
S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 434 – 449, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Semantic Decision Tables: Self-organizing and
Reorganizable Decision Tables

Yan Tang1, Robert Meersman1, and Jan Vanthienen2

1 Semantic Technology and Application Research Laboratory (STARLab),
Department of Computer Science,

Vrije Universiteit Brussel, Pleinlaan 2 B-1050 Brussels, Belgium
{yan.tang,robert.meersman}@vub.ac.be

2 Katholieke Universiteit Leuven, Faculty of Business and Economics
Department of Decision Sciences and Information Management

Naamsestraat 69, 3000 LEUVEN Belgium
jan.vanthienen@econ.kuleuven.be

Abstract. A Semantic Decision Table (SDT) provides a means to capture and
examine decision makers’ concepts, as well as a tool for refining their decision
knowledge and facilitating knowledge sharing in a scalable manner. One chal-
lenge SDT faces is to organize decision resources represented in a tabular for-
mat based on the user’s needs at different levels. It is important to make it self
organized and automatically reorganized when the requirements are updated.
This paper describes the ongoing research on SDT and its tool that supports the
self organizations and automatic reorganization of decision tables. We argue
that simplicity, precision, and flexibility are the key issues to respond to the pa-
per challenge. We propose a novel combination of the principles of Decision
Support and Database Modeling, together with the modern technologies in On-
tology Engineering, in the adaptive self-organization and automatic reorganiza-
tion procedures (SOAR).

1 Introduction

Sharing decision resources efficiently is mandatory for group decision making. The
problems of ambiguity, inconsistency and scalability, which occur while drawing a
decision table amongst a decision group, are tackled by Semantic Decision Table
(SDT, [20]). SDT provides a means to capture and examine decision makers’
concepts, as well as a tool for refining their decision knowledge and facilitating
knowledge sharing in a scalable manner. An SDT is the result of annotating a set of
decision tables (or any well structured decision resources) with ontologies. It contains
richer decision rules than a mere decision table, as it specifies the hidden decision
rules and meta-decision rules of a decision table. We guide a decision group to con-
struct an SDT using an efficient stepwise methodology described in [19]. Note that
the term “decision table” used in this paper is a table that contains decision rules,
which can be an incomplete rule set.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 435

In our current research projects, such as the EC Prolix project1, SDT is used as a
tool embedded in decision processes of a system in order to improve its flexibility and
effectiveness, such as in [21]. An important feasibility provided by SDT is to visual-
ize the results in the form of decision tables when the decisions are taken in every mi-
cro process. Recently, we get increasing requirements of managing the decision tables
at a high level; enabling them self organized and automatically reorganized when the
user queries are updated. We consider this kind of decision tables as an extension to
SDT. It needs to automatically check the dependencies of different knowledge blocks,
quickly adapt to dynamic inputs, and accurately generate the decision tables. These
requirements become the challenges of this paper.

A traditional decision table takes the form of a ‘flat’ reasoning structure with three
basic constituents [3]. One constituent is the condition stubs and action stubs; the sec-
ond one holds the condition entries and the action entries; the third one includes the
decision rules, each of which corresponds to a combination of the elements in the
above two constituents. The only constituent type used for reasoning is the third one,
which is physically represented as the table columns.

SDT, in general, also contains these three constituent parts. In addition, SDT pro-
vides three types of sub-elements for reasoning: 1) the one that corresponds to the de-
pendencies between the conditions (or between the actions); 2) the hidden decision
rules, constraints or operational dependencies between the conditions and the actions;
and 3) the (possible) meta-rules of a set of decision tables.

The three extra elements of SDT are the key approaches to the paper challenges. In
this paper, we propose a novel combination of the principles of Decision Support and
Database Modeling, together with the modern technologies in Ontology Engineering,
in the procedures called SOAR. SOAR is the abbreviation of the collection of the
adaptive Self-Organization and Automatic Reorganization procedures for SDT. In this
paper, we propose to use the principles of data dependencies in Database Modeling to
constrain the output of SOAR, and thus improve its precision.

In our early paper [19], we are careful to stress that SDT, as a sort of group deci-
sion support system, has a natural connection with ontology engineering. Ontologies
[6, 7], in modern computer science realm, are used to model a domain so far as a uni-
verse of discourse. An ontology, by definition, is supposed to be consistent. Seeing
the reasoning feasibility provided by modern ontology engineering, we store the deci-
sion rules at different levels, including the meta-decision rules and other constraints,
as a set of axioms in an ontology. In this paper, SOAR contains the checksum of the
ontological constraints before generating the outputs. By doing so, we can ascertain
that its outputs are consistent. We argue that simplicity, precision, and flexibility are
the key issues to respond to the algorithm.

The approach of considering SDTs as self-organizing and reorganizable decision
tables is based on the characteristics of semantics stored in SDTs. SDT is defined as a
decision table with appropriate semantics, containing the constraints at different level,
as well as a system that supports data learning. The remainder of this paper is struc-
tured as follows. In section 0, we present a grounded understanding of Semantic

1 The objective of PROLIX is to align learning with business processes in order to enable or-

ganizations to faster improve the competencies of their employees according to continuous
changes of business requirements. URL: http://www.prolixproject.org/

436 Y. Tang, R. Meersman, and J. Vanthienen

Decision Tables (SDTs, section 0) and the paper motivation (section 0). We design
the procedures in SOAR in section0. SOAR checks whether all the constraints repre-
sented by an SDT are satisfied before the outputs are generated. It also provides the
outputs at different levels. Section 0 details the main constraints used for SDT. An
SDT tool called “SDT SOAR Plug-in” that supports SOAR is demonstrated in section
0. We present our experimental analysis in section 0. We compare our work with the
existing technologies, and discuss both the advantages and disadvantages of our work
in section 0. Section 0 contains the paper conclusion and the future work.

2 Background

Based on the de-facto standard [3], there are three basic elements in a decision table:
the conditions, the actions (or decisions), and the rules that describe which actions
might be taken based on the combination of the conditions. A condition is described
by a condition stub and a condition entry. A condition stub contains a statement of a
condition. Each condition entry indicates the relationship between the various condi-
tions in the condition stub. An action (or decision) contains an action stub and an
action entry. Each action stub has a statement of what action to be taken. The action
entries specify whether (or in what order) the action is to be performed for the combi-
nation of the conditions that are actually met in the rule column.

Table 1. A simple example of a traditional decision table2, which is used to decide whether we
hire a driver or not

 1 2 3 …

Condition

Has driver’s license Yes Yes Yes …

Previous job Bus driver N/A N/A …

Language French, Dutch French English …

Action

Hire * …

Hire and train * …

Table 1 presents a part of a simple decision table with three conditions: “Driver’s li-
cense type”, “Previous job” and “Language”; and two actions: “Hire” and “Hire and
train”. The condition “Has driver’s license” has two condition entries - “Yes (the per-
son has a driver’s license)” and “No (the person doesn’t have a driver’s license)”. The
rule column with ID ‘1’ expresses a decision rule as “If one person has a driver’s li-
cense, his previous job is a bus driver and he speaks French and Dutch, then hire
him”.

2 A traditional decision table is often used as a complete set of decision rules in computer sci-

ence, e.g. decision tables as a programming tool [2]. Strictly speaking, if Table 1 only con-
tains three decision columns, it is not called a traditional decision table. Rather, it is a table
consists of three decision rules.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 437

2.1 SDT: Semantic Decision Table

The notion of Semantic Decision Table (SDT, [20]) was initially introduced to tackle
the following problems in a traditional decision table: 1) ambiguity in the information
representation of the condition stubs or action stubs, 2) conceptual duplication
amongst the conditions, 3) uncertainty in the condition entries, and 4) difficulties in
managing large tables (also known as the scalability problem). What makes an SDT
different from a traditional decision table is its semantics. Unlike traditional decision
tables, the concepts, variables and decision rules are explicitly defined.

An SDT is modeled in three-layer format: 1) the layer of the decision binary fact
types called SDT lexons, 2) the SDT commitment layer that contains the constraints
and axioms of these fact types; and 3) the layer of decision tasks or applications. The
three-layer format is designed based on the principles of Developing Ontology-
Grounded Methods and Applications approach to ontology engineering (DOGMA,
[17]), which has been the main research topic at the VUB STARLab over ten years.

An SDT lexon is a quintuple < γ , t1, r1, r2, t2>, where γ is a context identifier. γ

is assumed to point to a resource, and serves to disambiguate the terms t1, t2 into the
intended concepts. r1, r2, which are “meaningful” in this specific context γ , are the

roles referring to the relationships that the concepts share with respect to one another.
For example, a lexon <γ , driver, has, is issued to, driver’s license>3 explains a fact

that “a driver has a driver’s license”, and “a driver’s license is issued to a driver”. The
linguistic nature of a lexon represents that a fundamental DOGMA characteristic is its
grounding in the linguistic representation of knowledge. The community of decision
makers chooses (or has to agree on) a given (natural) language, e.g. English, to store
and present lexon terms and roles.

An SDT commitment corresponds to an explicit instance of an intentional interpre-
tation by a decision task. It contains a set of rules in a given syntax, and describes a
particular application view of reality, such as the use by the application of the (meta-)
lexons in the lexon base. The commitments need to be expressed in a commitment
language that can be easily interpreted. Suppose that the above lexon - <driver, has, is
issued to, driver’s license> - has the constraint as “EACH driver should have AT
LEAST ONE driver’s license”. We apply the mandatory constraint on the lexon writ-
ten as below:

P1 = [driver, has, is issued to, driver’s license]:
MAND (p1).4

(1)

The decision rules in a decision table can be equivalently mapped into a set of SDT
commitments. For example, the following commitment is the decision rule in
column 1 of Table 1.

In this use case, SDT is the result of annotating a decision table with ontologies.
The goal of using SDT is to tackle the problems, such as the ambiguity problem

3 In this paper, we do not focus on the discussion of the context identifier γ , which is omitted

in other lexons. E.g. <γ , driver, has, is issued to, driver’s license> is thus written as <driver,

has, is issued to, driver’s license>.
4 The syntax can be found at: http://www.starlab.vub.ac.be/website/SDT.commitment.example

438 Y. Tang, R. Meersman, and J. Vanthienen

(P2 = [Has driver’s license, has, is of, value],

 P3 = [Previous job, has, is of, value],

 P4 = [Language, has, is of, value],

 P5 = [action, is about, is a, Hire])

 : IMP5 (AND (P2 (value) = ‘Yes’, P3 (value) = ‘Bus
driver’, P4 (value) = ‘French, Dutch’), P5).

(2)

and the conceptual duplication problem, early discussed in this section. During the an
notation process, the decision makers need to specify all the hidden rules, such as
“EACH driver should have AT LEAST ONE driver’s license” shown above. Thus, an
SDT contains richer decision rules than a mere decision table.

There are many other interesting use cases of SDT. One of them is to embed SDT
in a process, separate decision rules from the process in order to improve the system
flexibility [21]. An important feasibility provided by SDT is to visualize the process
results in the form of decision tables when the decisions are taken in every micro
process. A detailed explanation is given in the next subsection.

2.2 A Use Case of SDT and Motivation

Suppose we have a training process in the domain of human resource management.
We want to train the employees from different companies, e.g. MIVB6. Firstly, we
collect the data of the employees from the company. The data can be personal infor-
mation or professional background, e.g. the name, the address and the driving skills.
Then, we decide which courses he should take. The decisions are drawn based on
many decision rules, which can be modeled and embedded in various approaches,
such as business process models7 (BPM, [16]).

This use case is a simplified one we encounter in the EC Prolix project. We are
motivated to use SDT because of its advantages. An SDT is a subtype of a decision
table. It has all the advantages of a decision table. E.g. a decision table is extremely
convenient and user-friendly for non-technical people. It can be easily imported to
their workbench, such as Excel8. An SDT is a decision table enhanced by semantics,
which makes it better than a mere decision table. As early discussed at the beginning
of section 0, SDT has many advantages over a decision table. For example, an SDT
doesn’t contain any ambiguities in the decision items, as they are properly annotated
with ontologies. We refer to [19, 20, 21] for more details.

In addition, we’re motivated to use SDT because of the feasibility of building
SDTs. We build an SDT with the method in [20], which requires domain ontologies.

5 IMP is the implication operator. AND is the conjunction operator. This SDT commitment is

verbalized as: IF the value of ‘Has driver’s license’ is ‘Yes’, AND the value of ‘Previous job’
is ‘Bus driver’, AND the value of ‘Language’ is ‘French, Dutch’, THEN the action is about
(to) ‘Hire’”.

6 It is a public transport company in Belgium. http://www.mivb.be
7 Nevertheless, the decision rules are separated from the processes.
8 Excel is part of the Microsoft® Work Suit, which are widely used by many enterprises. An Excel

file contains a spreadsheet, which is used to design informal decisions. http://office.microsoft.
com/en-us/excel/

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 439

In the Prolix project, one training center, such as GENO9 in the project, is respon-
sible for training the employees from many companies. Different companies can have
different database systems and applications; therefore, the domain ontologies are con-
structed to improve the interoperability. We can use the available ontologies to build
an SDT.

Recently, we get detailed requirements as follows:

• The first (and probably the most important) requirement is to automati-
cally check the constraints, quickly adapt to dynamic inputs, and accu-
rately (re-)generate the SDT. As soon as a user adds a new constraint, the
SDTs earlier generated should be rechecked.

• The second requirement is to present SDT at different levels when
needed. A user may have a question on a specific decision in an SDT. For
example, he wants the explanation of the first column in Table 1. He sees
the formal SDT commitments bundled with the SDT. Unfortunately, he is
not familiar with the syntax of the commitments. In a worse case, he even
didn’t contribute to the SDT commitment writing in the decision group. A
simple solution is to provide the verbalization of the SDT commitments in
a natural language. For example, “EACH driver should have AT LEAST
ONE driver’s license” is the verbalization of the commitment P1 =
[driver, has, is issued to, driver’s license]: MAND (p1). The user is happy
when there are only a few sentences. He gets nervous when he sees a big
bunch of text. Therefore, we need a better solution to categorize the in-
formation. In practice, we observe that SDTs are often layered. One deci-
sion rule presented in a SDT can be propagated in another SDT. It gives
us a hint to present SDT at different levels. Whenever a user wants to
know a specific detail level, the system needs to automatically generate
another SDT at required level.

The above requirements are the paper challenge and the main motivation: SDT needs
to be self organized and automatically reorganized when the user queries are updated.
We have been working on a tool called SDT Plug-in10 for more than two years. The
plug-in implements many user scenarios of SDT, such as the SDT annotation scenario
demonstrated in [20]. In this paper, we focus on the above requirements, design a col-
lection of the adaptive self organized and automatically reorganized procedures
(SOAR), which is introduced in section 0 and implemented in section 0.

3 SOAR

SOAR is a collection of the adaptive Self-Organization and Automatic Reorganization
procedures used for SDT. Fig. 1 shows the pseudo code for three main procedures.

 9 http://www.geno-stuttgart.de/
10 It is a Java plug-in used in the DOGMA Studio Workbench, which is an ontology engineer-

ing tool developed by VUB STARLab. It collects the implementations of all the researching
efforts at the lab, e.g. the implementation of the ontology creation methodologies, domain
ontology modeling and visualization. A detailed explanation of DOGMA Studio Workbench
and the plug-ins can be found at: http://www.starlab.vub.ac.be/website/tools.

440 Y. Tang, R. Meersman, and J. Vanthienen

Boolean consistent(DT, SDTC[],
ONT[][]){
for all constraints in ONT[]{

if(DT satisfies ONT[]){
for all constraints in SDTC[]{

 DT satisfies SDTC[];
return true;

 }
 }
 }else

return false;
}

(b) Pseudo code for the SDT consis-
tency checking

Generate_1(condition stub[], action
stub[], SQL query){
 load data from database based on SQL
query;
 generate key rows in decision table DT;
 complete DT;
 load ontology constraints set ONT[];
 load SDT commitments SDTC[];
while (consistent(DT, SDTC[], ONT[][])

 is false){
user edits SDTC[];
generate_1(condition stub[], action

stub[]);
 }
 generate SDT;
}

(a) Pseudo code for generating SDT from
the database and user defined table lay-
out

Generate_2 (action, column ID){
 load relevant ontological constraints
set ONT[];
 load relevant SDT commitment set
SDTC[] ;
while (SDT of next level exists){
visualize SDT of next level;
visualize ONT[];
generate the verbalization;

 }
}

(c) Pseudo code for generating SDT of all
levels

reorganize(SDT, commitment[]){
 load ontology constraints set ONT[];
for all constraints in commitment[]{

if (database is not consistent
with new

 constraint){
 propose to delete this con-

straint;
 user deletes the constraint;
 }

 }
while(consistent(SDT, commitment[],

ONT[][])
 is false){

delete inconsistent SDT column;
 }
 generate SDT;
}

(d) Pseudo code for reorganizing an
existing SDT when new commitments are
added

Fig. 1. Pseudo code for SOAR

We explain Fig. 1 as follows:

• The procedure generate_1 () is executed to generate SDT from the data
stored in the database. First, users need to provide condition stubs (e.g.
“Name” and “Has driver’s license” in Table 2) and action stubs (e.g. “Driv-
ing course type” and “Language course type” in Table 2) for the table layout,
which are the input of the procedure. Second, users need to provide at least
one key condition stub of the table. For example, “Personnel ID” is the key
condition stub in Table 2. Other data is automatically filled in Table 2 by
looking up in the database system. This process is based on the unique key
and the foreign keys in DB models. Third, users need to provide an SQL
query to select a few records from the database. In a big company, the data-
base can be rather big; therefore, we need the select query to ensure the size
of the generated SDT under control. For example, we select our data in de-
partment X for Table 2. Fourth, when a temporary generated SDT is incon-
sistent with the ontologies, users need to edit11 the SDT commitments, which
are often predefined and stored as a set of business rules.

11 Based on the requirement in practice, users are not allowed to change the ontologies, but they

can override the ontological constraints in the SDT commitments.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 441

Table 2. A decision table that decides which training courses are suitable for an employee in
department X

Fig. 2. Two SDTs that shows a decision rule at two different levels

• The procedure reorganize () is executed when a user adds new commitments
to an existing SDT. The system first checks the consistency of the existing
database with the commitment set. It proposes to the user to delete this con-
straint when there is a conflict. For example, if the user wants to add a com-
mitment as “each user has at least one previous relevant job”. The existing
database may not satisfy his mandatory constraint (see the “Language” data
that is automatically filled in the condition entries in Table 2). The solution
proposed in this procedure is to delete12 this constraint in the commitment
set. Then, the system checks the consistency of the commitment set with the
existing ontology. Users need to edit the commitment set when the conflicts
happen.

• The procedures generate_2 () is executed when a user wants to visualize a
decision rule of all levels. First, a user provides an action/decision stub in an
existing SDT, e.g. “Driving course type” in Table 2, and a column number of
an SDT, e.g. column “1” in Table 2. Then, the system loads all the relevant
SDT commitments and ontological constraints. An SDT commitment or an

12 In practice, it costs too much if users change the database system in a company just for one

SDT. Therefore, they are required to delete the constraint in SDT commitments when the
conflicts happen.

442 Y. Tang, R. Meersman, and J. Vanthienen

ontological constraint is relevant when it contains this action. Then, the sys-
tem finds a set of condition stubs needed by this action. It generates another
SDT by filling the actual data, which are retrieved from the database system,
in the conditions. This process is repeated until no more SDT can be gener-
ated (see two SDTs in Fig. 2). The SDT on the left side explains the decision
rule with column ID “1” in Table 2 (see the case of “Tom”). It shows all the
relevant conditions for “Driving course type D”, such as “(the ability to)
Read road sign”. The SDT on the right side (Fig. 2) shows a more general
decision rule about “Driving course type”. Relevant SDT commitments are
listed. In the meanwhile, necessary verbalizations of the SDT commitments
and ontological constraints are generated. For example, the SDT commit-
ment in Fig. 2 is verbalized as: the value of “Driving skill” is the total
number of “Read road sign (skill level)”, “Basic control (skill level)” and
“Manage vehicle distance (skill level)”; if the value of “Driving skill” is less
than or equal to 12, and it is larger than 8, then the value of “Driving course
type” is “D”.

All the procedures in SOAR contain the consistency checking. We have defined 22
SDT constraint types in 6 categories. In the next subsection, we explain how to check
the consistency of a few SDT constraints, which are mostly used in SOAR.

3.1 Constraints in Semantic Decision Tables

A traditional decision table takes the form of a ‘flat’ reasoning structure represented
by three basic constituents. The first one contains the stubs of conditions and ac-
tions/decisions (e.g. “Has driver’s license” is a condition stub in Table 2. “Driving
course type” is a decision stub); the second one holds the entries of the conditions and
actions/decisions (e.g. “Yes” is a condition entry for the condition “Has driver’s li-
cense” in Table 2. “D” is a decision entry for the decision “Driving course type”); the
third one includes the decision rules, each of which corresponds to a combination of
the elements in the above two constituents. The only constituent used for reasoning is
the third one, which is physically represented as the table columns (e.g. column 1 in
Table 2).

SDT, in general, also contains these three constituent types. In addition, SDT pro-
vides three sub-element types for reasoning13:

1) The one that corresponds to the dependencies between the conditions (or
between the actions). For example, the condition of “Experience (years)”
partly depends on the condition “Previous relevant job” in Table 2.

2) The one that represents the hidden decision rules, constraints or opera-
tional dependencies between the conditions and the actions. For
example, the rule “if a person is about to be retired, then he doesn’t need
to be trained” can be specified for Table 2.

3) The (possible) meta-rules of a set of decision tables. For instance, we can
specify a meta-rule for Table 2 as “if a column doesn’t contain any deci-
sions, then the table should not contain this column14”.

13 Note that all the constraints used for reasoning are stored as SDT commitments.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 443

The three extra elements of SDT contain the main constraints in SOAR. The SDT
constraints mostly used in SOAR are the constraints of dependencies, such as subset
dependencies, and logical operators, such as implication.

As discussed in [13], dependencies in the most general sense are constrained rela-
tions in database modeling. Among all kinds of dependencies, multivalued dependen-
cies, subset dependencies, and mutual dependencies are the mostly used. Based on the
work in [8, 13], we carefully bring the database modeling principles into the ontology
engineering and decision engineering. We mainly use multivalued dependencies,
equality, subset, exclusion, mandatory, uniqueness and value constraints in [8].

The types of constraints depend on the requirements in practice. According to Hal-
pin, the total number of constraint types, in theory, is infinite [8]. Including ORM, the
various constraints among data have been extensively studied in the literature [1, 5,
8]. The specification illustrated in this section can be further translated into first-
order-logic. The translation is useful for reasoning.

With regard to SOAR, it takes the knowledge of data in the database into account.
Every record has its meaning. In other words, data has its semantics. It recalls the de-
bates on whether separate data from knowledge or not, which has been carried on for
a long time, e.g. in [14]. We argue that every data has its semantics. It is comparable
to the fact that the content in a webpage has its meaning in the context of Semantic
Web. By doing so, our approach can benefit from the modern technologies of seman-
tics and ontologies. A drawback can be the difficulties at the implementation level.

By now, we have designed the self-organizing and reorganizing procedures and
explained main constraints used in SOAR. In the next subsection, a tool that supports
SOAR will be demonstrated.

3.2 SDT SOAR: A Tool to Support Self-organizing and Reorganizable Decision
 Tables

SOAR (Fig. 1) is developed as SDT SOAR Plug-in in DOGMA Studio Workbench
1.015. The Workbench is constructed according to the plug-in architecture in Eclipse16.
There, plug-ins, being loosely coupled ontology viewing, querying or editing modules
support the different ontology engineering activities and new plug-ins continuously
emerge. MySQL Server17 is used as the database management system to store the em-
ployee information.

There are five main views in the SDT SOAR Plug-in as indicated in Fig. 3. The top
view is the SDT tabular view. The bottom view in the left corner represents a tree

14 It is not necessary to delete such columns in many cases. Otherwise, the debate on the com-

pleteness of decision table may arise. However, we put this meta-rule here, because our in-
tension is to use it as an example to demonstrate the meta-rules of a decision table.

15 DOGMA Studio is a tool suite, which contains both a Workbench and a Server, to sup-
port DOGMA ontology engineering approaches. http://www.starlab.vub.ac.be/website/
dogmastudio

16 Eclipse is an open development platform, which supports Java language (http://java.sun.com/). It
is mainly used for enterprise development, embedded device development, rich client plat-
form, application frameworks and language IDE. http://www.eclipse.org/

17 MySQL is a multithreaded, multi-user SQL database management system (DBMS). http://www.
mysql.com/

444 Y. Tang, R. Meersman, and J. Vanthienen

Fig. 3. SDT SOAR Plug-in screenshot

view of the domain ontologies, e.g. the ontology of HRM of drivers, with which the
SDT is built. The bottom view in middle is the concept definitions categorized in
glosses. The concept definition view gives the definitions when a concept in the on-
tology tree is selected (see ‘Basic_Control’ in Fig. 3).The bottom views in the right
corner are the views of formal SDT commitments and SDT commitments in pseudo
natural language. Users can add a new commitment and visualize its verbalization.
For example, the window with the title “View SDT Commitment” in Fig. 3 shows a
new rule “if the age of an employee is more than 55, then he doesn’t need to take any
courses”. SDT-SOAR will automatically check and regenerate the SDTs at different
levels, such as shown in Fig. 2, when the new rule is added.

In this section, we focus on how the procedures in SOAR are designed and imple-
mented. In the next section, we present experimental analysis of SOAR.

4 Experimental Analysis

We have conducted several experimentations to evaluate SOAR.
The experimental setup is as follows: We use Intel(R) Pentium(R) processor

1500MHZ with 2 GB memory running Microsoft Windows XP professional version
2002 with Service Pack 2. We implement SDT-SOAR using JRE 1.6.0_02. The em-
ployee information is stored in MySQL Sever of version 5.2.

Fig. 4 shows the cost in milliseconds for generating SDTs from the local database.
We increase the SDT size by adding its decision columns. In our problem settings,
every decision column in an SDT corresponds to an employee. The more employees
are selected from the local database, the bigger the resulting SDT becomes. The

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 445

Fig. 4. Cost of generating SDTs from local DB

Fig. 5. Cost of regenerating and reorganizing SDTs

generated SDTs are stored as XML files (see the table on the right hand in Fig. 4).
The minimum size of the XML file is 18.6 KB (SOAR 2008-03-05 16-16-36.xml),
which is generated in 4005 milliseconds. The maximum XML file size is 180 KB
(SOAR 2008-03-05 16-57-57.xml) generated in 29533 milliseconds. It increases line-
arly when the SDT sizes up gradually.

Fig. 5 illustrates the cost in milliseconds while regenerating and reorganizing
SDTs. Once a user introduces a new commitment, such as shown in the figure, SDT
SOAR checks the consistency in an SDT. The inconsistent decision columns are re-
moved. The cost shown in Fig. 5 has is an irregular line, which means that the cost of
regenerating and reorganizing an SDT does not depend on the size of the original
SDT.

446 Y. Tang, R. Meersman, and J. Vanthienen

5 Related Work and Discussion

In the past, decision tables mainly used for computer programming can be found in
many literatures, such as [4, 12, 18]. The application area of decision tables have been
gradually moved from computer programming to many other domains during the last
50 years. A renewed research interest of decision tables focuses on the construction of
the table itself [22]. As Vanthienen indicated, the application field of decision tables
is enlarged into knowledge engineering, especially in the contexts of verification and
validation of knowledge based systems, efficient execution of knowledge based sys-
tems, knowledge base maintenance, knowledge acquisition and knowledge discovery.

The approach of this paper is in the application area of knowledge validation and
knowledge discovery. We focus on the discussion of the self organization and auto-
matic reorganization of Semantic Decision Tables (SDTs). A similar solution is
SORCER introduced in [10]. SORCER is a learning system that induces second-order
decision tables from a given data set. Each entry (a condition entry or a decision en-
try) of a first-order decision table corresponds to a single value; while each entry of a
second-order decision table is a value set. The authors in [10] tend to enhance com-
prehensibility of a decision tables by transforming a first-order decision table into a
second-order decision table. By doing so, they can also reduce the table size without
losing the decision rules. Our approach goes further than their work. We call both a
first-order decision table and a second-order decision table as ‘traditional’ decision
tables. For example in Fig. 2, the table on the left hand is a first-order decision table
and the table on the right hand is a second-order table. The work in [10] is restricted
to the transformation of these two kinds of tables. We provide a more generic trans-
formation algorithm described in the SOAR procedures. Moreover, the work in [10]
only uses the ‘if-then-else’ deduction rules for the transformation. We use various
constraints, such as the mandatory constraint, the subset constraint and the exclusion
constraint18, for the transformation. Similar debates can be applied to the approaches
that are similar to SORCER, such as [9, 11].

Another interesting approach similar to ours is using decision tables in a decision
table based development framework of decision support system [22, 23]. Decision ta-
bles are automatically created data patterns. We share the same comprehension of that
fact that the decision logics behind a decision table are the key issues in the automatic
decision table generation. The methods in [22, 23] use various classification
techniques while generating the decision tables. For instance, classical neural net-
works, machine learning and classification tree algorithm. The generating rules of an
applied domain are keyword (or label) based. Therefore, the resulting decision tables
are not always accurate. In this paper, the semantics of SDT are from both the deci-
sion logics and the constraints in the domain ontologies. An ontology, by definition,
deals with the concepts and their relations in a domain instead of the keywords. It has
been proven that an ontology-based system can dramatically increase the accuracy of
a process result, e.g. key words searching versus ontology-based searching [15].
Therefore, we argue that SOAR procedures in this paper, which are ontology based,
can increase the accuracy of the generated decision tables.

18 Note that those constraints are not used at the level of database but at the level of the decision

table.

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 447

Comparing to all the research efforts of the related work listed above, SDT has
many basic yet important characteristics provided by modern ontology engineering.
An SDT is the result of annotating (a set of) decision table(s) with a domain ontology.
It can be stored in computers (e.g. the SDT xml files shown in Fig. 4) and is explicit,
sharable, formal and conceptual. Comparing to a traditional decision table, an SDT
contains richer decision rules. All the verification and validation rules of a decision
table are specified in the form of ontological commitments of SDTs. Based on the
constraints in the SDT commitments, SOAR ensures the precision of the resulting re-
organized SDTs.

In this paper, we use SDTs to learn rules from data and match new rules with exist-
ing data. Another simple yet important understanding of SDTs is as follows. An SDT
can also be considered as a decision table with appropriate semantics in order to de-
fine the decision logic in a modeling setting. In this case, we don’t need to involve the
database or actual case as we do in this paper.

A disadvantage of SDT might be its dependency on the availability of the domain
ontology. According to our experience, to create an ontology costs a lot of time. For
example, we used to spend six man months to create a HRM (Human Resource Man-
agement) ontology based on O*NET19 in PoCehrMOM Project20. Therefore, SDT is
feasible when one of the following conditions is satisfied: 1) there exist domain on-
tologies; 2) there exists formal knowledge documentations, which can be easily con-
verted into an ontology; 3) the domain is rather small.

6 Conclusion and Future Work

In this paper, we focus on the discussion of Semantic Decision Tables (SDTs) as self-
organizing and reorganizable decision tables. SOAR is developed as a collection of
the adaptive Self-Organization and Automatic Reorganization procedures used for
SDT. SOAR is precise, simple and flexible. While reorganizing an SDT, SOAR con-
tains the consistency checking based on the constraints in the SDT commitments. We
introduce 7 constraints and 4 logical operators mainly used in formal SDT
commitments. SOAR ensures the precision of the process of self-organization and re-
organization by always satisfying these constraints. In our current projects (e.g. the
EC Prolix project), we observe that it’s rather easy to implement SOAR because the
algorithm used in the SOAR procedures is rather simple (see the pseudo code in
Fig. 1). The reasoning logics of SDTs are often layered. For example, the SDT on the
right hand in Fig. 2 explains the SDT on the left hand in Fig. 2. The latter SDT repre-
sents part of the reasoning logics of Table 2. By using SOAR, end users can visualize
SDTs at different levels. We call it visualization flexibility.

SOAR is implemented as a tool called SDT-SOAR. We have conducted several ex-
periments to evaluate SDT-SOAR. The cost of generating an SDT from local database

19 O*NET provides a full-access, online version of the occupational network database.

http://online.onetcenter.org/
20 PoCehrMOM Project (Project omtrent Competenties en functies in e-HRM voor technologische

toepassingen op het Semantisch Web door Ontologie en Meertalige terminologie). The project is
to use ontologies to enhance human resource management. http://cvc.ehb.be/PoCeHRMOM/
Frameset.htm

448 Y. Tang, R. Meersman, and J. Vanthienen

server increases linearly when the size of the SDT grows. The cost of regenerating
and reorganizing an SDT does not depend on the size of the original SDT.

Currently, the tool SDT-SOAR only supports a few constraints, such as the value
constraint. In the future, we will implement all constraints discussed in the paper. One
of our recent ongoing researches focuses on using RuleML21 to store and interchange
the SDT commitments. Later on, we will add a new SDT-SOAR function, which
reads RuleML as the input and generates SDTs as the output.

Acknowledgments. The research is partly supported by the EC Prolix project. It is
authors’ pleasure to thank all the STARLab members for the paper discussion.

References

1. Camps Paré, R.: From Ternary Relationship to Relational Tables: A Case against. Com-
mon Beliefs, SIGMOD Record 31(20) (2002)

2. Cavouras, J.C.: On the Conversion of Programs to Decision Tables: Method and Objec-
tives. Commun. ACM 17(8), 456–462 (1974)

3. CSA, Z243.1-1970 for Decision Tables, Canadian Standards Association (1970)
4. Geesink, L.H., van Dijk, J.E.M.: The construction of decision tables in PROLOG. Ange-

wandte Informatik archive 30(7), 294–301 (1988)
5. Goelman, D., Song, I.-Y.: Entity-Relationship Modeling Re-revisited. In: Atzeni, P., Chu,

W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 43–54. Springer,
Heidelberg (2004)

6. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Shar-
ing. In: Workshop on Formal Ontology, Padva, Italy; In book Formal Ontology in Concep-
tual Analysis and Knowledge Representation. Kluwer Academic Publishers (1993)

7. Guarino, N., Poli, R.: Formal Ontology in Conceptual Analysis and Knowledge Represen-
tation. Special issue of the International Journal of Human and Computer Studies 43(5/6)
(1995)

8. Halpin, T.: Information Modeling and Relational Database: from Conceptual Analysis to
Logical Design. Morgan-Kaufmann, San Francisco (2001)

9. Han, J., Fu, Y.: Discovery of multiple-level association rules from large databases. In:
Proc. of the 21st international conference on very large databases (VLDB 1995), Zurich,
Switzerland, pp. 420–431. Morgan Kaufman, San Francisco (1995)

10. Hewett, R., Leuchner, J.H.: The Power of Second-Order Decision Tables. In: Proc. of the
Second SIAM International Conference on Data Mining, Arlington, VA, USA. SDM
2002, April 11-13, 2002. SIAM, Philadelphia (2002)

11. Kohavi, R.: The Power of Decision Tables. In: Lavrac, N., Wrobel, S. (eds.) Proceedings
of the European Conference on Machine Learning. Lecture note in Artificial Intelligence,
vol. 914, pp. 174–189. Springer, Heidelberg (1995)

12. Langenwalter, D.F.: Decision tables - an effective programming tool. In: Proc. of the first
SIGMINI symposium on Small systems, pp. 77–85. ACM, New York (1978)

21 The Rule Markup Language (RuleML) is a markup language developed to store rules in

XML. The Rule Markup Initiative has taken steps towards defining a shared Rule Markup
Language (RuleML), permitting both forward (bottom-up) and backward (top-down) rules in
for deduction, rewriting, and further inferential-transformational tasks. http://www.ruleml.
org/

 Semantic Decision Tables: Self-organizing and Reorganizable Decision Tables 449

13. Sadri, F., Ullman, J.D.: Template dependencies: a large class of dependencies in Relational
Databases and its complete approximatization. Journal of the ACM (JACM) 29(2), 363–
372 (1982)

14. Sheth, A.: Data Semantics: What, Where and How? Database Applications Semantics. In:
Proc. of the Sixth IFIP TC-2 Working Conference on Data Semantics (DS-6), Stone
Mountain, Atlanta, Georgia, USA, Chapman & Hall, Boca Raton (1996)

15. Sheth, A.P., Ramakrishnan, C.: Semantic (Web) Technology In Action: Ontology Driven
Information Systems for Search, Integration and Analysis. IEEE Data Engineering Bulle-
tin, IEEE Data Engineering 26(4), 40–48 (2003)

16. Smith, H., Fingar, P.: Business Process Management: The Third Wave, 1st edn. Meghan-
Kiffer, USA (2002)

17. Spyns, P., Meersman, R., Jarrar, M.: Data Modeling versus Ontology Engineering.
SIGMOD Record: Special Issue on Semantic Web and Data Management 31(4), 12–17
(2002)

18. Sterbenz, R.F.: Tabsol decision table preprocessor. ACM SIGPLAN Notices archive 6(8)
(September 1971); special issue on decision tables, pp. 33 – 40, B.F. Goodrich Chemical
Company, Cleveland, Ohio. ACM, New York (ISSN:0362-1340)

19. Tang, Y.: On Conducting a Decision Group to Construct Semantic Decision Tables. In:
Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part I. LNCS, vol. 4805, pp.
534–543. Springer, Heidelberg (2007)

20. Tang, Y., Meersman, R.: On constructing semantic decision tables. In: Wagner, R., Revell,
N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 34–44. Springer, Heidelberg
(2007)

21. Tang, Y., Meersman, R.: Organizing Meaning Evolution Supporting Systems Using Se-
mantic Decision Tables. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 272–284. Springer, Heidelberg (2007)

22. Vanthienen, J.: Ruling the business: about Business Rules, Decision Tables and Intelligent
Agents. In: Vandenbulcke, J., Snoeck, M. (eds.) New directions in Software Engineering,
pp. 103–120, 160. Leuven University Press, Leuven (2001)

23. Wets, G., Vanthienen, J., Mues, C., Timmermans, H.: Extracting complete and consistent
knowledge patterns from data. In: van Harmelen, F. (ed.) Proc. of Sixth International Con-
ference on Principles of Knowledge Representation and Reasoning: V&V Workshop,
Trento, Italy (1998) ISSN 1613-0073

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

