıguez et al., 2006).

In the first scenario, we obtained a perfect classification for
both the “model-averaged” approach and for the “best” five-
variable model. Similarly, in the second scenario, we achieved
a near-perfect classification for the “model-averaged” ap-
proach: 00 = 99% (the case of correctly classifying 0—no
success) and 11 = 100% (the case of correctly classifying
1—success). However, for the “best” five-variable model we
obtained: 00 = 72% and 11 = 91%. In both cases, the dif-
ferences between more-fit and less-fit individuals were clearly
recovered by the analysis, and in particular by the difference
spectrogram (the mean spectrogram for the winners minus
the mean spectrogram for the losers). A precise definition for
how this quantity is calculated can be found in Web Appendix
C. In the first simulation, the difference spectrogram shows a
region of high values indicating a shorter, lower-pitched sig-
nal, with a nearby region of low values indicating a longer,
higher-pitched signal. In other words, the relationship be-
tween fitness and phenotypic variation in the simulated data
set (short, low-pitched signals are preferred) was revealed in
the difference spectrogram in a straightforward, easily inter-
pretable way (Web Appendix Figure 2).

In the second simulation, the difference spectrogram shows
a region of high values indicating an average-frequency sig-
nal, with surrounding regions of low values indicating signals
with frequencies above or below the mean (Figure 2; see Web
Figure 5 for a color version). This analysis thus clearly re-
covered the signature of stabilizing selection present in the
simulated data set. An extensive summary of the simulation
results along with all associated (color) spectrograms can be
found in Web Appendix C.

6. Enchenopa Treehopper Results
Table 1 shows the top 10 variables chosen as most important
(based on the posterior probability of inclusion in the model,
i.e., γ i ) for the 7- and 17-variable SSVS. In addition, the per-
centage of cross-validation model runs for which these vari-
ables were chosen is listed. First, we note that of the biological
covariates, survival (and its quadratic) is always selected, but
the weight variables are not favored. In addition, EOF 2, 13,
18, 8, 21, and 48 are in the top 10 most selected variables
for both the 7- and 17-variable models. It is interesting to
note that EOF 49 appears in the 7-variable model 62% of
the time while in the 17-variable model it appears 79.6% of
the time. However, since the 10th most selected variable in
the 17-variable model occurs 98.2% of the time this variable
does not make the list of the top 10 variables.

In the case of the signal variables, it is interesting to exam-
ine the average spectrogram based on just the most highly
selected EOFs. Specifically, we consider the difference in the
average-reduced spectrograms for those subjects who had
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Figure 2. Representative simulated mating signal (top), and image (bottom) representing the mean reduced spectrogram
of the “winners” (= mated/high fitness), minus that for the “losers” (= unmated/low fitness) in the simulated data set. In
this simulation, signals of winners had frequencies close to the mean, while those of losers had frequencies farther from the
mean, with other variables held constant. This pattern of stabilizing selection is indicated by the band of high values (lighter
tones) representing the average winner signal, surrounded above and below by bands of low values (darker tones) representing
loser signals.

Table 1
Top 10 selected variables from the stochastic search variable
selection cross-validation. The top 7 and 17 variables were

chosen based on the posterior probability of the variable being
in the model for each of the 500 cross-validation runs. The
percentages shown are the percentages of those 500 runs in

which this variable had one of the highest 7 and 17 posterior
probabilities, respectively.

7 Variables 17 Variables

Variable % of models Variable % of models

surv 100 surv 100
surv2 100 surv2 100
eof 2 100 eof 2 100
eof 13 100 eof 13 100
eof 18 100 eof 18 100
eof 8 87 eof 35 100
eof 49 62 eof 48 100
eof 21 39 eof 8 99.8
eof 48 3 eof 21 99.8
eof 5 2 eof 30 98.2

mating success versus those that did not using EOFs 2, 13,
18, 8, and 49 (the top 5 EOFs from the 7-variable model selec-
tion). Figure 3 shows this difference along with its standard
deviation. These were calculated as follows: at each iteration
of the Gibbs sampler, the most important five variables were
noted; the associated reduced dimensional spectrograms were
calculated; the 0-case reduced spectrograms were averaged
and the 1-case reduced spectrograms were averaged; the dif-
ference of these averaged reduced dimensional spectrograms
(1 case − 0 case) was then computed. Finally, the plot shows
the average (standard deviation) (over the MCMC iterations)
of these average (standard deviation) difference reduced di-
mension spectrograms.

Several features are of note in this figure. First, winners had
more energy in the broadband clicks at the start of the signal,
as indicated by the region of relatively high intensity in the
difference spectrogram in the region highlighted in box (a);
this aspect of the signal has been ignored in previous studies
but the current analysis strongly suggests that it is important
for mating success. Second, if we examine the whine compo-
nent of the signal, highlighted in box (b), winners had values
closer to the mean, while losers had values farther from the
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Figure 3. The top image represents the difference between the mean reduced spectrogram of the signals of the winners
(mated males) and that for the losers (unmated males), based on the data of Sullivan-Beckers (2008). Boxes highlight three
regions of the signal showing important differences between winners and losers, including (a) the energy present in the
broadband clicks near the start of the signal (higher in signals of winners), (b) the frequency of the whine portion of the
signal (closer to the average in signals of winners), and (c) the pulses at the end of the signal (more pulses in signals of
winners). The bottom image represents the standard deviation of the difference spectrogram in the top panel. The relatively
low values corresponding to regions (a) and (b) in the top panel suggest that these are reliable predictors of winner/loser
signal differences.

mean. This is qualitatively the same pattern as that shown
in Figure 2 (bottom), though less marked than in the simula-
tion, in which frequency was the only trait associated with fit-
ness. Studies based on user-defined measurements also showed
that more-fit individuals had frequencies closer to the average
(Sullivan-Beckers, 2008). Finally, winners had more energy in
the region highlighted in box (c), evidently reflecting the pres-
ence of more pulses at the end of the signal; a pattern also
reflected in the studies based on user-defined measurements
(Sullivan-Beckers, 2008). The current analysis thus illustrates
both the strengths and weakness of the use of user-defined
measurements: they can indeed identify important aspects of
the signal, but important aspects of this complex trait were
“filtered out” by the choice of measurements to include. In
general, when studying animal communication signals, our
approach provides an easily interpretable image that biol-
ogists can use to determine what aspects of the signal are
important.

Table 2 shows the cross-validation classification results for
the “model-averaged” SSVS probit model for 7 and 17 vari-
ables as well as the corresponding results from the “best”
7- and 17-variable models. These results are based on the
three holdout samples over each of the 500 cross-validation

Table 2
Classification results from the “model-averaged” stochastic
search variable selection probit regression and the “best” 7-

and 17-variable model probit regression

Classify to:

7 Variables 17 Variables

Classify from: 0 1 0 1

“model averaged” 0 74.3% 25.7% 76.8% 23.2%
1 37.1% 62.9% 35.0% 65.0%

“best model” 0 76.9% 23.1% 77.8% 22.2%
1 40.0% 60.0% 41.5% 58.5%

runs (i.e., based on 1500 classifications). Note that the 7- and
17-variable models give similar results, with the 17-variable
model performing better in the “model-averaged” classifica-
tion and the 7-variable model performing better on the “best
model” classification. We also note that it is apparently eas-
ier to classify mating failure (0) than mating success (1). For
comparison, note that the within-sample classification proba-
bilities (averaged over all cross-validation runs) are 85.6% for
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classifying from failure to failure, and 79.5% for classifying
from success to success. These results are for the 7-variable
model “model-averaged” scenario. (The other scenarios yield
similar results.)

We note that these results are based on a simple classifi-
cation rule with a cutoff at pi = 0.5. One of the strengths of
the Bayesian approach is that one gets realistic measures of
the uncertainty in the probability of group membership. For
example, consider the posterior distribution of the classifica-
tion probabilities for subject 7 and 51. Both of these subjects
were successful maters, but both were classified as unsuccess-
ful. Figure 4 shows their posterior probabilities. In this case,
there is very little ambiguity concerning the classification of
subject 7, although there is a reasonable amount of mass at
probabilities above 0.5. For the most part, there is not enough
information in the selected biological and signal covariates to
correctly classify this subject the majority of the time. How-
ever, the posterior distribution for subject 51 is clearly more
ambiguous with regards to classification. In fact, the mode
of this distribution is greater than our cutoff of 0.5 (but the
mean and median are below 0.5).

In the “user defined” approach implemented in Sullivan-
Beckers (2008) a multinomial logistic regression model was fit
to the data. The model considered used number of matings as
the response variable along with treatment, cage(treatment),
survival, weight, calls per bout, whine length, interval, pulse
rate, frequency, and the square of all variables except treat-
ment and cage(treatment) as covariates. The only signifi-
cant covariates in the model were frequency, survival, and
survival2. A direct comparison of this model with our model
is not really meaningful as the specific models and approaches
differ. Therefore, to compare our approach to the “user de-
fined” model of Sullivan-Beckers (2008) we fit a maximum-
likelihood probit regression model using survival, survival2,
and the above signal variables. The within-sample classifica-
tion rate was 84% for the 00 case and 63% for the 11 case.
Therefore, we achieve slightly better classification for the 00
case (85.6%) and substantially better classification for the 11
case (79.5%).

7. Discussion
Acoustic signals are subject to strong sexual selection for
many species. Because of their role in mate choice, diversifi-
cation in acoustic signals is important for the process of spe-
ciation (Coyne and Orr, 2004). Thus, they represent complex
phenotypes of great behavioral and evolutionary importance.
Such signals are typically nonstationary and their represen-
tation as “covariates” in GLMs has been based on a scien-
tist’s perception of important features. In order to effectively
and efficiently represent the signal in an objective manner,
we demonstrate a functional approach for characterizing the
very high-dimensional spectrogram in terms of a relatively
small number of EOFs. Further, we illustrate that variable
selection is critical for choosing the most important expan-
sion coefficients as covariates.

When treating nonstationary acoustic signals as if they
were images, the problem of registration is important. That
is, given variation in the duration of the signal or in the timing
of its components, how should the signals be aligned along the
time axis with respect to each other? Registrations that do

not reflect biological reality can potentially lead to diminished
inferential power. As in functional data analysis, one solution
to this problem is to properly register the signals according
to specific signal features or some other objectively chosen
criterion. In our analysis, we have chosen to rely on an align-
ment based on biological considerations determined by ex-
pert biologists. To validate that our final analysis was robust
to this registration we considered several registrations (sup-
plied by the expert biologists) and obtained qualitatively sim-
ilar results. The systematic registration of bioacoustic signals
within a hierarchical modeling framework remains an open
problem.

Although specific aspects of our model and inference could
be obtained using a classical approach based on maximum
likelihood estimation, appealing to the Bayesian paradigm in
this setting provides several distinct advantages. Specifically,
through an application of Bayesian model averaging we are
able to boost classification performance while providing accu-
rate measures of uncertainty of the estimated probabilities of
classification (i.e., the estimated probabilities of group mem-
bership). These measures of uncertainty are crucial when in-
ference on individual subjects is of interest. That is, we can
determine with statistical significance whether individual in-
sects are successful or unsuccessful maters.

Additionally, taking a Bayesian approach allows us to ef-
ficiently perform variable selection in the case where we are
interested in a single explanatory model. In particular, the
SSVS priors on the EOF coefficients are equally suited for an
analysis of this type. The Bayesian framework proposed here
can be easily extended to handle more complex stochastic
systems in which outcomes can be predicted from nonstation-
ary signals. Although our motivating application is concerned
with understanding evolutionary consequences of phenotypic
variation, the methods developed here provide firm founda-
tions for using bioacoustic signals in predictive animal social
behavior models.

An important facet to our approach is the differenced spec-
trogram (Figure 3). By taking the difference between the
mean spectrograms for the successful and unsuccessful maters
it is especially apparent what features in the signal are driving
mating success. These features may suggest further hypothe-
ses to explore, potentially leading to important discoveries. In
fact, as a result of our analysis, we confirmed that both the
pitch of the frequency sweep and the duration of the signal
are important for mating success. However, more importantly,
our analysis suggested that a higher-frequency region near the
beginning of the signal may also be important, an aspect of
the signal that has been ignored in previous studies.

Finally, the method employed in our analysis could also
provide the basis for a new approach to the study of animal
communication signals. The current approach is to measure
a set of signal features of unknown relevance, then exper-
imentally explore those features to discover which may be
important to the communicating animals. Using the method
proposed here, it would be possible to target the important
features of the signal from the start, as determined by the an-
imals’ responses to the signals rather than human perception.
Then, if desired, the differenced spectrogram could guide an
informed choice of signal features, whose importance could
then be tested experimentally.
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Figure 4. Posterior classification probabilities for subject 7 (top) and subject 51 (bottom). Note, both of these subjects
were successful maters, but both were classified as unsuccessful. There is very little ambiguity concerning the classification of
subject 7 whereas for subject 51 there is clearly more ambiguity with regards to classification.
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8. Supplementary Materials
The Web Appendices, Figures, and Tables referenced in Sec-
tions 3, 4, and 5 are available under the Paper Informa-
tion link at the Biometrics website http://www.biometrics.

tibs.org.
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