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Abstract—In this paper, we investigate the application of
network coding to all-optical networks from both the algorithmic
and infrastructural perspectives. We study the effectiveness of
using network coding for optical-layer dedicated protection of
multicast traffic which provides robustness against link failures
in the network. We present a heuristic for solving this problem
and compare it with both inefficient optimal methods and
non-network coding approaches. Our experiments show that
our heuristic provides near optimal performance while signifi-
cantly outperforming existing approaches for dedicated multicast
protection. We also propose architectures for specialized all-
optical circuits capable of performing the processing required for
network coding and show how these devices can be effectively
deployed in an all-optical multicast network.

I. INTRODUCTION

ITH new high-definition video technologies and data-

intensive applications, it appears that our increasing
need for the large amounts of bandwidth offered by WDM
optical networks will not ebb any time soon. Network coding
has begun to alter the way we think about communication
networks. The disconnect between the theory of network
coding and the implementation realities of optical networking
are only just beginning to be rectified. In this paper, we
propose infrastructure designs to bring all-optical network
coding closer to reality and investigate the application of
network coding to optical-layer multicast protection. In order
to properly motivate this study, we first give a brief overview
and background on both network coding and optical multicast.

A. Network Coding

Network coding is well-known for its potential to increase
throughput of multicast connections [1]. However, it can also
protect against the failure of network components such as
nodes or links. The concept employed in this case is called
static network coding, which we give an example of in Fig.
1. This example shows a four-node network, with two source
nodes A and B, and one destination node D. Node A transmits
a continuous stream a of bits while node B sends stream b. We
want to set up a connection which is robust against the failure
of a single link; thus, a single path from a source to the sink is
not sufficient. Therefore, both source nodes send their streams
to node C, and node C' combines bits from both streams using
XOR bhefore forwarding to node D. If link (A, D) fails, then
D may still recover a through an XOR of the (a @® b) stream
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Fig. 1. A static network code robust against a single link failure.

received from C' with stream b received from B. Similarly, D
may recover b if link (B, D) fails. Without network coding,
dedicated protection is not possible for this network.

B. Optical Multicast

With the emergence of high-bandwidth point-to-multipoint
applications like high definition Internet television, video
conferencing, and storage area networks, the need has arisen
for optical multicast networks. Thus, optical cross-connects
(OXCs), like the one in Fig. 2, supporting multicast at the
optical layer have been developed [2], [3]. The key component
supporting multicast is a 1 x F' power splitter, a passive device
which takes the input signal and copies it onto F' different
waveguides. This fan-out causes the signal power to be split
F ways requiring amplification of the output. Usually, full F’
fan-out is not needed, so only signals which are needed at the
output ports need to be amplified. A reconfigurable splitter can
be controlled to reduce the splitting which reduces the need
for amplification [4]. Other multicast switching technologies
include splitter-and-delivery switches (SaD) [5], multicast-
only SaD [6], and tap-and-continue [7].

The rest of this paper is organized as follows. In Section II,
we discuss some related work. We formulate the problem in
Section 111, and we investigate the algorithmic aspect of the
problem in Section IV. Our infrastructural designs are then
presented in Section V, and we conclude in Section VI.

Il. RELATED WORK

In this section, we first look at some network coding theory
for multicast in both the non-robust and robust cases. We then
discuss protection of optical multicast connections and review
some research applying network coding to optical networks.

A. Network Coding

Network coding was introduced in 2000 by Ahlswede et
al. whose main result says that for a network G = (V, E)
(a multigraph) with source s and sink set 7', the maximum
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Fig. 2. A multicast-capable OXC.

multicast rate achievable is A = min;er max_flow(G, s, t),
which means that if the network admits a flow of size A’
individually in different networks for the source paired with
each sink, then a multicast of rate 4’ can be achieved to all the
sinks simultaneously. This rate is not achievable in traditional
store-and-forward network models [1].

With linear network coding, each intermediate node trans-
mits linear combinations of the symbols received on incoming
channels. Li et al. showed that linear network coding is
sufficient to achieve the maximum flow rate in the single-
source problem [8]. Koetter and Médard gave an algebraic
formulation in which many of the foundational theorems result
from established theory in algebra [9].

A simple randomized network coding algorithm was pro-
posed by Ho et al. in which all coefficients in the linear
combination are selected randomly from some finite field
F. The probability that all sinks can decode the message is
(1 — |T|/|F|)¥ where v is the maximum number of edges
with flow in a solution [10]. Thus, with large enough symbol
sizes, this is a simple, practical, and efficient solution.

Jaggi et al. presented both deterministic and randomized
polynomial time algorithms for finding network codes when
they exist. For a directed, acyclic multigraph with unit capaci-
ties, the deterministic algorithm has running time O(|E|- |T| -
h-(h+1T|)) and requires that that coding operations be done
in a field of size at least |7'|. The randomized algorithm has
expected running time O(|E| - |T| - h2) but requires a field of
size at least 2|7 [11].

The multiple-source network coding problem is significantly
more difficult than the single source problem, so multiple
sessions are often supported using disjoint subgraphs of the
network. Lun et al. investigated finding a subgraph of the
available topology which is then given as input to the net-
work coding algorithm [12]. They modeled this problem as a
linear program which finds the asymptotic optimal solution in
polynomial time [12].

Fragouli and Soljanin proposed a method for identifying
equivalence classes of network topologies based on their de-
composition into subgraphs which carry the same information
in a particular network code [13]. This leads to both simplified
decentralized network coding algorithms as well as a means of

determining the size of the required finite field of the encoded
symbols, both of which are important when applying network
coding in the optical domain.

B. Robust Network Coding

Koetter and Médard formulated the network coding problem
for robustness against a given collection of link failure patterns
[9]. A link failure pattern is a subset of the edge set E,
and signifies those edges which may fail simultaneously. A
network coding solution is defined as static under a collec-
tion F of failure patterns if none of the coding coefficients
must change and all messages can still be decoded by all
sinks after a failure. They showed that for a single-source
multicast session on the network represented by multigraph
G = (V,E), there exists a static network code under F if
there exists a network coding solution for the multicast on
graph Gy = (V,E\ f) for all f € F. They also showed that
this result does not hold for an arbitrary set of connections.
For a transmission rate of » (i.e. » symbols to be decoded),
Koetter and Médard’s algorithm requires a finite field of size
at least r|T||F|. A randomized algorithm of Jaggi et al.
requires a field of size 2|T'||F| with expected running time
O(|F||E|(r*|T|+r -min{max,cy deg(v), |T||F]|})). Another
version of the algorithm computes static codes with probability
at least 1—¢ if the finite field has at least | E||T'||F|/¢ elements
[11]. Yeung et al. notes that a deterministic static network
coding algorithm which is polynomial in terms of ||| E| can
be constructed given a sufficiently large field [14].

C. Protection of Optical Multicast

To make use of optical multicasting technology, the routing
and wavelength assignment problem has been extended for
multicast [15]. Multicasting brings a new level of complexity
as multicast routing requires that a Steiner tree (i.e. a tree
spanning the source and sink set of nodes) be computed.
However, the Steiner tree problem is itself NP-Complete while
path computation is solvable in polynomial time [16].

Optical protection is the concept of pre-computing and
provisioning backup bandwidth which is used in case of a
failure. For protection of optical multicast, primary light-
trees must be protected with backup light-trees. To achieve
dedicated protection, redundant trees must be computed. In
its most simple formulation, to protect against a single-link
failure, the backup tree is link-disjoint from the primary
tree. However, structures of communication networks do not
necessarily lend themselves well to Steiner-tree packing.

Singhal and Mukherjee formulated this problem for WDM
optical multicast and presented multicast-capable OXC archi-
tectures for supporting it both all-optically and with optical-
electrical-optical (OEO) conversion. They then showed how a
primary and backup tree may be able to use the same links in
opposite directions (removing the some of the link-disjointness
requirements) which may lead to better solutions [17]. Rah-
man and Ellinas studied dedicated mulitcast protection for
optical networks and presented three heuristics for packing
two Steiner trees to achieve dedicated protection in the single-
link failure model. The best performing of their heuristics



was the Minimum Cost Collapsed Ring (MCCR) heuristic
which attempts to use the robust nature of WDM rings
by finding a two-wavelength ring containing the source and
destination nodes. This approach also exploits the ability to use
the same links in opposite directions [18]. Boworntummarat,
Leelarusmee, et al. consider dedicated protection with multiple
fibers on each physical link [19]. Singhal, Sahasrabuddhe, and
Mukherjee proposed an approach to multicast protection called
self-sharing trees in which backup bandwidth is dedicated for a
particular connection but is multiplexed against different link
failure patterns on the primary tree [20]. Singhal, Ou, and
Mukherjee then extended this idea to cross-sharing in which
two different multicast sessions share backup bandwidth [21].
This shared protection provides better bandwidth efficiency at
the cost of slower recovery times due to switch reconfiguration
time and propagation delay.

D. Network Coding in Optical Networks

Much of the research on using network coding for optical
networks relies on OEO conversion with electronic buffering
and processing at each node. The use of photonic circuits for
this purpose is only just beginning to be investigated.

Ahmed Kamal conducted the first research into applying
network coding to optical unicast protection [22], [23], [24],
[25]. He provides some sufficient conditions for which static
network coding can be provided in the multi-source unicast
case. He shows that this basic approach provides many benefits
over traditional protection schemes. Because static network
coding has the benefits of 1 + 1 protection but still allows
a single unit of backup bandwidth to be multiplexed over N
connections, this approach is called 1 + N protection.

Originally, Kamal presented 1 + N protection using the
structure of p-Cycles [22]. The OEO, buffering, and processing
time then impacts the apparent recovery time, so it should
be small compared to the detection and retransmission time
of the alternative non-coding method. Kamal later extended
this approach to handle multiple failures [23]. He also gave a
hybrid 1+ N scheme employing p-Cyles and GMPLS standard
Label Switched Paths (LSP) for protecting the on-cycle links
and a modified LSP for protecting straddling links [24]. Kamal
also presented a generalized version of the approach, which
does not use p-Cycles [25]. In this scheme, a set of primary
connections is protected by a backup tree over which all the
connections have coded their packets. If the connections do
not have a common sink, then the sinks each relay enough
decoding information over a set of collector and delivery links
in order to recover all data upon a failure. This Kamal and
Al-Kofahi extended this idea for protection of bidirectional
connections with no additional bandwidth needed over non-
network-coding shared protection schemes [26]. Al-Kofahi and
Kamal also characterized networks admitting static network
codes for multiple-sources with a common sink and applied it
to protection of wireless flows [27]. Kamal and Ramamoorthy
proposed another generalization for multiple-link failures via
implementation in an overlay layer which required fewer
resources and simpler synchronization [28].

Menendez and Gannet propose using photonic XOR devices
for network coding and show its operate with cross-session

coding of two multicast sessions with a shared sink set in a
simple network topology. In addition to link failure, they also
take into account failure of the XOR device [29].

Our previous work on applying network coding to all-optical
networks considered the coarse-grained version of Lun et al.’s
[12] subgraph problem for all-optical multicast [30]. Kim et al.
considered the coarse-grained static network coding problem
for optical networks [31]. They looked at both minimizing link
cost and coding costs in separate stages as well as a combined
evolutionary approach. Their experiments showed that in most
cases, the optimal network coding subgraph requires no coding
at all which corresponds to a similar observation made by
Li, Li, and Lau for the non-robust case that there is little
benefit to network coding when compared to optimal multicast
trees [32]. However, since computing both optimally is NP-
Complete in general, the real power of network coding comes
from its potential to improve heuristic performance.

I1l. PROBLEM FORMULATION

In this Section, we formulate both the infrastructure design
and algorithmic problems which we address in later sections.

A. All-Optical Network Coding Infrastructure Requirements

In order for network coding to be implemented in an all-
optical network, network infrastructures must be designed
which allow for network coding operations.For linear network
codes, this requires the computation of a linear combination
over the input symbols for each outgoing channel. This is
a relatively straightforward operation in electronic networks
which can buffer packets and perform the computations with
readily available ALU operations. To be realized directly on
an optical network, the signal would have to be terminated,
converted to electronics, and buffered before computation
and retransmission at each node. Since this conversion and
“stopping” of the bit stream is undesirable for optical WDM
mesh networks, infrastructure must be built which allows
the network to perform these operations seamlessly in the
optical domain. This infrastructure requires devices for various
all-optical operations. These devices must be designed for
computing scalar multiplication with a fixed (i.e. the same for
every packet in a bit stream, although it may vary for different
connections) coefficient as well as addition of variable symbols
encoded on the optical medium. We will now discuss the
enabling technologies on which such devices should be based.

1) Optical Switching Technologies: We assume that the
technology which enables multicast-capable OXCs is available
for network coding devices. Some of these devices include pas-
sive splitters [33], combiners [34], amplifiers [35], wavelength
converters [36], and small (e.g. 2 x 2, 2 x 1, 1 x 2) all-optical
switches [37].

2) All-Optical Buffers: Although we do not allow for elec-
tronic buffering of the data, some buffering may occur in the
optical domain. We do not rely on random-access technology,
but merely tunable delay of the optical signal. All-optical
buffers have been proposed for use in certain applications such
as Optical Packet Switching (OPS). These buffers are typically
built using a series of fiber delay lines onto which the optical



signal can be switched [38], but more sophisticated technology
based on slow-light effects in optical microcavity resonators
have also been investigated. This technology uses an external
light source to controllably slow down the light by altering its
dispersion characteristics [39], [40].

3) All-Optical Logic Gates: Architectures for optical com-
puting have been proposed which take advantage of the fact
that 2 x 2 switches are sufficient for realizing all possible logic
gates (assuming the existence of constants 0 and 1 as well as
fan-out which can be implemented with a passive splitter) [41].
Furthermore, researchers have investigated designs for logic
gates suitable for optical processing. Several all-optical XOR
gates have been demonstrated using semiconductor optical
amplifiers (SOAs) as interferometers. For instance, an all-
optical XOR gate operating at 40 GHz was demonstrated by
Theophilopoulos et al. in an SOA-based ultrafast nonlinear
interferometer gate [42]. Webb et al. demonstrated a 40
Gbit/s all-optical XOR with an SOA based Mach-Zehnder
interferometer which allows pulse shaping [43]. Wang et al.
also demonstrated an SOA-based Mach-Zehnder implementa-
tion, but addressed the problem of carrier lifetime limitations
imposed by the SOA [44]. Their demonstration operated at
20 and 40 Ghit/s, but they claim that it is suitable for even
over 100 Gbit/s. For an overview of how SOAs can be used
for all-optical logic gates, see [45]. For a survey of all-optical
XOR technologies, see [46].

B. Algorithmic Problems

Once network coding operations are supported at the optical
layer, it is important that we determine how these services can
be used by the coding algorithms which replace the routing
algorithms in traditional optical networks.

As discussed in Section II-A, Lun et al.’s formulation
of the network coding subgraph problem as a linear pro-
gram is asymptotically optimal in polynomial-time [12]. This
method is practical for electronic packet-based networks which
can split a message into arbitrary fractions across different
communication channels. However, with a coarse bandwidth
granularity, this method will not necessarily produce usable
solutions. In optical networks, the bandwidth granularity is
usually extremely coarse, often with a minimum subdivision
on the order of tens of Gbps. Thus, for our purposes, it is
more appropriate to model the problem as a flow problem
on a multigraph in which each edge represents the minimum
indivisible unit of supported bandwidth in the network (e.g.
the capacity of one wavelength).

Since Koetter and Médard proved that a static network code
exists for a single-source multicast under a set of link failure
patterns if and only if network codes exist after individually
removing each failure pattern [9], we have a condition for the
existence of a static network code which is robust against any
set of x simultaneous link failures. Note that each wavelength
channel is represented by an individual edge in a multigraph,
and we define a link as the set of multiple edges which share
a common pair of endpoints but not necessarily oriented in
the same direction. We assume that the failure of a link severs
all channels on all fibers between a pair of nodes. If it is

desired that we protect against specific fibers within a multi-
fiber network, the model can be adapted. Our model also
assumes that each node has identical capabilities and has the
ability to perform all needed network coding operations. We
also assume full wavelength conversion capability, and we do
not limit the splitting ratio.

Thus, for a rate » transmission, we need to guarantee that
there exists » edge disjoint paths between s and ¢ for each
t € T after the failure of « links. This is true for every cut
in the graph, which means that removing any « links from a
cut, the remaining links must have at least » edges spread over
them. However, when dealing with only single unit multicasts,
this degenerates to a simpler link-disjointness condition.

Problem 1: Minimum Cost Static Integral Coded Flow
Instance: A directed weighted multigraph G = (V, E), a
source vertex s € V, a set of sink vertices T' C V with
s ¢ T, and a positive integer .

Question: Find a minimum cost subgraph G’ = (V', F’)
of G with T U {s} C V' such that for each t € T, G’
contains x + 1 link-disjoint paths between s and .

This problem is NP-Complete and hard to approximate
within a factor of log(|T'|) for any fixed x via a reduction
from the directed Steiner tree problem [47].

IV. PROTECTED MULTICAST

Protected multicast is difficult to provide. For instance,
the MCCR heuristic proposed by Rahman and Ellinas had a
blocking probability of over 30% for even a size 3 multicast
group on NSFNET with 64 wavelengths and a load of 100
Erlang, and blocking probability tended to increase greatly
with increase in load or group size [18]. The problem is that
disjoint multicast trees do not always exist and may be difficult
to find when they do. Thus, many approaches often do not find
usable solutions, and when they do, the solutions tend to take
up a lot of resources. Since Kamal et al. has had success
with 1 + N protection for unicast [22], it is natural to ask
if network coding can provide better protection for multicast
sessions. We now present our heuristic and give results from
our simulations.

A. RCM Heuristic

Our approach generalizes strategies for solving the Steiner
tree problem. The classic shortest path heuristic (SPH) [48],
[49] for finding Steiner trees in undirected networks builds
the tree iteratively by first finding the shortest path among
all pairs of nodes in the terminal set. This path is added to
the tree. Then, the shortest distance between each remaining
terminal and the partially computed tree is found, and the path
of shortest distance is added to the tree. This continues until all
terminals have been connected to the tree. This same idea can
be applied to directed networks although it ceases to be a 2-
approximation algorithm. We can also extend the approach for
(x + 1)-link-connectivity rather than the simple connectedness
required by the Steiner tree problem.

In RCM, detailed in Algorithm 1, the subgraph is built in-
crementally starting with a Steiner 1-link-connected subgraph



which then increments to a Steiner 2-link-connected graph
and so on. When incrementing the subgraph for Steiner -link
connectivity for a particular sink node, we cannot use any of
the i—1 paths previously computed because this would destroy
the link-disjointness of the computed paths to that sink, so
these should be temporarily deleted from the graph. Any other
edge which has been allocated for another path may be used
for the current sink without adding cost to the current solution,
so these edges should temporarily be given zero cost. This can
be implemented by maintaining a list of all paths computed
from sto ¢ forall t € T ina |T| xr path matrix. Such a matrix
is initialized on line 2 and updated through each iteration of
the main loop beginning on line 3. For a given iteration, we
create a new auxiliary graph (line 11) and then remove all
edges from the sink’s entries in the path matrix (lines 12-16).
We then set the weight of all other edges in the path matrix
to 0 in lines 17-19. We compute a path from the source to
a new sink in line 20 to get the least-cost increase to the
total solution for that sink. Lines 11-20 are repeated (using
the loop beginning on line 9) with a new copy of the graph
(set on line 10) for each sink node. Lines 21-25 keep track
of the cost, path, and sink node (using variables initialized in
lines 6-8) corresponding to the lowest cost augmentation of the
subgraph among all possible sinks, a change which is made
permanent after exiting this loop on line 27. The sink node is
then removed from the sink set (for this iteration of the line
3 for-loop), and we repeat using the loop beginning on line
5 until all sinks have a new path added to the subgraph. The
algorithm terminates and returns the subgraph (line 31) when
we have reached the desired level of Steiner connectivity.

RCM has time complexity O((x + 1)|T|*(|V| + |E])). To
see this, note that each edge in the current portion of the
subgraph H, is examined exactly once between lines 12 and
19 (either for deletion or setting of zero weight in G) because
each of p, 1,pu.2,- .., Pv,i—1 are link disjoint. It is also evident
that each of lines 10, 11, 20 (using some linear-time shortest
path algorithm), and 21-25 take O(|V| + |E|). This whole
block from line 10 to 25 must be executed (x + 1)|7'|? times.
This dominates the running time, so the time complexity of
the algorithm is O((x + 1)|T)?(|[V| + |E|)). Since a static
network coding algorithm must then be applied, the overall
complexity of this approach is impacted by whichever random
or deterministic algorithm is selected.

When x = 1, if the source is 2-link-connected to each sink
and the shortest-path algorithm used in line 20 is altered to
instead find the shortest path which does not block all other
s—w paths (e.g. run Suurballe’s algorithm [50] for finding the
shortest path pair and use only the shorter of the two paths),
then this algorithm is guaranteed to find a solution.

B. Simulation

We ran simulations to experimentally evaluate the useful-
ness of our approach. We next describe the algorithms we
used for comparison, our simulation setup, the simulation
topologies, our performance metrics, and experimental results.

1) Comparison Algorithms: In order to determine how well
the network coding solution performed when compared with

Algorithm 1 RCM: Robust Coded Multicast
Input: directed multigraph G, source s, sink set T, «
simultaneous link failures to protect against
Returns: subgraph H containing « + 1 disjoint paths
between s and v foreach v € T
1: Initialize subgraph H < (V, ().
2: Create an initially empty |T'| x (x + 1) path matrix p
such that p, ; will store the it edge disjoint path from

stow.

3: forifromltox+1do

4: SetTy < T.

5. while Ty # () do

6: Initialize node vy.s; < null.

7: Initialize path pyes: < null.

8: Initialize cost cpesr < 0.

9: forv e Ty do
10: SetGyg < G
11: SetHy< H
12: for jfrom1toi—1do
13: for each edge (z,y) on p, ; do
14: delete all edges with endpoints = and y

from both Gy and Hy

15: end for

16: end for

17: for each remaining edge e € Hy do
18: Set the weight of ¢ in G, to 0.

19: end for
20: Find p, ;, the shortest s-v path in Go.
21: if cost(py,i) < chest then
22: Set cpest < COSt(py ;)
23: Set Pbest < Do,i
24: Set Vpest <= v
25: end if
26: end for
27: Set H <= H U ppest.
28: Set Ty <= Ty — Vpest-
29: end while
30: end for

31: return H

non-coding solutions, we implemented two additional non-
network coding heuristics. The first is a naive algorithm for
finding two link disjoint Steiner trees based on a directed
version of SPH. We chose an SPH-based algorithm because
our coding algorithm is also based on SPH, and this allows us
to isolate the advantage that network coding provides over the
base heuristic. We have also chosen another heuristic designed
specifically for dedicated protection of multicast which is
purported to have good results [18]. We also compare with
the optimal solution of Problem 1 computed from an integer
linear program (ILP).

a) A Naive Algorithm: We implemented a naive al-
gorithm which attempts to find two link-disjoint directed
Steiner trees. This algorithm simply computes one Steiner
tree, removes all links containing edges on that tree, and then
computes another Steiner tree. This repeats until the desired



number of link-disjoint Steiner trees have been computed.

b) MCCR Algorithm: Rahman and Ellinas [18] proposed
a series of algorithms for dedicated multicast protection. We
implemented Rahman and Ellinas> MCCR algorithm because
it was reported to have the lowest blocking probability. This
approach uses the inherent robustness of the ring structure to
construct a protected multicast. First, a ring is found, and two
paths are set up in opposite directions on different wavelengths
which each terminate at the last node before the source.

c) Static Network Coding ILP: The optimal static net-
work code for protecting a single-unit transmission against a
single link failure can be formulated as an ILP. The network
is represented by multigraph G = (V, E) with source s and
sink set 7. We let z(; ;), be a variable which takes on the
value 1 or 0 [constraint (5)] indicating whether edge (i, j)x is
in the subgraph. For each edge, we have an auxiliary variable
xti’j . for each sink ¢ € T indicating whether that edge is
al(located on a path from s to ¢. Constraint (2) forces the source
to have a net outgoing flow of 2 and the sink to have a net
incoming flow of 2. Constraint (2) forces all other nodes to
have equal incoming and outgoing flow. Thus, the variables
xfi,j)k will define a path from s to ¢ for each ¢t € T'. Constraint
(3) forces xz(; ;), to be 1 if any of the corresponding xti,.)k
are 1. Therefore, the subgraph defined by the edges for which
24, = 1 will contain 2 paths from s to ¢ for all ¢ € T.
Constraint (6) ensures link disjointness of these 2 paths. This
constraint requires that the sum of the allocated edges for a
particular sink on a particular link be at most 1. Since each
of the terms in the sum is an integer O or 1, at most one of
them will be 1. So, each sink has at most one edge allocated
to it on any given link which forces link disjointness of the
two paths. We distinguish different edges between a pair of
nodes using a subscript. That is, (4, 7)1, (¢,)2,. .-, (i,7) are
the o edges on link (i, 7). Our formulation assumes that each
of these may have a different weight (i.e. edge cost) denoted
w5, foredge (4, ), but for our purposes, all multiple edges
on the same link will have the same weight.

minimize Z W e T (i 1)
(i,J)EE
subject to
2 ifi=s
i t _ e oo
Z(i,j)kEE x(i,j)k - Z(j,i)keE ‘r(j,i)k = -2 ifi= t
0 otherwise
YieV,teT
)
T (i), = T/Ez’,j)k Vi, j)r € E,iteT 3)
1> a5, >0 Vi, j)r € EteT 4)
12235, 20 V(i € E )

> aliy, <1 Vi jeVst (i,ji€EteT (6)
()K€

(a) Pacific Bell (b) Italian

(c) Random 50 Node Network A

Fig. 3. Topologies used in the simulations.

2) Simulation Setup: We used an incremental traffic model
and assumed the existence of enough wavelengths to support
all connections. For various numbers of receiving nodes, we
generated single-unit bandwidth multicast requests by select-
ing the source and receiving nodes uniformly at random. These
requests are to be protected against a single-link failure. Our
first set of experiments compare our heuristic with both the
MCCR and naive heuristics. For these experiments, each data
point presented is the average over 1000 different multicast
sessions. We also compare the performance of our heuristic
to the optimal solution discovered by solving the above ILP.
In this set of experiments, each data point is the average over
1000 different sessions except for the random 50 node network
which we limited to 50 due to long running times.

3) Simulation Topologies: We present results on the three
topologies shown in Fig. 3: the 15-node Pacific Bell network,
the 21-node Italian network [51], and a 50-node network
randomly generated using the rectangular grid method [52].
The Pacific Bell network and the Italian network were chosen
to study performance on real-world topologies, while the
random network was selected to give a wider range of network
sizes. All links are assumed to have unit weight.
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Fig. 4. For the Pacific Bell network; (a) the algorithm blocking rate for each
of the naive heuristic, MCCR heuristic, and our RCM coding heuristic, (b) the
amount of additional bandwidth needed by the naive heuristic (resp. MCCR
heuristic) for those sessions in which both the naive and coding heuristics
(resp. MCCR and coding heuristics) found a valid solution.

4) Performance Metrics: The blocking rate is defined as
the number of requested sessions which cannot be fulfilled
over the total number of requested sessions. Since we assume
that all links have enough available bandwidth to support
all connections, a connection cannot be blocked because
some links are saturated from inefficient routing of previous
sessions. Thus, all blocking is due to the fact that the topology
does not admit a solution (a case in which the network coding
approach has an advantage) or because a solution exists and
the algorithm fails to find it. The blocking rates of the three
algorithms are shown over varying multicast group sizes in
Figs. 4(a), 5(a), and 6(a).

After comparing the blocking rates, we consider the total
amount of bandwidth used which is measured as the sum of all
individual link bandwidths. We compare each of the naive and
MCCR algorithms independently against the network coding
approach. Since a different set of sessions are blocked by each
algorithm, we only look at the subset of connections in which
both the naive algorithm and the coding heuristic (respectively
MCCR and the coding heuristic) found a solution.Each data
point in those plots [Figs. 4(b), 5(b), and 6(b)] is the percent of
additional bandwidth needed when using the traditional pro-
tected multicast approach versus the network coding approach.
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Fig. 5. For the Italian network; (a) the algorithm blocking rate for each of

the naive heuristic, MCCR heuristic, and our RCM coding heuristic, (b) the
amount of additional bandwidth needed by the naive heuristic (resp. MCCR
heuristic) for those sessions in which both the naive and coding heuristics
(resp. MCCR and coding heuristics) found a valid solution.

That is, we plot
Bnc — Bc 1
Be
where nc is the bandwidth used with non-coding approach
and ¢ is bandwidth used with coding approach.

For comparing our heuristic with the optimal method, we
simply do a direct comparison of the total amount of band-
width used by each solution. We also compare the running
times of each method in our simulation environment in which
the ILP is solved using LpSolve version 5.5 with default
settings. All simulation runs were completed on a 2 GHz
Intel Core Duo MacBook Pro with 1 GB of 667 MHz DDR2
SDRAM. We provide the timing results because they may
have some limited value although we cannot guarantee that the
algorithms are implemented in the most efficient way possible.
We did not consider any of the time it took to read in the
network parameters, generate the multicast groups, or set up
the data structures for use by the algorithms.

5) Experimental Results: We now discuss the results from
the simulation for both the heuristic and optimal comparisons.

a) Comparison with Dedicated Protected Multicast Rout-
ing: In the Pacific Bell network, MCCR blocked significantly
fewer sessions than the naive algorithm, although both MCCR
and the naive algorithm steadily increased blocking as the
size of the groups grew larger. However, the network coding
approach outperformed both algorithms, not blocking any of

00,
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Fig. 6. For the random 50-node network; (a) the algorithm blocking rate for
each of the naive heuristic, MCCR heuristic, and our RCM coding heuristic,
(b) the amount of additional bandwidth needed by the naive heuristic (resp.
MCCR heuristic) for those sessions in which both the naive and coding
heuristics (resp. MCCR and coding heuristics) found a valid solution.

the sessions. For those sessions in which the naive algorithm
did not block, it used up to 10% more bandwidth than the cod-
ing algorithm [Fig. 4(b)]. Even though the MCCR algorithm
blocked less often than the naive algorithm, it used relatively
more bandwidth compared with the coding approach.

For the two larger networks, MCCR outperformed the naive
algorithm, but to a lesser extent than with the Pacific Bell
network. The blocking rate still approached 1.0 with the
increase in group size, and the trend in additional bandwidth
used continued [Figs. 5(b) and 6(b)] with the naive algorithm
using up to 10% more bandwidth. However, MCCR used as
much as 50% more bandwidth in the Italian network and as
much as 70% more in the random 50-node network.

Given these results, it appears that network coding provides
a very good solution for robust multicast in optical networks
as it has significantly lower blocking and uses less bandwidth
than existing approaches. The reason why network coding
provides such a drastic improvement is that without network
coding, the network must be able to pack in two link-disjoint
Steiner trees. This is a global connectivity requirement over
all the nodes in the group, and the network may not always
have high enough connectivity to guarantee a solution exists,
and it is not easy to find such solutions when they do exist.
As the multicast group size grows, a single Steiner tree takes
up more and more of the network which leaves fewer links
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Fig. 7. For the Pacific Bell Network, (a) the mean cost of the RCM heuristic
solution and (b) the mean experimental running time of the RCM heuristic
solution compared with the mean optimal static network coding solution over
1000 different multicast sessions for each group size.

to be used by a potential backup tree, so it is not surprising
that the non-coding algorithms have high blocking rates as the
group size increases. On the other hand, the requirement for
network coded protection only requires a certain level of local
connectivity (i.e. 2-link-connectivity when x = 1) between
pairs of nodes. A network which is strongly 2-link-connected
will be guaranteed to have a network coding based solution,
but it will not necessarily have a Steiner packing solution.

The concave shape of each of the plots in Figs. 4(b), 5(b),
and 6(b) is likely due to the fact that as the size of the multicast
group grows, the naive and MCCR algorithms each reach a
point where they are blocking a significantly large percentage
of the connections. Thus, the sample size for our comparison
is smaller and represents the easy connections where potential
improvement due to network coding is diminished. It has
also been shown that (non-static) network coding provides
no advantage in throughput in the optimal case for unicast
and broadcast connections in undirected networks [53]. It
could be that some of this behavior is transferring to this
related problem which may partly explain the greater benefit
of network coding as the multicast group looks less like either
unicast or broadcast.

b) Comparison with Optimal: The results of the com-
parison between RCM and the optimal solutions are shown
in Figs. 7 through 9. RCM achieved near optimal results. On
average, RCM was only 0.9%, 1.5%, and 5.0% more costly
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Fig. 8. For the Italian Network, (a) the mean cost of the RCM heuristic
solution and (b) the mean experimental running time of the RCM heuristic
solution compared with the mean optimal static network coding solution over
1000 different multicast sessions for each group size.

than the optimal solutions in the Pacific Bell, Italian, and
random 50 node networks respectively. The worst case for
a particular sink set size that we observed in our simulations
the heuristic was only 1.7%, 2.1%, and 6.4% more costly.

This slight deviation from the optimal solution comes with
a significant savings in computation time. For the Pacific Bell
network, the optimal method took between 2.8 and 4.3 times
as long as our heuristic on average. For the Italian network
it took between 7.3 and 13 times as long. With the larger 50
node network, the gap between computation times increased
as the number of sinks increased. With 2 sinks, it took more
than 10 times as long on average (0.062 seconds versus 0.0059
seconds). With 20 sinks, RCM terminated in 0.25 seconds on
average compared with 452 seconds for the optimal methods,
more than 1800 times as long.

We initially chose SPH as the basis for our algorithm
because it generalizes naturally for the directed, (x + 1)-link-
connected case. It would be interesting to investigate how
better performing Steiner tree heuristics may generalize for
this problem, but these comparisons seem to indicate that the
room for improvement is somewhat limited.

V. ALL-OPTICAL NETWORK CODING INFRASTRUCTURE

In this section, we address the problem of implementing
network coding in all-optical networks along with a discussion
on OXCs and device placement.
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Fig. 9. For the random 50 node network, (a) the mean cost of the RCM
heuristic solution and (b) the mean experimental running time of the RCM
heuristic solution compared with the mean optimal static network coding
solution over 50 different multicast sessions for each group size.

A. Device Deployment

Before we get into the details of computing linear combina-
tions, we look at how such devices could be deployed to offer
network coding services at multicast-capable OXCs for both
full and limited capability. A device that computes the scalar
multiplication part of the linear combination will be referred
to as a Scalar Multiplication Unit (SMU) while the addition
is accomplished using all-optical XOR gates.

1) Full Network Coding Capability: We first look at de-
vices providing full network coding capability. In general,
network coding operations allow for each outgoing channel
to be a linear combination over all incoming channels. For a
WX(F x F) switch, a switch on F fibers and W wavelengths
(see Fig. 10), this means that each of the WF outgoing
channels transmit a sum of W F different incoming symbols
each multiplied by a scalar coefficient.

In this architecture, each of the F' fibers enter demultiplex-
ors and each wavelength is split into WF' copies using a
(re)configurable splitter. After reamplification (not pictured),
each signal is buffered with an all-optical buffer which acts as
a controlled delay necessary to line up symbols entering on
different channels so that when they enter the XOR addition
unit, the corresponding bits pass through the device at the
same time. The switch will need the ability to time the
difference in propagation delay for incoming signals so that
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Fig. 10. Multicast-capable W (F x F) switch with full network coding
capability. Each Wavelength Converter (WC) is a fixed wavelength converter
for converting from one specific wavelength to another specific wavelength.
Lighter ellipses indicate a repetition of W copies of the pattern while the
heavier ellipses indicate an F'-copy repetition. Amplifiers which may be
needed after power splitting the signal are not shown.

the proper delay can be set on the buffers. Then, the signal
enters an SMU where each of the W F copies of the input
symbol may be multiplied by a different coefficient and is
then sent as one term in the sum of a different output.
Since only one wavelength per fiber shares the wavelength
with each input, the remaining W — 1 wavelengths on each
fiber utilize a fixed wavelength converter (WC). This fixed
wavelength converter will map the input wavelength to the
appropriate output channel wavelength before being input to
the corresponding XOR adding unit. This design makes the
assumption that the SMU and XOR devices can operate at
any wavelength and that all inputs to the XOR must be on the
same wavelength. Under a different set of assumptions, more
or fewer wavelength converters may be necessary. The XOR
adding unit has W F' inputs (i.e. a copy of each input symbol
after undergoing scalar multiplication and possible wavelength
conversion) over which it computes the sum. The output of
the XOR adding unit is then the linear combination over all
input channels. Each of the wavelengths are then multiplexed
together to constitute the 7/ channels on each of the F fibers.

Note that for functional correctness, we need not use config-
urable splitters. Passive splitters are sufficient since the SMU
can be configured to multiply the symbol by zero. However,
if a significant number of the W F’ copies of each signal will
be zeroed out, we will save on reamplification power as well
as the power it takes to operate the buffer, SMU, and WC
for that signal by using configurable splitters. Furthermore, a
connection not needing any network coding at a given node
will have a coefficient of 1 for each output port it is being
switched to while all other inputs to the XORs on those ports
will have a zeroed out coefficient.

While this design allows for fully functional network cod-
ing, its main drawback is its complexity. Each of the SMUs has
nontrivial complexity itself, and this design requires (W F')? of

(WF+B) X (WF+ By .
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- :
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Fig. 11. A multicast-capable W (F x F') switch with limited network coding
capability. We have not shown the details of the switching fabric which may
be any fully wavelength convertible multicast switch. The switching ports
leading to and from the network coding circuitry will all be converted to a
common wavelength Ac.

them in addition to the (W F)? buffers. Each of the W F' XORs
has W F inputs, which means we need a total (W F')>—W F 2-
input XORs just for the addition part of the linear combination.

2) Flexible Limited Network Coding Capability: We now
give a more flexible version of the OXC architecture allowing
limited network coding capability in a share-per-node fashion.
This design is shown in Fig. 11 for a W*(F x F') OXC. The
design allows for the use of 3 simultaneous coding operations
to be computed at that node which are each a linear combina-
tion of ~ terms. The symbol with the highest propagation delay
can be switched to the first port of each coding unit and thus
need not be delayed by the optical buffer. The switching is all
done by a (WF + 3) x (WF + 3y) wavelength convertible
switching fabric. The upper portion of the switch acts as a
normal wavelength convertible multicast-capable switch which
may be used for normal multicast routing in connections not
requiring any network coding at this particular node. When
network coding is needed, the connections are switched to the
lower portion of the switch. In order to allow for simplified
computation, all of the network coding outputs are converted
to a common wavelength \,. which is suitable for coding.
After being input back into the switch, it may be converted to
any needed output wavelength.

This design uses B~y SMUs, gy — 3 optical buffers, and
B XOR adders each with ~ inputs requiring 8y — 3 2-input
XORs. The downside is that the switch is larger than the
one on which the full network coding capability design is



superimposed. This can be mitigated if the switch is designed
not to allow multiple paths through the coding circuitry shown
on the lower portion of the switch. This would also have the
added benefit of preventing excessive signal degradation from
spontaneous emissions generated on multiple paths through the
coding circuits. In this case, v should be chosen so that it is
large enough to support the number of different channels that
may need to be coded together at a given node for a single
connection. Then 3 only needs to be as large as the total
number of connections requiring network coding operations
at a given node. The comparison of these two approaches is
summarized in Table I. This is a significant improvement in
complexity for 3y << (WF)2.

B. All-Optical Coding Circuits

In this section, we discuss how the devices for computing
the linear combinations could be built. We first give a brief de-
scription of how the symbols are represented. We then present
the design of the 2 x 1 all-optical Linear Combination Unit.
We extend this design to the SMU and discuss an alternative
design approach that could be used for normalization.

1) Symbol Representation: Because we would like to rep-
resent each symbol with a fixed number of bits, all arith-
metic operations will occur in GF(2™), the finite field with
2™ elements. Symbols in GF(2™) can be represented using
m bits where each bit is a coefficient in the polynomial
Cm1Z™ 0™ 2 4 - 412 + ¢o. Addition is accom-
plished using a bit-wise XOR. Multiplication is accomplished
by multiplying the corresponding polynomials then reducing
the result modulo an irreducible polynomial of degree m. We
denote the physical bit separation on the optical medium as 7

2) 2x1 All-Optical Linear Combination Unit Architecture :
The 2 x 1 Linear Combination Unit is a device for computing
the linear combination of two input symbols given two scalar
coefficients. An overview of the architecture for this unit is
shown in Fig. 12.

Because multiplication of the bits representing polynomials
results in a product which is twice as big as the operands,
we cannot perform serial multiplication entirely in place. In
order to free up space on the medium for the extra product
bits, we deploy two copies of the multiplication and addition
circuit. Two serial inputs A and B € GF(2™) are first time-
division-demultiplexed onto two physical waveguides using a
1x 2 switch which sends adjacent symbols to opposite physical
waveguides. Each of the two scalar multiplication and addition
units computes the linear combination C4 - A + Cg - B on
their respective A and B symbols. The result of each of these
operations is a (2m—1)-bit symbol. These (2m — 1)-bit values
are normalized to m-bit values concurrently by multiplexing
them back onto the same waveguide while simultaneously
reducing them modulo an irreducible polynomial in GF(2™).
We will now describe the scalar multiplication/addition unit
and the normalization unit each in more detail.

a) 2 x 1 Scalar Multiplication and Addition Unit:
Multiplication in this architecture is accomplished using the
shift-and-add approach. Fig. 13 shows this all-optical circuit.
The input symbols are split into 7 copies and then fiber delay
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lines shift each copy by the appropriate number of bits. The
fiber delay lines could be set for a fixed delay or could be
controllable to accommodate multiple transmission rates.

With an on-off keying system, each bit of the scalar
coefficients Ca = {(cas0:Ca1,---sCam—1) and Cp =
(¢b,0,Cb,1,---,Cbm—1) controls an all-optical “ON/OFF”
switch (e.g. an AND gate implemented with an SOA), which
effectively multiplies the corresponding copy of the input
signal by that bit. A switch in the “OFF” state does not let
optical pulses through, effectively transmitting zero. A switch
in the “ON” state lets the signal pass through (with possible
amplification), effectively transmitting the input symbol times
2t for coefficient bit ¢, ;. Also, configurable splitters could be
used to save on loss due to splitting for each zero bit in the
coefficient. Furthermore, if a coding algorithm could limit the
number of 1 bits in the coefficient, the size of the splitter and
the number of AND gates could be reduced (while possibly
increasing the amount of control needed in the delay).

Every symbol on the data stream for a particular connection
is multiplied by the same coefficient. Thus, the coefficient-
bit control signal is fixed for a particular session, and high
speed switching is not necessary. Again, addition in GF(2™)
is merely an XOR of the operands, so it can be accomplished
with an all-optical XOR gate. This design uses two 1:m optical
splitters, 2m — 2 delay lines (which need not allow the same
maximum delay), 2m SOAs, and at most 2m — 1 two-input
all-optical XOR gates.

This architecture could be used for other keying systems,
such as phase-shift keying, so long as the building blocks
supported it with the same resulting logical operation. For in-
stance, all-optical XOR gates using return-to-zero differential
phase shift keying have been demonstrated [54]. Although, the
theory of static network coding assumes the transmission of
zeros on failed links. Thus, the XOR would have to treat the
absence of a signal the same as a zero, or the device would
need to fabricate a stream of zeros in place of the lost signal.

b) 2 x 1 Serial Normalization Unit Design: We now
describe how the result of two different scalar multiplications
of m bits can be normalized in GF(2™) in the same space
while multiplexing them back onto the same waveguide.

This normalization unit is shown in Fig. 14. Note that
degree of the polynomial after multiplication has degree at
most 2m — 2 since 2m~12m~1 = 22m=2_ Thys, the output of
the multiplication unit is 2m — 1 bits. The rectangles labeled
A[2m —2,m] and A[m —1,0] are the upper and lower halves
of the output of the first multiplication unit while B[2m—2, m]
and B[m—1, 0] represent the output of the second unit. Notice
that the lower bits of B will be aligned with the higher bits of
A at this point. The normalization unit starts by multiplexing
each of these onto two different waveguides so that the top
half of each result is sent to the top combiner and the lower
half is sent to the lower combiner. The lower bits of B are
still aligned with the higher bits of A, but both waveguides
will alternate half of A with half of B.

Our design for the normalization part of the circuit is based
on the GF(2™) normalization step in Itoh-Tsujii algorithm
[55], [56], [57]. For our circuit, we have selected the re-
ducing polynomial of the form x™ + z 4+ 1. This polyno-
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12



mial is irreducible for several choices of m (such as m =
2.3,4,6,7,9,15,22, 28, 30, 46, 60 and 127 [58, p. 158]). This
approach reduces a polynomial of the form dg,,_sx?™ 2 +
d2m—3$2m_3 + d2m—4x2m_4 +...+ d3l‘3 + d2372 + dl-r + dO
where d; € GF(2) by noticing that

™ = =z + 1
amtt = a? + =z
pmt2 = 3 + 22
x2m74 — xmf.?) 4+ gm
x2m73 — mm72 + l,mfi%
x2m72 — xmfl + l.m72.

That is, the term d;z* can be removed for all : > m and
replaced with two terms in GF(2™). Thus, the polynomial
becomes r,,, 1™ L4, _0x™ 24, _sx™ 3. g+

rox® 4+ r1x + 19 Where

To = do D dn

1 = d B dmt1 ® dpn

T2 = do D dnt2 D dmyr
T3 = d3 2 dm—i—3 2 dm+2
"m-3 = dm— 3 @ d2 m-3 D d2’m—4
Tm—2 = dm—2 @ dom—2 & dom-3
Tme1 = dp—1 @ dom—2.

Thus, we may XOR the lower m bits with two copies of
the upper m — 1 bits (with the second copy being up-shifted
one bit) for each of the A and B symbols. This operation is
accomplished by splitting the upper half of each symbol onto
two space-disjoint waveguides and delaying one of them by
1-bit. The lower half bits are then delayed by m bits so that
the lower half of A is aligned with the upper half of A and
the lower half of B is aligned with the upper half of B. The
yellow boxes labeled dy, d1, . .., d2,,—2 Show how the bits are
aligned for each symbol. The two upper half copies along with
the lower half are then XORed to get the normalized value.

This design requires two 1 x 2 switches, a 1:2 passive
splitter, two 2:1 combiners, two fiber delay lines, and two two-
input all-optical XOR gates. When coupled with the multiplier
unit, the whole device requires 2m delay lines and 2m + 1
two-input XOR gates.

3) Single Scalar Multiplication Unit: The 2 x 1 Linear
Combination Unit allows for two linear combinations which
are offset by m bits to be normalized in GF(2™) simultane-
ously using the same normalization hardware. That is, it uses
one set of normalization hardware to perform the computation

Ry = (CAAO + CBB()) mod (l‘m +x+ 1)

and outputs a stream of m-bit values Ry, R, Ro, .... How-
ever, it may sometimes be helpful to delay the addition of
the two products in order to allow for switch architectures
like that in Fig. 10. In this case, we can split the sym-
bols Ay, A1, As, As,... onto two physical waveguides with
separate scalar multipliers and use the two inputs of the
normalization unit to normalize the results of the odd and even
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indexed multiplications simultaneously. That is, we compute
a stream of m-bit values

(Cadp) mod (2™ + 2z + 1),
(CaAr) mod (z™ 4z + 1),
(CadAsz) mod (™ +x+1),...

This design functions as the SMU shown in the earlier switch
architectures. Such a design allows for more flexibility in
placement of network coding devices, however, it may require
twice as many normalization units. That is, the SMU-based
design uses two extra 1 x 2 switches, two extra buffers, two
extra 2-input XORs, two extra 2:1 combiners, and one extra
1:2 splitter (with two extra amplifiers which are not shown)
when compared with the design in the previous section. Thus,
it is more efficient to replace pairs of SMUs in the design in
Fig. 11 with the 2 x 1 Linear Combination Unit.

In total, each SMU requires three 1 x 2 switches, 2m + 2
SOAs, 2m 2-input XORs, and 2m buffers. Assuming that the
switch in Fig. 11 is constructed as shown in Fig. 2 (including
wavelength conversion) and outputs from the coding units need
not be switched to the inputs of the coding units, we can
compare the complexity of the limited network coding switch
with the full network coding switch by updating Table I to in-
clude the total number of XORs needed for both multiplication
and addition, the number of buffers needed for alignment and
processing, and the number of SOAs needed for switching and
processing. This comparison of the two approaches is shown in
Table 11. Note that the limited version reduces the complexity
for each of the components proportionally as 3~ varies with
respect to (W F)2. Also, note that the complexity increases
linearly as m increases. It should be feasible to keep m small
since it grows logarithmically with the number of sinks that
need to be supported.

4) Parallel Normalization Unit Design: Normalization in
GF(2™) may also take place using a parallel normalization
unit. This approach has been proposed for inband-forward-
error-correction in SDH/SONET networks [57]. A parallel
design requires the use of serial-to-parallel and parellel-to-
serial converters in order to perform the processing in a parallel
manner while dealing with symbols represented in serial form
on the optical medium. Conversion technology for doing this
has been proposed for use in label recognition [59], [60], [61].
Using the ™ + x4 1 modulus, such a design requires 2m — 1
two-input XOR gates as well as m splitters but only fixed
delay lines. to ensure the proper propagation delay on each
of the inputs. Table Il gives a summary of this complexity
when compared with our proposed design. This comparison
also highlights one of the main benefits of our proposed
normalization design, which is the level of independence of
the complexity based on the symbol size m. The only impact
m has on our serial normalization unit design is on the clock
speed and the length of one of the delays. The parallel design,
on the other hand, has linear complexity in terms of m for the
number of amplifiers and XORs needed. The parallel design
does not use any optical buffers or 1x 2 switches, but given that
this technology is needed for alignment and switching anyway
(and possibly in the serial-to-parallel conversion device used
in the parallel design), our serial design makes a better choice.
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[ | SOAs | Optical Buffers | XORs ]
full (2m + 3)(WF)? Cm+1)WF)Z | 2m+ 1)(WF)Z—WF
limited (using SMUs) | WF)Z + 2m + 2)By + 2y + | @m+1)8y -8 Cm+1)By—p

2)BW F
limited (using 2 x 1 | (WE)2 4 2mBy + (2y + 2)fWF 2mpBy — B 2mpBy — B
LCUs)

TABLE |1
A COMPARISON OF THE COMPLEXITY OF THE FULL NETWORK CODING CAPABILITY OXC WITH THE LIMITED CODING CAPABILITY OXC IN TERMS OF
TOTAL NUMBER OF SOAS, BUFFERS, AND 2-INPUT XOR. WE ASSUME THAT THE 3 OUTPUTS FROM THE CODING UNITS NEED NOT BE SWITCHED TO THE
INPUTS OF THE CODING UNITS.

However, note that m does have an impact on the number
of amplifiers, buffers, XORs, and splitters (and therefore loss
due to splitting) for our multiplication units.

V1. CONCLUSION

We investigated the algorithmic problem for protected
optical-layer multicast connections in this paper. We proposed
a heuristic for setting up protected multicast connections using
network coding and compared its performance with existing
techniques for dedicated multicast protection. We found a re-
markable improvement when applying network coding which
found valid solutions in every case, even for large multicast
groups in which the other algorithms failed to find solutions for
more than 80% of the connections. Furthermore, the solutions
that were found with other algorithms were much less efficient
in terms of bandwidth than the network coding approach. From
these results, we can conclude that if network coding services
can be provided at the optical-layer, then network coding has
the potential to make great strides in the ability to provision
protected multicast connections. These connections will have
a level of service similar to that of 1 + 1 dedicated protection
while having bandwidth efficiency paralleling shared multicast
protection schemes.

In addition to network coding improving multicast protec-
tion performance in the practical setting, we have also shown
experimentally that our heuristic finds solutions with cost very
close to that of the optimal solutions. Given that our algorithm
runs in polynomial time, this shows that network coding
protection services can be offered in an efficient manner.

After demonstrating this clear benefit of all-optical network
coding, we considered how it could be implemented in an
all-optical multicast network. We have presented designs for
OXC and all-optical processing unit architectures which en-
able network coding to be offered at the optical layer using
switching components, controllable optical delay buffers, and
all-optical XOR gates. Furthermore, we have shown that the
network can be configured with as much or as little network
coding capability as needed with proportional complexity
reductions with respect to reductions in the amount of coding
provided. Since these devices rely on some technologies which
are still in their infancy, we have given only designs for
correct behavior given devices with good signal characteristics.
Optimizing these designs based on the operating parameters
of specific devices such as power consumption, signal-to-noise
ratio, etc. is left as future work.
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