
Towards Effective Adaptive User Interfaces Design

Tomas Cerny
Czech Technical University,

Charles square 13
121 35 Prague 2, Czech Rep.
tomas.cerny@fel.cvut.cz

Michael J. Donahoo
Baylor University,

One Bear Place #97356
Waco, TX, 76798-7356, USA

jeff_donahoo@baylor.edu

Eunjee Song
Baylor University,

One Bear Place #97356
Waco, TX, 76798-7356, USA

eunjee_song@baylor.edu

ABSTRACT
The increasing use of Web-based applications continues to
broaden the user groups of enterprise applications at large.
The importance of providing easy-to-use user interfaces (UIs)
that conform to each user’s specific preferences, such as dif-
ferent skill levels, capabilities and physical locations has,
therefore, been significantly increasing. Unfortunately, de-
signing a single UI satisfying all end users remains chal-
lenging. To address this issue, researchers and developer
are looking to Adaptive User Interfaces (AUIs) that aim to
provide end users with more personalized user interaction
experiences. However, very few production system provide
such malleable interfaces due to the excessive cost for the
development and maintenance.

In this paper, we propose a technique that provides AUIs
for production enterprise systems while reducing develop-
ment and maintenance efforts to a level comparable with
a single UI development, called Rich Entity Aspect/Audit
Design (READ). READ complies with application develop-
ment standards used in industry to support an easy tran-
sition from design to production systems. We conclude by
evaluating our approach along with a case study that demon-
strates reduction in development and maintenance efforts
while preserving performance.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—User interfaces; I.2.2 [Artificial intelligence]: Au-
tomatic Programming—Program synthesis; K.6.3 [Mana-
gement of Computing and Information Systems]: Soft-
ware Management—Software maintenance

General Terms
Design

Keywords
Aspect-driven design, Inspection-based approach, Adaptive
user interfaces, Reduced maintenance/development efforts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RACS’13 October 1-4, 2013, Montreal, QC, Canada.
Copyright 2013 ACM 978-1-4503-2348-2/13/10 ...$15.00.

1. INTRODUCTION
Although an application should serve various users from

different geography locations, with different capabilities and
skills, it is a common practice to design a single UI for every-
one [18] instead of providing user-specific UIs. The primary
reason for this one-size-fits-all approach to UI design relates
to the costs of development and maintenance for multiple UI
versions. For example, [10] states that around 48% of ap-
plication code and 50% of development time are devoted to
implementing UIs. Thus, providing multiple versions of UIs
for individual users is typically considered to be unrealistic.

In case of many existing programming techniques, it is
difficult to support UI features, such as the adaptivity to
users, mainly because they capture field-specific informa-
tion twice; once in the data-model and again as a reference
in the presentation that is often specified in XML with no
type safety (form, table, etc.). In addition, current practices
realize multiple UI concerns mixed together in a single com-
ponent, which makes such a component less cohesive and
hard to reuse. As shown later, this results from the inabil-
ity of conventional approaches to capture different concerns
separately. The development of less cohesive components re-
sults in multiple, highly-similar components that only differ
in details. Having a multi-location field definition and mul-
tiple similar components for a slightly different presentation
brings further difficulties throughout the development. For
example, changing the underlying data definition requires
all of its presentation components to be updated, which is
a non-trivial task as no type safety may exist. Consider-
ing that such a component update process is manual and
certainly error-prone, it is most likely to introduce more er-
rors or omit required component updates, which eventually
results in the inconsistency in presentation.

Our proposed technique utilizes the information from an
application’s data-model and its existing structures obtained
from the automated code-inspection. Such information is
then extended and transformed into the UI in multiple steps
through aspect-oriented programming (AOP) [12]. Con-
cerns that are commonly tangled together are now separated
into easy-to-maintain, reusable units, called aspects. The
transformation process weaves all separated concerns to-
gether at runtime and thus allows us to consider user-context
conditions individually. The resulting UIs can dynamically
adapt to all considered concerns to satisfy users. To evalu-
ate our technique, we implement a library and demonstrate
its use in a case study with enterprise JEE6 application.

The main contribution of our approach is the reduction
of information restatement in UI development and the sep-

373

aration of concerns that are directly responsible for tangled
UI code. Multiple information restatement steps required
in existing approaches collapse into a single focal point of
information in our approach, which makes the enforcement
of its UI compliance easier. Since it is executed at runtime,
it can dynamically adapt the UI to a user-specific context.
The approach reduces both development and maintenance
efforts through the component reuse. Despite the addition
of these benefits, our approach has a minimal impact on
application performance.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the background of adaptive user interface
development. Section 3 provides an overview of existing ap-
proaches. Our approach is presented in detail in Section 4,
and its evaluation is discussed in Section 5. The final section
presents our conclusion and future work.

2. BACKGROUND
One approach often taken to deal with system complexity

is to break the system down into units of behavior or func-
tion such as subsystems, modules or objects, called func-
tional decomposition in Object-Oriented Programming [12].
Such a decomposition concept is necessary because it helps
one to put logically-related concerns together, improves the
readability and reusability, and eventually supports the ease
of maintenance [13]. In addition to functional decomposi-
tions, the Aspect-Oriented Programming (AOP) community
proposes another way of thinking about a program struc-
ture. The key unit of modularity in AOP is the aspect that
enables the modularization of concerns, such as transaction
management, that cut across multiple types and objects [13].

UI development also employs such decompositions, but
its data presentation makes the decomposition process more
challenging, especially when a markup language is used to
describe the UI, which is common for web systems. For
example, consider designing the Person form given in Fig-
ure 1. The arrows highlight various concerns considered in
the design. Arrow 1 shows that form fields are bound to a
particular data class, an entity, and its fields. This binding
means that, for example, when the field called name in Per-

son splits into first name and last name, its corresponding
form field must split as well. Unfortunately, there is no en-
forcement mechanism to guarantee that the corresponding
entity and its UI comply with each other unless a language
with type-safety is used. An entity field UI presentation is
denoted by Arrow 2; an appropriate UI widget and its prop-
erties are chosen based on the type of a particular field and
its constraints. Anytime a field constraint changes, an un-
derlying widget or its properties should reflect the change
as well. However, there is no automated mechanism to do
so, thus a manual update is necessary for each field change.
Arrow 3 demonstrates that the form may allow one to se-
lect a particular presentation layout. A layout is responsible
for rearranging form fields in a given order, grouping them
together or presenting them within a given screen size. De-
signing a non-trivial form layout often results in a layout
code entangled together with form fields. We provide an
example of tangling such concerns later in Listing 1. When
an application adjusts a form layout at runtime based on a
given condition, it is possible that multiple variants of forms
physically exist to represent the same data. Next, Arrow 4

indicates that form fields should consider additional UI con-
ditions such as security or visibility. For example, some fields

Person

String : email
String : name
Country: country

Email
Name
Country

1. Data binding

Label
4. Security 5. Input validation 2. Field presentation 3.Layout

Label @

Figure 1: UI form decomposition

should be rendered as read-only or left unrendered based on
the given user authorization. In order to apply the con-
ditionals, we further extend the form fragment, leading to
more complex readability and perhaps duplication among
fragments applying various layouts. Finally, Arrow 5 shows
that certain constraints from the bound entity fields should
be applied for its input validation. For instance, web appli-
cations with client-side validation must restate constraints
in a scripting language, such as JavaScript. Listing 1 shows
a very simplified implementation of Figure 1; this JavaServer
Faces (JSF) code shows data binding to the form through a
data instance i (value attribute in widgets), field representa-
tions through UI components (x:input), table layout tangled
through the fields, security condition (render attribute) and
validation (validate attribute) determined by methods in a
controller accessible in the context as bean. The mainte-
nance of such fragments becomes difficult because all five
concerns are captured together, and it is non-obvious which
code refers to a specific constraint such as security, presen-
tation, layout. The reuse of tangled UI fragments is limited
since it only allows the slight variation of concerns. AUI de-
sign only compounds the problem since it typically increases
the number of concerns.

The [13] explains that an n-dimensional concern space is
expressed in the implementation space using a one-dimensional
language. Unfortunately, orthogonality of concerns in the
concern space gets lost when it is mapped to the one-dimensional
implementation space. For our case we have a 5-dimensional
concern space as shown in Figure 2 (a). This concern space is
mapped into one-dimensional implementation space in Fig-
ure 2 (b). This corresponds to what we see in Figure 1 and
the one-dimensional implementation in Listing 1.

Consider design of an adaptive (rather than merely single)
UI, where the above mentioned concerns extend with user-
specific presentation and field restrictions influenced by the
user’s location, his age, temporal information or layout ad-
justed to the user’s screen size, etc. In this case, the number
of concerns in Figure 2 (a) grows and the complexity rep-
resented by Figure 2 (b) becomes even greater, because all
considered concerns tangled together are directly responsible
for increased development efforts, hard maintenance, dimin-
ishing readability, limiting reuse, higher possibility creating
errors, etc.

3. RELATED WORK
UI development approaches can be divided into two groups

restate-to-extend and inspection-based [11]. Restate-to-extend
requires that the same information in a system be captured
twice at different locations, while preserving its integrity.
Such information duplicity is then applied to a particular
concern such as UI presentation. Development using this ap-
proach typically involves interactive graphical tools, model-
based generation tools [14, 17] or external models for UI

374

Listing 1: Sample code snippet for form in Figure 1
<table class=" classLayout"> <tr><td>Email:</td>
<td><x:input id="email" value ="#{i.email}"

render ="#{ bean.render(’email ’)}"
vali date ="#{ bean.validate(’email ’)}"/> </td>

</tr><tr><td>Name:</td>
<td><x:input id="name" value ="#{i.name}"/> </td>

</tr><tr><td>Cou ntry:</td>
<td><x:smenu id="cou ntry" value ="#{i.country}"/> </td>

</tr></table>� �
Field presentation

Security

Input validation Data binding

Layout

Security

Field presentation

La
yo

ut

Input validation
 Dimensions 1-3 Dimensions 3-5

Data binding

Etc.

(a) concern space (b) implementation space

Figure 2: (a) Concern / (b) Implementation space

representation [15]. The main drawback of these approaches
stems from the duplication of source information and addi-
tional maintenance efforts when source information changes.
Model-Driven-Development (MDD) [7] argues that all infor-
mation should be captured in the model and the code itself is
solely generated from the models. Unfortunately, the MDD
approach suffers during adaptation and evolution manage-
ment, as noted in [17]. The specification of possible states
and configurations of complex systems can grow exponen-
tially. Once deployed, such systems experience changes in
variations, which often take place in code rather than in
the model itself so code regeneration from the higher ab-
straction model can be impractical and the manually added
information can get lost [7].

Inspection-based approaches use existing information ac-
cessible by code-inspection. The effort in this case is placed
on the information source that must capture sufficient infor-
mation to derive a specific concern. Development using this
approach typically involves language-based tools. The dis-
advantage of this approach is that source information does
not necessarily capture all needed concerns. Multiple re-
search proposals such as [6, 10, 11] utilize automated UI
generation by applying code-inspection. These approaches
inspect previously captured information, build a meta-model
adhoc and transform it to the UI. This approach simplifies
development and maintenance since it reduces restated in-
formation. The difficulty is that such an approach cannot
generate the UI unless provided additional information, typ-
ically supplied by additional markup within the source in-
formation [7]. In this approach, it is important to consider
that data-models already capture persistence and validation
constraints (e.g., Java technology standards [2, 8, 9]). Such
information should be considered in the inspection to avoid
duplication. In [7] the authors provide multiple profiles de-
scribing data-model extensions for persistence, validation,
security and presentation.

These approaches provide individual benefits; however,
neither of them addresses cross-cutting concerns. An AOP
approach [12, 13, 19] provides methods that allow us to cap-
ture different concerns separately in independent code frag-

ments. In our work, we aim to produce a combination of
various concerns. In the conventional, object-oriented ap-
proach, these concerns are tangled together, creating code
that is hard to read and maintain. An aspect approach takes
the base code that is simple to read and adds additional
aspects to it through a compiler called an aspect weaver.
The product of the aspect weaver can have the same execu-
tion properties as tangled code, but all the concerns can be
defined separately to support readability and maintenance.
[12] shows that AOP can reduce the total of lines of code
(LOC). In their example, they reduce an application code
from 30,000 LOC to 1,000 LOC by applying AOP. AOP con-
cepts are nowadays used in development frameworks [13],
modeling [17], security, performance optimization, etc.

The idea of AUI is studied in multiple domains. For ex-
ample, we can see its application in a hospital navigation
case [15] and in a house control unit example [3]. Multi-
ple AUI design methods require the target environment and
possible variations of the user interface at design time [14,
16]. In [4] the authors argue that future adaptive systems
need to consider runtime information to adapt, thus design
time approaches should not be considered. [17] and [3] ap-
ply aspect-oriented techniques to a model-based approach
to deal with multiple degrees of variability that depends on
user needs and context. Most of the related work on AUI
focus solely on the problems related to features of AUI and
typically apply model-based approaches that would need to
restate information from application backend. The UI is
then a result of transformations of the models to the UI.

Note that none of the mentioned approaches address adap-
tive UI. At the same time, runtime adaptivity, reduction of
restated information, separation of cross-cutting concerns
enhances production environments, while reducing the the
source code. In our approach, we try to address all men-
tioned features. Naturally, we avoid the restate-to-extend
approach.

4. READ : RICH ENTITY ASPECT/AUDIT
DESIGN FRAMEWORK

As shown in the related work, in order to design an AUI
with low development and maintenance efforts, we should
avoid manual definition of an additional model that restates
information captured elsewhere in the application. Instead
we should consider a code-inspection approach and AOP de-
sign. Code-inspection fetches already-captured information
from the data-model plus application structure and prevents
duplication. The meta-model assembled by the inspection
should capture information needed for UI composition and
adaptation. In order to support flexible adaptation of vari-
ous concerns, we consider the runtime aspect model. Proper-
ties of an aspect approach allows us to capture different con-
cerns separately rather than tangled together. These prop-
erties can utilize the meta-model and based on the runtime
context, apply appropriate UI concerns that are all together
transformed to the UI presentation. The nature of such an
approach brings the benefit of coherence between the UI and
the backend part of the application. Thus changes in data-
model or application structure are immediately reflected in
the UI. Other approaches may produce inconsistency as both
the data-model and UI part are maintained separately. In
the following subsections, we describe our approach on a
new UI development framework, READ.

375

4.1 Introduction to READ conceptual model
In order to describe AOP framework, [19] suggests de-

scribing its conceptual model with three main components:

Join Point Model: defines available join points

Pointcut Language: defines the query language to select
a subset of join points

Adaptation Mechanism: allows adding or modifying func-
tionality at selected join points

These components well describe existing frameworks such
as AspectJ or Hyper/J in which we often modify or add func-
tionality upon method call or code execution. In our case,
the adaptation mechanism does not constraint any method
or code execution but deals with transformation and com-
position.

In READ the join point model consists of both static and
dynamic join points [19]. Static join points are object data-
model class names, field names and data types, and also field
annotations with their parameters. All these join points are
known at the compile time. During the code-inspection,
all these information are passed to the READ context. Dy-
namic join points do not correspond to elements in code and
can be influenced by runtime application context, which can
be any information passed to the READ context at runtime
from the application such as user access rights, geo-location,
local context for presentation, device screen size, etc.

The pointcut language defines the query language to select
a subset of join points. READ uses an expression language
know as Unified Expression Language[1] (EL). EL consists
of constructs for conditionals and arithmetical operations,
understands basic types, and can evaluate any expression
referring to its context. In READ the EL context has access
to the READ context, thus all information in READ context
can be queried by the pointcut language . Furthermore, it is
possible to add to the context custom objects or functions.
The language uses both the state-based and specification-
based constructs [19].

The adaptation takes place after the code-inspection pop-
ulates the READ context, which keeps information about
inspected data instance in a form of a composite structure.
Instance information is at the root, inspected fields are its
child nodes and child leaves reflect field information and con-
strains. The leaf level captures field static join points. In the
transformation process, each field is transformed through
presentation rules that use the pointcut language to query
field join points to select appropriate advice in the form of
a presentation template. Both rules and templates are in-
troduced later. After the appropriate template is selected,
its content is interpreted. The template can be seen as
a composition mechanism integrating different aspects. It
consists of a DSL language that looks like the target do-
main language describing presentation, but also it uses ad-
ditional markup language that is being interpreted by the
READ weaver. The markup uses the pointcut language to
integrate various aspects to the presentation code. Thus it
queries the field join points, and based on the result, it inte-
grates given aspects. After all data fields selects a template
that provides its UI presentation and integrates addition as-
pects, then READ considers layout integration. The layout
composition uses layout template, similar to field template,
that uses a DSL language from the target domain language
with additional markup. This markup provides the devel-
oper mechanisms to describe specific or an anonymous field

Listing 2: Example entity with additional markup
@Entity @Table(name = "personInfo ")
public class PersonInfo {

...
@UiU serRoles ({" Admin","Owner "})
@UiOrder(1) @Enumerated(EnumType.STRING)
public Title getTit le() { return title; }

@UiOrder(2) @NotEmpty @Pattern(regex ="^[^\\s].*")
@Length(max =100) @Column(nullable=false , length =100)
public String getFirstNa me() { return firstName; }

@UiOrder(8) @UiProfi les({"US"})
@NotEmpty @Column(nullable = false)
public String getHomeState() { return state; }

}� �
Listing 3: Example presentation rules

<mapping >
<type >String </type >
<default tag="textTag.xhtml" size ="20"

javaPattern ="" minLength ="0" maxLength ="255" />
<var name=" Person.username" tag="emailTag.xhtml"/>
<cond expr="${email == true}" tag=" emailTag.xhtml"/>
<cond expr="${link == true}" tag="linkTag.xhtml"/>
<cond expr="${maxLength >255}"tag=" textAreaTg.xhtml"/>

</mapping >� �
position in the template or to iteration over multiple anony-
mous fields.

Consider the data entity implemented in Java in Listing 2.
This entity follows persistence and validation standards [8]
[2]. You may also notice that it is possible to extend the en-
tity with additional markup; we call such an extended entity
a rich entity. This rich entity is a subject of inspection/audit
that populates the READ context with the entity related in-
formation and makes it available for pointcuts. The READ
context now consists of entity-related information. The first-
level adaptation mechanism applies presentation rules de-
fined in a configuration file. Each rule has a pointcut for the
entity field context. A matching pointcut gives advice on a
presentation template to use for the field. Consider the con-
figuration file snippet defining presentation rules for String
types in Listing 3. Note that for a given field type, a single
advice applies based on the matching a pointcut defined by
the expression attribute. When no match exists, then the
default one is used. The pointcut uses EL and queries the
READ context related to the evaluated date field, thus it has
access to all the field properties - static join points (name,
type, parent, annotations, annotation parameters, etc) or to
other parameters - dynamic join points. Second-level adap-
tation mechanism uses the field template for composition.
The field template defines field presentation and integrates
other aspects to it. It uses the pointcut strategies shown in
Listing 4 (a,b,c). The example shows three types of point-
cut strategies where all do the same thing. They query the
considered field for existence of a join point minlength. If
it is present, then it embeds it to the code fragment. The
pointcut uses EL within the dollar marks and may use any
combination of join points with logical/arithmetical opera-
tions or constants. The pointcuts in Listing 4 (a,b,c) show
(a)-full/ (b)-brief/ (c)-shorten strategy for the pointcut/-
composition rule. The composition rule integrates the join
point for the given data instance to the field presentation.
The full version description approach separates the point-
cut and aspect composition; when the pointcut evaluates to
true, then the body applies. Brief version provides the same

376

Listing 4: Pointcut strategies for templates
(a) $not empty minlength ; x = minlength $

minlength ="x"
$$

//-------
(b) $not empty minlength

? "minlength =\"". concat(minlength). concat ("\"")
: "" $

//-------
(c) minlength ="$minlength$"� �
Listing 5: Example template for inputText widget
<x:inputText id="#{ prefix}$field$"

label ="#{ text[‘$entity$.$field$ ‘]}"
edit ="#{ empty edit$field.firstToUpper ()$

? edit : edit$field.firstToUpper ()$}"
value ="#{ instance.$field$}" size="$size$"

required ="$required$" pattern ="$pattern$"
minlength ="$minLength$" maxlength ="$maxLength$"

title ="#{ text[‘title.$entity$.$field$ ‘]}"
rendered ="#{ empty render$field.firstToUpper ()$

? ’true’ : render$field.firstToUpper ()$}"/>� �
result but needs less code. The shorten version fits to com-
mon cases and needs the least code. To see the composition
in context, consider the example presentation template for
JSF code shown in Listing 5. The third-level adaptation uses
a similar approach with the difference that pointcut context
is on the class level rather than on the field level. Also for
the purpose of complexity reduction, a field iteration mech-
anism is defined. Consider Listing 6 that presents an HTML
table that can weave into it field fragments that result from
the second-level adaptation. Note the expressiveness of the
markup in the example. The pointcut is specified within dol-
lar marks and can integrate, for example, a specific field to
the layout by associating its name within the template, this
will embed the field presentation from the second-level adap-
tation (af:notes). Alternatively, a more generic approach can
be used to iterate over anonymous fields within a fragment
of code (iteration-part and af:next).

4.2 READ Framework
The UI page can be seen as a composite of components

represented by a component tree. For example the root el-
ement can be a panel under which attaches other compo-
nents, such as panels, inputs, labels, etc. An alternative
example can be an XML page represented by a document
object model or a JSF page consisting of a view root and
UI components of various types in a tree structure under
the view. When a UI page is being rendered, a page ren-
derer traverses the tree of components and transforms each
component to the UI presentation. Each component has
commonly associated a handler called by the renderer. To
attach our approach to this process, we simply implement
a custom READ component handled by a custom READ
handler. Thus, when the renderer interprets a READ com-
ponent, it calls the READ handler and starts the process
within the READ framework. Our proposed framework is
illustrated in Figure 3, capturing various consequent stages
with sequence given by alphabetical order of stage labels
and denoting stage transitions by arrows. The first stage a
is the renderer that processes the component tree. Once a
READ component is processed in b, then the READ han-
dler is called, in c. It should be noted that it is possible that
a component has other components attached under it, and
thus the handler result can be a component sub-tree, that

Listing 6: Example layout template
<table class=" classLayout">
<af:iteration -part maxOccurs ="100">
<tr><td>$af:next$</td><td>$af:next$</td></tr>

</af:iteration -part>
<tr><td colspan ="2" class="foot">$af:notes$</td></tr>

</table>� �
Listing 7: Example use of READ UI component

<h:outputText value=" Person Info Form" />
<af:aui instance ="#{bean.instance.personInfo}"

layout ="personInfo -wide -layout"
edit="true" ignore ="password ,notes" />

<h:commandButton action ="#{bean.save}" value="save"/>� �
can be further interpreted. An example page code fragment
for JSF is shown in Listing 7. This fragment contains a two
basic components for text and a button, and then a READ
component with the prefix af . Note that the component
references an instance that is used for inspection and may
suggest a layout and addition directives or constraints for
presentation.

READ handler (c) can be seen as a controller of the en-
tire process. First, it receives an instance reference from the
component property and directives that are made available
in the READ context for pointcuts. The READ handler
is accessible and thus developer may integrate other third-
party frameworks or runtime information, such as screen-
size, access roles, geo-location, etc., to be accessible by the
READ context. Second, the handler calls inspection/audit
on the entity instance for which it generates the presenta-
tion (d). The aim of the inspection is to populate entity
join points and to make them available to the READ con-
text. Our inspector implementation uses a Reflective API
to produce a meta-model that is a three-level hierarchical
structure described in the previous section. It is aware of
entity settings, its fields, and their properties including third
party annotations with their parameters. Since such infor-
mation is class related, the inspection mechanism caches the
meta-model for given class. The meta-model (d.1) can be
further restricted by a given context. Some of its elements
are filtered based on the Annotation Driver Participant Pat-
tern (ADPP), commonly used for custom presentation set-
tings, security, etc. The outcome returns to the handler
as a context-aware entity meta-model. The handler then
makes this outcome available as join points in READ con-
text. The next stage is the transformation e. The trans-
formation weaver uses presentation rules; each rule consists
of a pointcut and advise that suggests a particular composi-
tion template which defines integration of composition rules.
First, the READ weaver takes each meta-model field with
its join-points and finds a matching pointcut in the presenta-
tion rules e.1.1. The pointcut then advises the appropriate
composition template e.1.2. The composition template uses
the target DSL to provide a basic field presentation and also
integrates composition rules shown in Listings 4. For exam-
ple consider a template shown in Listing 5; it is expected
that developer may adjust presentation rules and composi-
tion templates according to their system. The READ weaver
then interprets the composition template based on the com-
position rules and uses the READ context to interpret each
rule pointcuts and the rule body. The result of the template
weaving process is a field code fragment in the target DSL.
Such a mechanism scales well towards the concern space

377

READ
handler

READ
component

Page
renderer

Inspection

Meta-model

Context-aware
meta-model

Transformation

Presentation
rules

Template
composition

Field code
fragment

Fo
r e

ac
h

fie
ld

Layout

integration

Code fragment

Code runtime
integration

READ

..
..

..

..
..

..
..

..
..

..
..

.. ..
..

a b c

d

d
1

e f

e
11

e
12

e
21

Figure 3: READ framework

as new aspects can be integrated to the template as well
as to the presentation rules. After all fields are processed a
code representation exists for each field, then the layout e.2.1
decorates the field-code. Layout integration can be seen as
product of XML transformation to XSLT. In READ the tar-
get language field-code is in DSL and the layout described in
layout template uses references to named fields, anonymous
fields or an anonymous field iterator as shown in Listing 6.
This stage results in a DSL code fragment capturing all con-
sidered aspects. The product of the transformation is then
passed back to the handler. In the final stage, the DSL code
fragment compiles at runtime, and the compiled output em-
beds to the processed component tree for further processing
by the page renderer.

4.3 Design with READ
Next, we discuss software design with the use of READ.

Assuming that we build on the top of an enterprise archi-
tecture using 3-layers, the system has a persistence layer
that captures its data-model by classes and applies object-
relational mapping (ORM). For example Java EE defines
standards [8, 9] for the ORM, which extends the class model
with additional markup. Similarly a validation [2] can be
added. Generalization of such extensions and further en-
hancements are suggested by [7]. READ inspection uses all
of this information for the meta-model composition and for
join points. Besides the data model, READ can also inte-
grate business rules defined in the above layer. Preliminary
work in [5] shows that business rules can be inspected and
their definitions reused. This can be integrated to the READ
context. Considering common development approaches, so
far we only expect data-model entity extension. We refer
to such extended entities as rich entities. In the presenta-
tion layer, common components can be used together with
READ components. READ components take as attributes
an entity instance and addition presentation directives and
builds the presentation for given instance. Such a compo-
nent can produce a form, table or a report. With READ,
the developer does not design a form or a table directly per
each page use. Instead, the developer specifies presentation
rules that generalize mapping among entity fields and pre-
sentation widgets. Presentation rules are generic and can
be reused among projects. The developer then designs field
templates that are used by the READ weaver. These tem-
plates are also generic and can be reused. At the beginning,

it might be seen as a lot of effort, but we must consider that
all these templates are reused by the entire application, thus
the initial work amortizes over the size of the software ap-
plication. Furthermore, developers can design specialized or
generic layout templates.

Where can we see the the main benefits? First of all, the
system presentation reflects the actual state of the software
system. All actual data definitions, all runtime contexts,
and states are considered in the weaving process, thus the
data presentation reflects or adapts to it at runtime. Second,
with READ, the size of concern space does not increase the
complexity of the system, and described concerns can be
reused. Change of an individual concern is easy to locate
and modify. Third, READ reduces errors because the en-
tity becomes to be a single focal point of information, thus
we do not need to restate information multiple times in the
UI. Fourth, READ reduces development and maintenance
effort since a new entity presentation does not require any
coding. In an edge case a new presentation rule or a new
template can be designed. Fifth, READ naturally supports
adaptive UI design because it evaluates conditions at run-
time. Sixth, READ is open for integration with third party
frameworks such as EJB, Spring, Security frameworks, etc.
In the case of presentation, READ templates can integrate
a novel components or mechanisms. A more concrete exam-
ple to this is when we use Java EE and JSF for presenta-
tion, it is possible to make templates for various component
providers (such as PrimeFaces, RichFaces, Tomahawk, ICE-
Faces, etc.). Seventh, READ does not bind the developer to
a single use approach; other approaches can be applied at
the same time.

READ can integrate any new concerns to its context and
can evaluate them at runtime. Our current approach is eval-
uated on component-based UIs, although it is not limited to
it. The limiting factor can be the need to compile the out-
put and apply it to the UI. In some frameworks, this could
be complicated as it requires access to low-level UI compiler
libraries. The expressiveness of the UI is not limited by
READ since designer can adjust the presentation in compo-
sition templates. READ also applies to partially rendered
pages and AJAX rendered views.

5. EVALUATION
In this section, we consider a subsystem of an existing

ACM-ICPC system used for the registration of users and
user account management. The application follows main-
stream development with 3-layer Java EE. The lowest layer
consists of an object data-model with 7 entities with persis-
tence and validation constraints markup [2, 8, 9]. The busi-
ness layer contains controllers with business logic, CRUD
and search functionality. The presentation layer contains
UI implementation using JSF technology (no type-safety).

First, we consider this application without AUI. The UI
part of the application contains search with result listing
plus a detail and modification page. The presentation cov-
ers the entire data-model. Form submission of data is vali-
dated through enforced business constraints upon the sub-
mission. The application provides a single data presenta-
tion in one layout. In total there are 7 data classes and 46
fields presented in the UI. Excluding configuration and ex-
ternal libraries, the application consist of 1342 physical lines
of code (LOC) of Java, including persistence and business
logic, 2221 LOC of XML presentation, and 373 LOC of XML

378

«

Age student

Select

Mood confused

Select

Screen size * normal

Select required

Country Czech Republic

Fill in text mininum 0 letters maximum
255 letters

Country code CZ

Fill in text mininum 0 letters maximum
255 letters

City

Region

Postal code

Date pattern M/d/yy

IP 178.248.252.218

Fill in text mininum 0 letters maximum
255 letters

DetectUpdate

Config

Email

Fill in text mininum 0 letters maximum
255 letters it must be an email

Name

Fill in text mininum 0 letters maximum
255 letters

Country

Select

Begun studies (M/d/yy)

Fill in date must be future must be past

Menu: Person List New Person Login

Login

ReRender Save Cancel

aa

Powered by JFormBuilder

Figure 4: Sample form for confused student »Config

Fill in your email

Fill in your name

Select country you are from

Menu: Person List New Person Login

Login

ReRender Save Cancel
aa

Powered by JFormBuilder

Figure 5: Sample form for child

of application configuration. The type-unsafe XML presen-
tation exhibits 564 occurrences of restated information from
the data-model and its constraints [2, 8, 9]. Next, we imple-
ment the same application using READ. The data instance
source code is extended with additional presentation marks
[7] extending the field constraints (see example in Listing 2).
The main difference is that all components presenting data
in the UI are READ generated. They combine information
from data instance inspection, presentation rules and presen-
tation/layout templates. None of the stages involve a direct
reference to a particular data field, which leads to 0 occur-
rences of restated information in the type-unsafe XML. Fur-
thermore, presentation templates are reused. This results
in 1530 LOC of Java, including the additional data-model
marks and UI handler and 1715 LOC of XML including tem-
plates and transformation rules. This shows reasonable code
reduction for the presentation part, but at the same time we
must see the maintenance impact. In the manual approach
we are directly responsible for restating information cap-
tured in data model, where the READ handles this for us.
With READ we avoid inconsistency and errors, while re-
ducing development time. The greater code reduction effect
can be achieved on larger projects. Next, we should con-
sider that presentation templates and transformation rules
can be reused among projects, in such case the READ ap-
plication results in 1439 Java LOC and 1534 XML LOC and
equal configuration. The summary can be found in the first
part of Table 1. The aspect weaver itself is not included in
the evaluation because it is a generic, reusable and external
library (see the reasoning in [12]).

One serious drawback of this application example is that
it considers a superset of all possible end users. Thus users
with large screen are provided narrow layout, elderly might
need to zoom the page, internationals might wonder why
they need to fill in a state, and non-student registrants need
to provide student-specific information.

Next, we consider a more user friendly presentation sup-
porting adaptability. It provides end-users with a presenta-
tion related to their origin using IP geo-location, adjusting
to their browsing device screen size, conforming user rights,
and fitting user age and capabilities. In total, there are 3
main layouts to conform the screen-size, although multiple
data elements follow a custom field order among different
layouts. Furthermore, we provide 4 different presentations
for children, elderly, adult and experienced users, all possi-
bly combining a given layout (see UI examples in Figs. 4-6).

The application following the mainstream development
applies field restrictions, such as user rights or locations

»Config

Fill in your email

Fill in text mininum 0 letters
maximum 255 letters it
must be an email

Fill in your name

Fill in text mininum 0 letters
maximum 255 letters

Fill in state you are from

Fill in text mininum 0 letters
maximum 255 letters

Select country you are from

Select

Menu: Person List New Person Login

Login

ReRender Save Cancel
aa

Powered by JFormBuilder

Figure 6: Sample form for elderly

Table 1: Efforts comparison
User interface Simple features Adaptive features

Approach Man. READ reuse Man. READ reuse

Java LOC 1342 1530 1439 1658 1907 1754
UI XML LOC 2221 1715 1534 13072 5036 4508

Conf. XML LOC 373 442 373 373 649 373
Restated inf. 564 0 0 6768 0 0

UI Conditionals 0 0 0 240 20 20

awareness, throughout conditionals added to the presenta-
tion components. The problem with this approach is that
markup languages have limitations in separating layout from
the presentation. But also presentation cannot be separated
from field binding and property settings. The mainstream
approach results with 1658 LOC of Java and 13072 LOC of
XML presentation while the type-unsafe presentation code
consists of 240 conditionals and 6768 restated information
from the data-model and its component constraints [2, 8,
9]. Consider that with this approach, developers follow the
implementation in Figure 2 (b).

The READ approach allows designers separation of pre-
sentation, layout and also of security and location-awareness
through various stages within the framework. One of main
differences in our approach is that each concern is imple-
mented separately as demonstrated in Figure 2 (a). The
READ library combines these together. In our study, the
application backend Java code includes 1907 LOC, the pre-
sentation XML reduces to 5036 LOC, including the presen-
tation and layout templates, and 649 LOC of configuration
XML. Conditionals for location and user-rights are captured
in data-model, which reduces them to 20. Furthermore there
are 0 occurrences of restated information in the type-unsafe
XML. The overall summary of the evaluation is provided
in Table 1. Consider that in this second example, individ-
ual concerns multiply and their combinations apply. Stan-
dard approaches fail to effectively design reusable UI com-
ponents. The reason is behind the common approaches that
fail to capture individual concerns separately, which worsen
the code readability, reuse and maintenance. Untangling in-
dividual concerns through the AOP approach addresses all
the code readability, reuse and maintenance more effectively
as can be seen from our results.

Next, we evaluate basic maintenance scenarios. With
manual development, the UI is fragile because of its coupling
to the data-model in the type-unsafe environment. Changes
to a data field, its name or constraints causes inconsistency
in all its UI fragments. Such a simple change may lead to
12 locations that need to reflect the change. In type-safe
code, this can be easily refactored, but in XML it must be
be addressed by text search. With our READ approach,
the UI does not refer to the data-model directly; it only
refers to the instance that is presented (see Listing 7); thus
it does not require any UI correction. When we want to
globally change the presentation of a particular widget, in
the manual approach all widget occurrences must change;

379

however, with READ such change takes place solely in a
template. Changes to user rights manually requires reap-
plication of new conditionals in UI, since multiple different
presentations exist for a single field. This can impact a sig-
nificant amount of UI code. In READ, such change takes
place in the data-model, a single location. The addition of
a new form layout may require a new copy of the form with
tangled layout. In READ, the layout is a separate fragment,
thus only new layout template is designed.

For the performance evaluation, we consider 5 forms with
total of 21 fields in it. We evaluate the time needed for
the page to render using both the manual and READ ap-
proach. The load times for a page containing the forms,
averaged over 250 samples were 545ms (std. dev 47) for
manual approach and 539ms (std. dev 41) for READ. The
measurement shows that the page load time is similar for
both approaches.

6. CONCLUSION
Despite many benefits of AUIs, few production systems

support employing them. The reasons behind this include
the excessive cost of AUI development and maintenance as
shown in our case study. We provide an approach that con-
siders existing standards for application frameworks, aspect-
oriented programing and employs code-inspection to face the
complexity and efforts related to AUI design. Our READ
technique considerably reduces the cost involved in the de-
velopment of AUIs. We have developed a production-level
library, called AspectFaces, for Java systems that imple-
ments the READ framework. This library is currently used
in enterprise-level production systems.

In the future, we plan to provide an evaluation of READ
over a large production system. Next, we wish to extend
our approach to inspect and reuse application business rules.
Our preliminary results show that such approach will pro-
vide more options and variety of adaptivity and further code-
reduction for business rules-aware UI.

7. ACKNOWLEDGMENTS
Research supported by CTU grant SGS12/147/OHK3/2T/13

8. REFERENCES
[1] Java Unified Expression Language, Aug. 2013.

http://juel.sourceforge.net.

[2] E. Bernard. JSR 303: Bean validation, Nov. 2009.

[3] A. Blouin, B. Morin, O. Beaudoux, G. Nain,
P. Albers, and J.-M. Jézéquel. Combining
aspect-oriented modeling with property-based
reasoning to improve user interface adaptation. In
Proceedings of the 3rd ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’11,
pages 85–94, New York, NY, USA, 2011. ACM.

[4] M. Blumendorf, G. Lehmann, and S. Albayrak.
Bridging models and systems at runtime to build
adaptive user interfaces. In Proceedings of the 2nd
ACM SIGCHI symposium on Engineering interactive
computing systems, EICS ’10, pages 9–18, New York,
NY, USA, 2010. ACM.

[5] K. Cemus and T. Cerny. Towards effective business
logic design. In Proceedings of the 17th International
Scientific Student Conferenece POSTER 2013, Prague,
16,May 2013. Czech Technical University in Prague.

[6] T. Cerny, V. Chalupa, and M. Donahoo. Towards
smart user interface design. In Information Science
and Applications (ICISA), 2012 International
Conference on, pages 1 –6, may 2012.

[7] T. Cerny and E. Song. Model-driven Rich Form
Generation. Information: An International
Interdisciplinary Journal, 15(7, SI):2695–2714, JUL
2012.

[8] L. DeMichiel. JSR 317: JavaTM persistence API,
version 2.0, November 2009.

[9] L. DeMichiel and M. Keith. JSR 220: Enterprise
javabeans version 3.0. java persistence API, May 2006.

[10] R. Kennard and J. Leaney. Towards a general purpose
architecture for ui generation. Journal of Systems and
Software, 83(10):1896 – 1906, 2010.

[11] R. Kennard and S. Robert. Application of software
mining to automatic user interface generation. In
SoMeT’08, pages 244–254, 2008.

[12] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier,
C. V. Lopes, C. Maeda, and A. Mendhekar.
Aspect-oriented programming. In In
ECOOP’97-Object-Oriented Programming, 11th
European Conference, volume 1241, pages 220–242.
Springer, June 1997.

[13] R. Laddad. AspectJ in Action: Enterprise AOP with
Spring Applications. Manning Publications Co.,
Greenwich, CT, USA, 2nd edition, 2009.

[14] Q. Limbourg, J. Vanderdonckt, B. Michotte,
L. Bouillon, and V. López-Jaquero. USIXML: A
Language Supporting Multi-path Development of User
Interfaces Engineering Human Computer Interaction
and Interactive Systems. volume 3425 of Lecture Notes
in Computer Science, chapter 12, pages 134–135.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2005.

[15] M. Macik, M. Klima, and P. Slavik. Ui generation for
data visualisation in heterogenous environment. In
Proceedings of the 7th international conference on
Advances in visual computing - Volume Part II,
ISVC’11, pages 647–658, Berlin, Heidelberg, 2011.
Springer-Verlag.

[16] G. Mori, F. Paterno, and C. Santoro. Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Trans. Softw.
Eng., 30(8):507–520, Aug. 2004.

[17] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and
A. Solberg. Models@ run.time to support dynamic
adaptation. Computer, 42(10):44–51, Oct. 2009.

[18] J.-M. Oh, Y. S. Lee, and N. Moon. Towards cultural
user interface generator principles. In Proceedings of
the 2011 Fifth FTRA International Conference on
Multimedia and Ubiquitous Engineering, MUE ’11,
pages 143–148, Washington, DC, USA, 2011. IEEE
Computer Society.

[19] M. Stoerzer and S. Hanenberg. A classification of
pointcut language constructs. In Workshop on
Software-engineering Properties of Languages and
Aspect Technologies (SPLAT) held in conjunction with
AOSD, 2005.

380

