
SVPCGA: Selection on Virtual Population based
Compact Genetic Algorithm

Yi Hong, Sam Kwong, Hanli Wang, Zhihui Xie, and Qingsheng Ren

Abstract— This paper describes a novel virtual population
based truncation selection operator that extends our previously
proposed virtual population based tournament selection opera-
tor [1]. Moreover, two extensions of compact genetic algorithm
(CGA) that make use of virtual population based selection
operators are presented in this paper: one is the tournament
selection on virtual population based compact genetic algorithm
(SVPCGA-TO); the other is the truncation selection on virtual
population based compact genetic algorithm (SVPCGA-TR).
Both SVPCGA-TO and SVPCGA-TR are tested on several
benchmark problems and their results are compared with those
obtained by CGA [2] and ne-CGA [3]. Some superiorities of
SVPCGA in search reliability can be achieved.

I. INTRODUCTION

Genetic algorithms (GAs) are a class of population based
search methods that loosely mimic the behavior of Darwinian
evolution. Unlike hill-climbing search methods where only
one candidate solution is used, GAs maintain a population
of candidate partial solutions during their search. Therefore,
GAs have the ability of jumping over local optimal solutions
and may converge to the global optimal one. GAs have
gained a wide range of real-world applications. However,
it has also been known that the performances of GAs are
quite sensitive to their parameter settings. In order to obtain
a high-quality solution, several parameters of GAs should be
chosen with care. Among them is the population size. If the
population size is too small, GAs may not be able to explore
enough of the search space for consistently identifying good
candidate solutions. Whereas a large population size usually
leads to a slow convergence and a high memory cost. In
addition, it is a trivial task to set an appropriate population
size that is able to draw a good balance between convergent
reliability and convergent velocity.

In recent years, there is another tendency in the area of
evolutionary computation that directly removes the popula-
tion from GAs, but maintaining their population based search
abilities of GAs. This kind of GAs is commonly known as the
compact genetic algorithm (CGA), firstly proposed by Harik
et al. in [2]. CGA tries to mimic the behavior of GAs without
storing the whole population in the memory explicitly and its
operation is considered equivalent to the operation of GAs
that does not assume any linkages among variables.

Yi Hong, Sam Kwong and Hanli Wang are with the Department
of Computer Science, City University of Hong Kong, Tat Chee Av-
enue, Kowloon, Hong Kong (email: {yihong, CSSAMK}@cityu.edu.hk,
wanghl@cs.cityu.edu.hk). Zhihui Xie is with the Department of Math-
ematics, Qingsheng Ren is the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China. (email:
ren-qs@cs.sjtu.edu.cn).

This work was supported by City University of Hong Kong, Research
grant 114707.

CGA has the advantage of solving problems under the con-
dition that lacks of memory. However, the convergent relia-
bility of CGA sometimes is not satisfactory enough due to its
low selection pressure and its assumption that variables are
independent. In order to increase the selection pressure and
to improve the performance of CGA, Ahn and Ramakrishna
proposed the Elitism-Based Compact Genetic Algorithm (ne-
CGA)[3]. In this paper, we extend our previous work on
the virtual population based tournament selection and thus
introduce a virtual population based truncation selection
operator [1]. Moreover, we propose two types of CGA that
make use of virtual population based selection operators:
one is the tournament selection on virtual population based
compact genetic algorithm (SVPCGA-TO); the other is the
truncation selection on virtual population based compact
genetic algorithm (SVPCGA-TR). Both SVPCGA-TO and
SVPCGA-TR are tested on several benchmark problems and
their results are compared with those obtained by CGA and
ne-CGA.

The rest of this paper is arranged as follows. Section II
introduces the virtual population based selection operators.
Section III goes into details of describing the selection on
virtual population based compact genetic algorithm. Exper-
imental results and their analysis are given in section IV.
Section V concludes this paper.

II. VIRTUAL POPULATION BASED SELECTION OPERATORS

In GAs, new candidate solutions are reproduced by us-
ing crossover and mutation operators. Among them, the
crossover operator combines building blocks contained in
two different solutions to form new better ones, while the
mutation operator reproduces new candidate solutions by per-
turbing old ones. It is noted that both crossover and mutation
operators are executed on the whole population. Therefore,
the population can not be removed from traditional GAs.
However in Estimation of Distribution Algorithms (EDAs),
new candidate solutions are generated through sampling from
the density of promising solutions. Generic EDAs finish the
search task with the following steps employed [4] [5]:

Algorithm 1 Estimation of distribution algorithms.

(1) P1 ←set the initial density, t = 1;
(2) G ←generate M solutions through sampling from Pt;
(3) f ←calculate fitness values of solutions;
(4) GSe ←select N(N < M) promising solutions from G;
(5) Pt+1 ←estimate the density of solutions in GSe;
(6) t = t + 1, return to (2).

265

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

It can be observed from Algorithm 1 that EDAs completely
abandon crossover and mutation operators from GAs. There-
fore, only the selection operator in EDAs is directly executed
on the whole population G. This interesting characteristic
of EDAs has motivated us to design the virtual population
based selection operators, where promising individuals are
selected from a virtual population represented as a density Pt.
EDAs that use virtual population based selection operators
instead of real population based selection operators have
the advantage of being executed under a small memory
consumption. Therefore, EDAs that use virtual population
based selection operators are more suitable for solving many
memory limited optimization problems when compared with
EDAs that use real population based selection operators.

A. Virtual population based tournament selection operator

Let k denote the tournament size and N be the size
of the selected subpopulation GSe. The real population
based tournament selection operator randomly chooses k

solutions from the population G with replacement and lets
them compete, then the winner is stored into the selected
subpopulation GSe. The above steps iterate for N rounds
and the selected subpopulation GSe that contains N selected
solutions can be obtained.

Unlike the real population based tournament selection
operator, the virtual population based tournament selection
operator does not store the whole population G in the
memory. It constructs the selected subpopulation GSe with
the following steps employed: to generate k solutions by
sampling from the density Pt and let them compete; then the
winner is stored into the selected subpopulation GSe, while
the losers are directly removed from the memory. The above
steps iterate for N rounds and the selected subpopulation
GSe that contains N solutions can be obtained. Full steps
of the virtual population based tournament selection are
described in Algorithm 2. More details about the virtual
population based tournament selection can be consulted from
[1].

Algorithm 2 Virtual population based tournament selection
(the tournament size is equal to 2).

(1) s = 1;
(2) a, b ←generate two solutions through sampling

from the density Pt;
(3) (w, l) ←let a and b compete, then the winner is

denoted as w and the loser as l;
(4) GSe ←w is stored into GSe and l is directly

removed from the memory, s = s + 1;
(5) go to (2), if s ≤ N .

B. Virtual population based truncation selection operator

Herein, a novel virtual population based truncation se-
lection operator is proposed. The real population based
truncation selection operator firstly ranks all solutions in the
population G according to their fitness values, then selects

N(N < M) solutions with the highest fitness values to
construct the selected subpopulation GSe. Provided that only
one solution is replaced at each iteration, then the truncation
selection process can be described as follows: to generate one
solution a through sampling from the density Pt and calcu-
late its fitness value f(a). If f(a) is larger than that of the
N th best solution in the population G, then replace the N th

best solution in the population G with the new individual a.
In this case, the density Pt+1 should be recalculated, because
the selected subpopulation GSe has changed. Otherwise, no
change occurs on the selected subpopulation GSe, therefore
the density Pt+1 is the same as the density Pt.

Algorithm 3 Virtual population based truncation selection.

(1) β = 0, s = 0, vm = {v1, v2,, vN′};
(2) a ←generate one solution through sampling from

the density Pt;
(3) if vm ≤ f(a)

a) GSe ←the solution a is stored, s = s + 1;
b) vm ←f(a);
c) vm = {v1, v2,, vN′};

else β = β + 1;
(4) if β ≥ η, then to update the float vector V by generating

N ′ solutions through sampling from Pt and their fitness
values are stored into V and β = 0;

(5) go to (2), if s ≤ N .

Our proposed virtual population based truncation selection
operator utilizes the above processes without storing the
whole population G in the memory. In particular, a float
vector V is used to store fitness values of the N ′ best
solutions in the previous generation, that is:

V = {v1, v2,, vN ′}

Let vm denote the minimal value of elements in V , that is:

vm = min{v1, v2,, vN ′}

Then one solution a is generated through sampling from the
density Pt. If its fitness value is higher than vm, then the
solution a is stored into the selected subpopulation GSe. At
the same time, the element vm in the vector V is replaced
by f(a). The above steps iterate until N solutions have been
selected into the subpopulation GSe. One problem associated
with the above approach is when vm in the float vector V is
much larger than the fitness values of most solutions sampled
from the density Pt, the number of solutions that will be
able to update the density Pt becomes less. In this case, the
evolutionary process of EDAs tends to be stagnant and the
search of EDAs becomes like the random walk.

To mitigate the above problem, we set an integer β to
count the number of the solutions whose fitness values are
lower than vm in each selection round. If β is larger than
a predefined value η, then the float vector V is updated as
follows: to generate N ′ solutions through sampling from the
density Pt and their fitness values are stored into the float
vector V one by one. Full steps of the virtual population

266 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

TABLE I

MEMORY CONSUMPTIONS OF CGA, NE-CGA AND SVPCGA.

CGA NE-CGA SVPC.-TR SVPC.-TO
SOLUTIONS 2 1 2 1
FLOAT NUM. 2 2 2 N ′ + 1

based truncation selection are described in Algorithm 3. In
Algorithm 3, the float vector V is initialized as the fitness
values of N ′ random solutions:

vi = f(bi) i = 1, 2,, N ′

where {b1, b2,, bN ′} are random solutions that are succes-
sively generated1.

It is worthwhile mentioning that our proposed virtual
population based truncation selection operator extends the
elitism based selection operator in the following two facets
[3]: (1) The elitism in the virtual population based truncation
selection operator is the minimal value of a float vector that
contains N(N � 1) highest fitness values, while the elitism
in the elitism-based selection operator is a float number that
equals to the fitness value of the best individual. (2) If a
stagnancy of evolution is met, the elitism-based selection
operator replaces the elitism by the fitness value of a solution
that is generated at random, while the updating strategy in
the virtual population based truncation selection operator is
guided by the density Pt. The above two differences guar-
antee that the virtual population based truncation selection
operator is more flexible and efficient than the elitism-based
selection operator.

Algorithm 4 Tournament selection on virtual population
based compact genetic algorithm (SVPCGA-TO).

(1) to initialize the density P1 and t = 1;

(2) e =
−→
0 ;

(3) to learn the activation e as follows:
a) s = 1;
b) a, b ← to generate two solutions through

sampling from density Pt;
c) (w, l) ← to let a and b compete, the winner

is denoted as w and the loser as l;
d) to remove l from the memory;
e) e = s−1

s
· e + 1

s
· w;

f) to remove w from the memory;
g) s = s + 1, then go to b) until s > N ;

(4) to update the density Pt by the activation e as:
Pt+1 = (1 − λ) · Pt + λ · e;

(5) if the stop condition is not met, t = t + 1, go to (2).

1In this paper, ”successively generated” means the solution will be
removed from the memory after their fitness value is calculated and stored.

Algorithm 5 Truncation selection on virtual population
based compact genetic algorithm (SVPCGA-TR).

(1) to initialize the density P1 and t = 1;

(2) e =
−→
0 ;

(3) to learn the activation e as follows:
1) s = 1 and β = 0;
2) w ← to generate one solution w through

sampling from density Pt;
3) if vm ≤ f(w)

(a) e = s−1

s
· e + 1

s
· w;

(b) vm ← f(w);
(c) vm = min{v1, v2,, vN′};

else β = β + 1;
4) to remove l from the memory;
5) if β ≥ η, to successively generate N solutions

through sampling from Pt and the float vector
V is updated by their fitness values and β = 0;

6) to remove w from the memory;
7) s = s + 1, then go to (2) until s > N ;

(4) to update the density Pt by the activation e:
Pt+1 = (1 − λ) · Pt + λ · e;

(5) if the stop condition is not met, t = t + 1, go to 3.

III. SELECTION ON VIRTUAL POPULATION BASED

COMPACT GENETIC ALGORITHM

In this section, we describe two extensions of compact
genetic algorithm that make use of virtual population based
selection operators. The main idea of these two extensions is
to combine virtual population based selection operators with
an incremental learning process. The incremental learning
process updates the density Pt by the following rule:

Pt+1 = Pt + λ × (e − Pt) (1)

where λ(0 < λ ≤ 0) is the learning rate and e is an
activation vector that is learned from the selected solutions in
the tth generation. Provided that w1, w2,, wN are the N

solutions that are successively selected in the tth generation.
In order to learn the activation e without storing the solutions
w1, w2,, wN in the memory, another incremental learning
process is used as follows:

e =
s − 1

s
· e +

1

s
· ws (2)

where s = 1, 2,, N and the initial value of e is set as
−→
0 . Frameworks of tournament selection on virtual popula-
tion based compact genetic algorithm (SVPCGA-TO) and
truncation selection on virtual population based compact
genetic algorithm (SVPCGA-TR) are given in Algorithm 4
and Algorithm 5. The stop condition is set as the maximal
number of fitness evaluations. Memory consumptions of
CGA, ne-CGA and SVPCGA are given in Table 1, where
”solutions” represents the number of solutions that are stored
in the memory and ”float num.” denotes the number of float
numbers that are used to store the fitness values.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 267

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed SVPCGA-TO and SVPCGA-TR are tested
on six benchmark problems (see Appendix) and their results
are compared with those obtained by CGA and ne-CGA.
Parameter settings in our experiments are given as follows:
the learning rate λ is set as 0.01 for ne-CGA and SVPCGA,
the tournament size for CGA and SVPCGA-TO equals to 2,
the threshold value η to update the elitism or the float vector
is set as 30 for SVPCGA-TR and ne-CGA, the number of
solutions N selected at each generation is fixed to 30 for
SVPCGA and the length N ′ of the vector V is fixed to 100
for SVPCGA-TR.

First, we test and compare the convergent reliability of
CGA, ne-CGA and SVPCGA under different numbers of
variables through calculating the difference between the
converged solutions and the optimal solutions. The results
are shown in Figure 1. From Figure 1, we can observe that
the performance of CGA is not satisfactory enough for all
tested six benchmark problems. For example, the differences
between the converged value of the Weighed One-Max
Problem and the global optimal value of the Weighed One-
Max Problem is as large as 5900, when the number of
variables increases up to 1000. One method to improve the
reliability of CGA is to decrease the learning rate λ from
0.01 to 0.001. However, experimental results let us know that
this improvement is sometimes limited. To take the Max-Min
problem as an example, the difference between the converged
result and the optimal result still comes up to 3.0, even if our
learning rate is set as small as 0.001. ne-CGA outperforms
CGA on all tested six benchmark problems. However, the
solutions captured by ne-CGA still significantly deviate from
the global optimal solutions. The reliability of SVPCGA are
much better than those of CGA and ne-CGA, particular when
the number of the variables are larger than 500. For all
tested problems, both SVPCGA-TO and SVPCGA-TR are
able to identify high-quality solutions, even if the number of
variables is 1000.

Second, we test and compare the convergent velocity of
CGA, ne-CGA and SVPCGA. The results are shown in
Figure 2. From Figure 2, we can see that SVPCGA requires
much more fitness evaluations to converge when compared
with CGA and ne-CGA. Another phenomenon observed
from Figure 2 is that SVPCGA-TR converges faster than
SVPCGA-TO.

In addition, the effects of the learning rate on performances
of SVPCGA are also tested. Figure 3 and Figure 4 give the
results. Figure 4 lets us know that a large value of the learning
rate usually leads to a fast convergence, but a poor convergent
result.

V. CONCLUSIONS

This paper has proposed the virtual population based
truncation selection operator that extended our previous work
on the virtual population based tournament selection. In
addition, we have introduced two novel compact genetic

algorithms that make use of virtual population based se-
lection operators: one is the tournament selection on virtual
population based compact genetic algorithm (SVPCGA-TO)
and the other is the truncation selection on virtual popu-
lation based compact genetic algorithm (SVPCGA-TR). The
superiority of SVPCGA-TR and SVPCGA-TO in convergent
reliability over CGA and ne-CGA has been demonstrated by
experimental results on several benchmark problems under
different numbers of variables.

VI. APPENDIX

The first benchmark problem is the Weighed One-Max:

max

(
n∑

i=1

i · xi

)
xi ∈ {0, 1}

The second benchmark problem is the Quadratic Problem:

max

(
n∑

i=1

f(x2i−1, x2i)

)
x2i−1, x2i ∈ {0, 1}

The third benchmark problem is the Bit Layout Problem:

max

(
n−1∑
i=2

f(xi−1, xi, xi+1)

)
xi−1, xi, xi+1 ∈ {0, 1}

where f(·) equals 1 if and only if xi is different from both
xi−1 and xi+1, otherwise it equals 0.

The fourth benchmark problem is the Max-Min Problem:

maxmin{u1, u2,, un}

where ui =
∑20

j=1
xij , xij ∈ {0, 1}

The fifth benchmark problem is the Noisy Optimization:

max

(
n∑

i=1

xi + N(0, 1)

)
xi ∈ {0, 1}

where N(0, 1) is the noise that satisfies normal distribution.
The sixth benchmark problem is the Satisfaction Problem:

max

(
n∑

i=1

f(x5i−4, x5i−3, x5i−2, x5i−1, x5i)

)
xi ∈ {0, 1}

where f(x5i−4, x5i−3, x5i−2, x5i−1, x5i) equals 5 if and only
if all variables are 1, otherwise it equals 0.

REFERENCES

[1] Y. Hong, S. Kwong, Q. Ren and X. Wang, “A comprehensive com-
parison between real population based tournament selection and virtual
population based tournament selection,” IEEE Congress on Evolution-
ary Computation, pp. 445-452, 2007.

[2] G.R. Harik, F.G. Lobo and D.E. Goldberg, “The compact genetic
algorithm,” IEEE Transactions on Evolutionary Computation, vol. 3,
pp. 287-297, 1999.

[3] C.W. Ahn and R.S. Ramahrishna, “Elistism-based compact genetic
algorithm,” IEEE Transactions on Evolutionary Computation, vol. 7,
pp. 367-387, 2003.

[4] P. Larran̂age and J.A. Lozano, Estimation of Distribution Algorithms.
Kluwer Academic Publisher. 2002.

[5] Q. Zhang and H. Mühleubein, “On the convergence of a class of esti-
mation of distribution algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 8, pp. 127-136, 2004.

268 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

4000

5000

6000

The number of variables

D
iff

e
re

n
ce

 b
e
tw

e
e
n
 t
h
e
 o

p
tim

a
l r

e
su

lt
a
n
d
 t
h
e
 c

o
n
ve

rg
e
d
 r

e
su

lt

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

The number of variables

D
iff

e
re

n
ce

 b
e
tw

e
e
n
 t
h
e
 o

p
tim

a
l r

e
su

lt
a
n
d
 t
h
e
 c

o
n
ve

rg
e
d
 r

e
su

lt

CGA with the learning rate 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate 0.001

(a) Weighed One-Max Problem (b) Quadratic Problem

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

The number of fitness evaluations

D
iff

e
re

n
ce

 b
e
tw

e
e
n
 t
h
e
 o

p
tim

a
l r

e
su

lt
a
n
d
 t
h
e
 c

o
n
ve

rg
e
d
 r

e
su

lt

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

100 200 300 400 500 600 700 800 900 1000
-1

0

1

2

3

4

5

6

7

8

The number of variables

D
iff

e
re

n
ce

 b
e
tw

e
e
n
 t
h
e
 o

p
tim

a
l r

e
su

lt
a
n
d
 t
h
e
 c

o
n
ve

rg
e
d
 r

e
su

lt

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

(c) Bit Layout Problem (d) Max-Min Problem

100 200 300 400 500 600 700 800 900 1000

0

50

100

150

The number of variables

D
iff

e
re

n
ce

 b
e
tw

e
e
n
 t
h
e
 o

p
tim

a
l r

e
su

lt
a
n
d
 t
h
e
 c

o
n
ve

rg
e
d
 r

e
su

lt

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

100 200 300 400 500 600 700 800 900 1000
-50

0

50

100

150

200

250

300

350

The number of variables

D
iff

e
re

n
ce

 b
e
tw

e
e
n
 t
h
e
 o

p
tim

a
l r

e
su

lt
a
n
d
 t
h
e
 c

o
n
ve

rg
e
d
 r

e
su

lt

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

(e) Noisy Optimization Problem (f) Satisfaction Problem

Fig. 1. Convergent reliability. All algorithms are executed for 20 independent runs. Their results are averaged and reported.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 269

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

The number of variables

T
h
e
 n

u
m

b
e
r

o
f f

itn
e
ss

 e
va

lu
a
tio

n
s

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

data5

100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12
x 10

5

Generations

T
h
e
 n

u
m

b
e
r

o
f
fit

n
e
ss

 e
va

lu
a
tio

n
s

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

(a) Weighed One-Max Problem (b) Quadratic Problem

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8
x 10

5

The number of variables

T
h
e
 n

u
m

b
e
r

o
f
fit

n
e
ss

 e
va

lu
a
tio

n
s

to
 c

o
n
ve

rg
e

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18
x 10

5

The number of variables

T
h
e
 n

u
m

b
e
r

o
f
fit

n
e
ss

 e
va

lu
a
tio

n
s

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

(c) Bit Layout Problem (d) Max-Min Problem

100 200 300 400 500 600 700 800 900 1000
0

5

10

15
x 10

5

The number of variables

T
h
e
 n

u
m

b
e
r

o
f
fit

n
e
ss

 e
va

lu
a
tio

n
s

CGA with the learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8
x 10

5

The number of variables

T
h
e
 n

u
m

b
e
r

o
f
fit

n
e
ss

 e
va

lu
a
tio

n
s

CGA with learning rate: 0.01

ne-CGA

SVPCGA-TO
SVPCGA-TR

CGA with the learning rate: 0.001

(e) Noisy Optimization Problem (f) Satisfaction Problem

Fig. 2. Convergent velocity. All algorithms are executed for 20 independent runs. Their results are averaged and reported.

270 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

0 0.5 1 1.5 2 2.5 3

x 10
4

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 v
a
lu

e
s

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

0 0.5 1 1.5 2 2.5 3

x 10
4

200

250

300

350

400

450

500

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 v
a
lu

e
s

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

(a) Weighed One-Max Problem (b) Quadratic Problem

0 0.5 1 1.5 2 2.5 3

x 10
4

200

300

400

500

600

700

800

900

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 v
a
lu

e
s

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

0 0.5 1 1.5 2 2.5 3

x 10
4

4

6

8

10

12

14

16

18

20

22

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

(c) Bit Layout Problem (d) Max-Min Problem

0 0.5 1 1.5 2 2.5 3

x 10
4

400

500

600

700

800

900

1000

1100

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 v
a
lu

e
s

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

1100

Generations

A
ve

ra
g
e
 f
itn

e
ss

 v
a
lu

e
s

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

(e) Noisy Optimization Problem (f) Satisfaction Problem

Fig. 3. Effect of the learning rate on SVPCGA-TO. All algorithms are executed for one time and their results are reported.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 271

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

2.5

3

3.5

4

4.5

5

5.5
x 10

5

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 v
a
lu

e
s

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

200

250

300

350

400

450

500

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 v
a
lu

e
s

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

(a) Weighed One-Max Problem (b) Quadratic Problem

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

200

300

400

500

600

700

800

900

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 r
e
su

lts

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

4

6

8

10

12

14

16

18

20

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 r
e
su

lts

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

(c) Bit Layout Problem (d) Max-Min Problem

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

500

600

700

800

900

1000

1100

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 r
e
su

lts

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

100

200

300

400

500

600

700

800

900

1000

1100

Generations

A
ve

ra
g
e
 fi

tn
e
ss

 r
e
su

lts

the learning rate: 0.01

the learning rate: 0.1
the learning rate: 0.5

the learning rate: 1.0

(e) Noisy Optimization Problem (f) Satisfaction Problem

Fig. 4. Effect of the learning rate on SVPCGA-TR. All algorithms are executed for one time and their results are reported.

272 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

