
Parallel Distributed Processing of Constrained
Skyline Queries by Filtering

Bin Cui 1, Hua Lu 2, Quanqing Xu 1, Lijiang Chen 1, Yafei Dai 1, Yongluan Zhou 3
'Department of Computer Science, Peking University, China

{bin.cui, xqq, clj, dyf}@pku.edu.cn

2Department of Computer Science, Aalborg University, Denmark
luhua@cs.aau.dk

3 Distributed Information Systems Laboratory, EPFL, Switzerland
yongluan.zhou@epf1.ch

Abstract- Skyline queries are capable of retrieving interesting
points from a large data set according to multiple criteria. Most
work on skyline queries so far has assumed a centralized storage,
whereas in practice relevant data are often distributed among
geographically scattered sites. In this work, we tackle constrained
skyline queries in large-scale distributed environments without
the assumption of any overlay structures, and propose a novel al-
gorithm named PaDSkyline (Parallel Distributed Skyline query
processing). PaDSkyline significantly shortens the response time
by performing parallel processing over site groups produced by
a partition algorithm. Within each group, it locally optimizes
the query processing over distributed sites. It also drastically
enhances the network transmission efficiency by performing early
reduction of skyline candidates with deliberately selected multiple
filtering points. Results of extensive experiments demonstrate the
efficiency and robustness of our proposals.

I. INTRODUCTION

A skyline query [1] returns interesting points from a set
of multiple dimensional data points. A point is said to be
interesting if it is not dominated by any other points. A point
pt1 is said to dominate pt2, if ptl is not worse than pt2 in
every single dimension but better than pt2 in at least one
dimension. The meaning of "better" varies in different situ-
ations, for example "smaller" or "larger" in value comparison,
and "earlier" or "later" in date comparison. Because of their
powerful capability of retrieving interesting points from a large
n-dimensional data set, skyline queries are well suitable for
applications like decision making and multiple criteria opti-
mization. For instance, a tourist can issue a skyline query on
a hotel relation to get those ones with good recommendations
and cheap prices.
Most work on skyline queries [1], [2], [3], [4], [5], [6] so

far has assumed a centralized data storage, and been focused
on providing efficient skyline computation algorithms on a
sole database. This assumption, however, fails to reflect the
distributed computing environments consisting of different
computers, which are located at geographically scattered sites
and connected via Internet. For example, a stock trader needs
to know which stocks worldwide are worth investing, based
on the trading records of the previous day. For this purpose, he

has to access multiple stock information databases available at
different places like New York Stock Exchange, London Stock
Exchange, Tokyo Stock Exchange, etc. For each single stock,
the agent needs to take into consideration multiple attributes
like last trade price, change, last close price, estimated
price, volume, etc. Therefore, a skyline query against those
distributed databases will help the agent get those interesting
stocks.

Another real-life example is online comparative shopping, in
which a search engine needs to get good bargains from many
different shopping sites according to multiple criteria like
price, quality, guarantee, etc. Clearly, such multiple criteria
are best captured by a skyline query.

In such cases as mentioned above, however, directly apply-
ing existing techniques to process skyline queries would incur
large overhead. In this work, we intend to efficiently process
constrained skyline queries [5] in such widely distributed en-
vironments. We propose a novel algorithm named PaDskyline
which stands for Parallel Distributed Skyline query processing.
A constrained skyline query is attached with constraints on
specific dimensions. A constraint on a dimension is a range
specifying the user's interest. Refer again to the stock selection
example. The agent may only be interested in those stocks
whose last trade prices are between $15 to $20. Similar
constraints are also applicable to other dimensions. Two points
are noteworthy about possible constraints. One is that the range
denoted by a constraint can be unclosed, like estimated price
higher than $20. The other is that constraints can be available
in only part of the total n dimensions.

Given a distributed environment as aforementioned, our
objective is efficient query processing strategies that shorten
the overall query response time. We first speed up the overall
query processing by achieving parallelism of distributed query
execution. Given a skyline query with constraints, all relevant
sites are partitioned into incomparable groups among which
the query can be executed in parallel. The parallel execution
also makes it possible to report skyline points progressively,
which is usually desirable to users. Within each group, specific
plans are proposed to further improve the query processing

978-1-4244-1837-4/08/$25.00 (© 2008 IEEE 546 ICDE 2008

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

involving all intra-group sites. On a processing site, multiple
filtering points are deliberately picked based on their overall
dominating potential from the local skyline. They are then sent
to other sites with the query request, where they help identify
more unqualified points otherwise reported as false positives,
and thus reducing the communication cost between data sites.
We make the following contributions on the problem of dis-

tributed constrained skyline queries in a network environment
without assuming any overlay structures. First, we propose a
specific partition algorithm that divides all relevant sites into
groups, such that a given query can be executed in parallel
among all those site groups. Second, we elaborate the query
execution within any single group of sites, which includes
deciding a query forwarding plan between sites and designat-
ing a group head responsible for query results merger. Third,
we give a parallel distributed skyline algorithm based on the
first two contributions, together with a cost model to estimate
query costs. Fourth, we detail how to use multiple filtering
points in distributed query processing such that the network
data transmission is more efficient. Two simple yet efficient
heuristics are developed for selecting multiple filtering points
on a processing site. Finally, we conduct extensive experiments
on both synthetic and real datasets, and the results demonstrate
the efficiency and robustness of our proposals.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief review of related work on skyline
queries. Section III gives the problem definition. In Sections IV
and V we detail the parallel distributed query execution and the
selection of multiple filtering points, respectively. Section VI
presents the experimental results. Finally, we conclude the
paper in Section VII.

II. RELATED WORK

Borzonyi et al. [1] introduced the skyline operator into
database systems with algorithms Block Nested Loop (BNL)
and Divide-and-Conquer (D&C). Chomicki et al. [2] proposed
a Sort-Filter-Skyline (SFS) algorithm as a variant of BNL. Tan
et al. [6] proposed two progressive algorithms: Bitmap and
Index. The former represents points in bit vectors and employs
bit-wise operations, while the latter utilizes data transforma-
tion and B+-tree indexing. Kossmann et al. [4] proposed a
Nearest Neighbor (NN) method. It identifies skyline points by
recursively invoking R*-tree based depth-first NN search over
different data portions. Papadias et al. [5] proposed a Branch-
and-Bound Skyline (BBS) method based on the best-first
nearest neighbor algorithm [7]. Godfrey et al. [3] provided a
comprehensive analysis of previous skyline algorithms without
indexing supports, and proposed a new hybrid method with
improvement. All these works assume centralized data storage.

Deviating from skyline queries in the centralized setting,
Balke et al. [8] addressed skyline operation over web databases
where different dimensions are stored in different data sites.
Their algorithm first retrieves values in every dimension from
remote data sites using sorted access in round-robin on all
dimensions. This continues until all dimension values of an
object, called the terminating object, have been retrieved. Then

all non-skyline objects will be filtered from all those objects
with at least one dimension value retrieved. Differently in this
paper, our work deals with distribution of data horizontally
partitioned.
Wu et al. [9] proposed a parallel execution of constrained

skyline queries in a CAN [10] based distributed environment.
By using the query range to recursively partition the data
region on every data site involved, and encoding each involved
(sub-)region dynamically, their method avoids accessing sites
not containing potential skyline points and progressively re-
ports correct skyline points. Wang et al. [11] developed Skyline
Space Partitioning (SSP) approach to compute skylines on a
tree-structured P2P platform BATON. SSP partitions the sky-
line space into regions and maps them in a single dimensional
order, which allows regions to be distributed to different peer
nodes according to BATON protocols. Our proposal in this
paper differs from these two pieces of work in that we do not
assume any overlay availability on top of the original network.
Huang et al. [12] proposed techniques for skyline query

processing in MANETs. Lightweight devices in MANETs are
able to issue spatially constrained skyline queries that involve
data stored on many mobile devices. Queries are forwarded
through the whole MANET without routing information. They
proposed a filtering based data reduction technique that re-
duces the data transferred among devices. Our work, assuming
a wired large-scale distributed environment, is also different
from this work in a MANET setting.

III. PROBLEM DEFINITION

Given a set of m sites S = {Si, S2,...., Sm.} distributed at
different geographic locations, each Si has a local relation Ri.
Every tuple in any Ri is n-dimensional point, represented as
(P1,P2 ...* Pn). Different Ris may overlap, i.e., it is possible
that Ri n Rj 0 for it'j.

Without loss of generality, we assume smaller values are
preferred in the skyline operator. We use pti -C pt2 to
represent point pti dominates point pt2. Besides, we suppose
any site Sorg, able to directly communicate with any other site
Si C S through wired end-to-end connections, may initiate
against all Ris a skyline query with a set of n constraints
C = {C1,C2,... Cn4. Each Ci is either a range [Ili, ui], or
a 0 indicating no constraint in that dimension. Our goal is to
get the result for the constrained skyline query efficiently, i.e.,
with short response time. We define the query response time
as the time period from the moment a query is issued by a site
Sorg, to the moment Sorg receives the complete and correct
answers after contacting other sites.

To shorten the response time of a query, we mainly endeavor
on two aspects. On one hand, we propose effective ways
to guide deciding the query forwarding and execution order
between different sites, so as to obtain the query execution
parallelism, and boost the result reporting progressiveness.
On the other hand, we generalize the single filtering point
idea [12] to use multiple filtering points, and thus enhancing
the filtering power and reducing the amount of data transmitted
between remote sites. We propose benefit measurements and

547

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

heuristics to guide the selection of powerful multiple filtering
points.

In contrast to previous work [11], [9], our problem definition
does not assume the availability of an overlay network where
different nodes hold disjoint data partitions. Instead, different
relations on different sites may overlap. Therefore, these
previous methods are not applicable to our problem.

IV. PARALLEL DISTRIBUTED SKYLINE PROCESSING

A. Motivation
In the previous work [12], a skyline query is forwarded

among mobile peers via multiple hops according to the
wireless nature of MANETs [13]. Whereas in a wired envi-
ronment, connections are end-to-end. Because of such wired
connections between each pair of sites, a constrained skyline
query can be sent out to all peer sites and then each site
can execute the query on its own data set simultaneously.
This naive execution plan might benefit from the parallelism
among all peer sites. However, it is very sensitive to large local
skyline results, usually of but not limited to anti-correlated
datasets [1], which lead to heavy communication cost. For
this reason, identifying unqualified candidates in local skylines
early is favorable.

Following the data reduction principle in semijoin in dis-
tributed query processing [14], [15], Huang et al. [12] pro-
posed to transfer a single local skyline point with the query
request among mobile peers, which acts as a filter to identify
those unqualified ones in peers' local skylines. In this work,
we extend this single filtering point to multiple ones since
wired connections are much faster and more reliable than
wireless channels. How to choose multiple filtering points will
be detailed in Section V. In this section, we focus on finding a
good distributed skyline query execution plan that minimizes
the total execution time. We compare the naive approach with
the parallel distributed approach with multiple filtering points
we will propose, using a cost model taking into account both
local processing time and network transmission time.
We argue that the order to execute a distributed skyline

query among multiple sites really matters, because an ap-
propriate execution order can filter more data points earlier
and thus reducing not only communication cost but also the
local processing cost in the subsequent execution. We intend
to balance the parallelism and filtering when processing a
distributed skyline query (DSQ for short) and get short overall
response time.

B. Parallel Distributed Query Execution
To help determine execution order among different sites, the

query originator first asks each site Si for its MBRi, the n-
dimensional minimum bounding box of the local relation Ri.
If a site's MBR disjoins with the constraint set C specified
in the query, it will not be considered in the following query
processing. For each site whose MBRi overlaps with C, we
only need to consider the intersection MBRi nC. We call this
intersection reduced minimum bounding box and use rMBRi
to represent it.

We proceed to partition all those sites left into several
groups according to their rMBRs, such that the skyline
computation in any one group does not depend on or affect the
computation in any other group. Therefore, the given skyline
query can be executed in parallel among those site groups.
While within any individual site group the query is executed
according to some local plans, which will be discussed in
Section IV-B.2.

1) Incomparable Partition of Sites and Parallelism: Given
two data sites Si and Sj (with their reduced minimum
bounding boxes rMBRi and rMBRj respectively), we need
to determine if the skyline query can be executed against
them in a parallel way such that two results do not affect
each other. Intuitively, we cannot do this if they overlap, as
in the overlapping region points from different boxes may be
not incomparable. Whereas, the non-overlapping relationship
does not necessarily permit parallelism. To help deal with this
problem, we first give a definition of "incomparable" between
two data sites.

Definition 1: Two data sites Si and Sj are incompa-
rable with respect to the constrained skyline query, iff
rMBRi.min.DR n rMBR = 0 and rMBRi.min.DR n
rMBRi = 0.
In Definition 1 above, rMBRi.min.DR stands for the domi-
nating region of rMBRi's minimum corner with respect to the
constraints specified in the skyline query. It is obtained as the
intersection of the original dominating region [12] and the set
of constraints C, which will be formalized in Section V-A.1.
When there is no confusion or ambiguity in the context, we
also say that two reduced minimum bounding boxes rMBRi
and rMBRj are incomparable, which actually means that their
corresponding data sites are incomparable. With this definition,
we have the following lemma.
Lemma 1: If two data sites Si and Sj are incomparable with

respect to the constrained skyline query, it holds that Vpti e
rMBRi, 7ptj C rMBRj s.t. pti -C ptj and Vptj C rMBRj,
Apti C rMBRi s.t. ptj -C pti.
The correctness of this lemma is guaranteed by the property
that the minimum corner of rMBR has the strongest dominat-
ing capability among all possible points in rMBR. This lemma
shows that a given skyline query can be executed against two
incomparable sites in a parallel way without conflict between
two results. It is easy to see that this parallelism can be gener-
alized to multiple sites, any pair of which are incomparable. A
by-product of this parallelism is the progressiveness of skyline
reporting, because the result of any single site among those
pair-wise incomparable sites definitely appears in the final
skyline.

It is not impossible that, however, all sites are not pair-wise
incomparable, as we do not assume any partition available
among all sites. Thus, we partition the set of sites S into non-
empty groups that satisfy: (1) Any pair of sites from different
groups are incomparable; (2) For any pair of sites Si and
Sj within the same non-singleton group, there exists a path
Si, Sk, . . ., Sj such that any adjacent pair along the path are
not incomparable. Property 1 ensures that parallel execution

548

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

can be carried out against groups of sites. While property
2 clusters together those sites whose local skyline results
potentially conflict, and provides opportunity for alternative
optimizations. We call the partition incomparable partition of
sites.
The partition algorithm, iucmpPartititon for short, is shown

in Figure 1. Before the real partitioning, intersections of site
MBRs and constraint set C are obtained with unpromising sites
being pruned (lines 1-3). The partitioning procedure starts by
assigning the first candidate site into a singleton group (line 4).
Then, each remaining site Si is compared with every current
group, and any group containing sites not incomparable with
Si is removed from the partition into a temporary group Si
(line 7-9). At the end of each loop Si is assigned into the
adjusted partition, either in a new singleton group or in the
temporary group with other relevant sites found in the loop
(line 10).

Algorithm icmpPartition(S, C)
Input: S is the set of data sites

C is the set of constraints in the skyline query
Output: an incomparable partition of S

11 Adjust MBRs and prune unqualified sites
1. for each Si C S
2. rMBRi =MBRinC;
3. if (rMBRi == 0) S = {S-}S

HI Compute the independent partition of all relevant sites
4. Is = {{Si,}}; HI Sl, is the current l" element in S
5. for each Si C S-{S1/}
6. Si = 0;
7. for each Si C Us
8. if (3Sj C Si s.t. Sj and Si are not incomparable)
9. Fls = Is-{S,}; Si = S, U S,;
10. us = sU{{Si}Usi}

Fig. 1. Incomparable Partition Algorithm

Refer to an example in 2-dimensional space shown in
Figure 2, where S {A, B, C, D, E, F, G}. Each site's
MBR is shown in a corresponding rectangles. Based on the
incomparableness related properties above, S is partitioned
into {{A}, {B, C, D, E}, {F, G}}. A forms a singleton group
because it is incomparable with any other site. Though B and
D are incomparable, they are assigned to the same group with
C and E, because either of them are not incomparable with
C (and E). F and G are incomparable with any other site but
not with each other, therefore they constitute another group.

2) Intra-Group Query Execution: Within each group of
the sites partition obtained above, we need to consider the
execution order among those relevant sites. Now effective
filtering is our concern, in other words we use filtering points
when forwarding a DSQ between sites in the same group.
Given a group Si {Si k }, we have two alternatives
for intra-group execution order.
A simple way is to decide a sequence of these sites and

tP2

0

Fig. 2. Incomparable Partition of Sites

forward the DSQ with filtering points along the sequence. The
sequence is gained by sorting all sites Sij s in a non-descending
order of the Euclidean distance between the minimum corners
of rMBRi and constraints set C. The reason for this lies in
the intuition that a point nearer to the minimum corners of
C (or the origin when a skyline query without constraints is
concerned) is more powerful in terms of dominating capability.
The sorting can be integrated into the partition algorithm in
Figure 1, on line 9 (line 10) where Si and Si ({Si}) are united.

The linear approach ignores any internal possibilities for
parallelism. In Figure 2, for example, the query can be
parallelized against sites B and D either before or after other
sites. To fully capture this potential for intra-group parallelism,
a directed graph is needed to store all sites in a group, which is
quite complicated due to the nature of a graph. As a trade-off
between complexity and parallelism, we use a tree to organize
each group of sites. For this purpose, we adapt the partition
algorithm in Figure 1 as follows. In each loop (lines 5-10) on
site Si, instead of using a temporary group Si to contain the
union of all groups removed out from HIs, Si is used as a root
and all such groups are attached to it as children, and finally
the tree is added into the partition as an updated group. After
the partitioning, within every group the query is executed and
forwarded with filtering points in the top-down manner starting
from the root.

For either way, every group needs an assembly to merge
results from sites and remove false positives during the query
processing. We install this procedure in the group head which,
responsible for returning result to query originator, is the first
site in the linear approach or the root in the tree-base approach.

C. Parallel Distributed Skyline Algorithm
Based on the discussion so far, our overall parallel dis-

tributed skyline algorithm, called PaDSkyline, is presented
in Figure 3. When a site Sorg issues a distributed skyline
query with constraints C, it first gets the incomparable partition
of all sites by calling icmpPartition (line 1). After that, the
query request will be sent out to each group head in parallel
(lines 2-3). The query request includes constraints C, network
addressable query originator identifier Sorg, and the intra-
group query execution plan gi.plan. Next, Sorg enters a wait,
during which it will be triggered by an incoming result reply

549

1. Pi

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

from a group head, until all of them have replied (lines 4-
7). Upon receiving the reply from the head of group gi, Sorg
directly reports the received result ga.result (lines 5-6) as it
is incomparable with results from other groups.

Algorithm PaDSkyline(S, C)
Input: S is the set of data sites

C is the set of constraints in the skyline query
Output: the constrained skyline

HI get the incomparable partition of all sites
1. I-s = icmpPartition(S, C)

HI parallel execution
2. for each group gi C rls in parallel
3. send (C, Sorg,gi.plan) to gi's group head

HI result merge, triggered by incoming result reply
4. repeat
5. receive result reply from a group gi's head
6. report gi. result
7. until all group heads have replied

Fig. 3. Parallel Distributed Algorithm

For the sake of simplicity, we designate Sorg as the head
of its site group. For that case, the network communication
between Sorg and a group head degrades to an inter-process
or inter-thread communication on a single host.

After a group gi's head receives the query request, it
carries out the intra-group skyline computation as shown in
Figure 4. First, it computes its local constrained skyline Rg
and captures the initial filtering points set Fc during the local
computation (line 1). How to select multiple filtering points
will be detailed in Section V. Next, it sends the query request
further to downstream site(s) in the group query plan (line
2). Note here the query request includes the constraints C,
network addressable group head's identifier Sg, the reduced
query plan plan', and the initial filtering points set Fc. Each
site Si receiving the query request computes its local result
Si.R, returns S,.R to site Sg, and sends the query request
with updated filtering points and further reduced plan to its
own downstream site(s). While Sg keeps receiving S .R and
merging it with Rg until all group members have replied (lines
3-6).

During query execution within a site group, the filtering
points set Fc will be dynamically changed, as will be covered
in Section V-C. Also, the query plan is dynamically reduced
as follows. Each site, including the group head, removes itself
from the plan. If the plan is a single sequence, the reduced
plan is the sub-sequence left and its head is exactly the target
downstream site. If the plan is a tree, the removal may result
in more than one sub-trees. For that case, each of them will
be sent to a corresponding target downstream site, which is
exactly the root of a sub-tree.

D. Cost Model
Suppose for a given local relation Ri, the time to compute

its local skyline SKi is T1(Ri). We use "ISK,I" to represent

Algorithm groupSkyline(C, Sorg, plan)
Input: C is the set of constraints in the skyline query

Sorg is the query originator site identifier
plan is the query execution plan in the group

Output: the constrained skyline within the group
1. compute local skyline Rg,

and get the initial filtering points set Fc
2. send (C, Sg, plan', Fc) to next site(s) in plan

HI result merge, triggered by incoming result reply
3. repeat
4. receive result reply from a group member Si
5. merge Sj.R, with Rg,

removing duplicates and false positives
6. until all group members have replied
7. return Rg to Sorg

Fig. 4. Intra-Group Algorithm

the size in bytes of a local skyline. The time to transfer SKi
between two sites is determined by its size, together with the
network relevant conditions like bandwidth.

In the naive approach without filtering (see Section IV-A),
the time for query originator Sorg to get result from a peer
site Si is the sum of the local computation time and network
transmission time, as shown in the following Formula 1.

Ti = T1(Ri) + Ttrani,or (SKi) (1)

Due to the parallelism of a naive query execution, its overall
response time Tnau is determined by the peer site whose result
reaches Sorg latest and the local assembly time on Sorg, as
shown in the following Formula 2.

Tnav = max{Ti 1 < i <m} + Tasm (2)
Suppose an incomparable partition I-s = .S... Sk} is

produced for a given distributed skyline query with constraints,
then its overall response time Tpdq is determined by the group
whose result reaches S,.rg latest, as shown in Formula 3. Note
in the parallel distributed query processing, we do not need a
global assembly on Sorg

Tpdq = maxfTs,{ 1 < i< k} (3)

In the formula above Ts, is the response time of group Si,
i.e., the time lapse before Sorg receives the result from Si's
group head hi. It is detailed in the following Formula 4. Th, is
the local response time, i.e., the time lapse before hi gets all
results from sites in the group. Tasmh is the local assembly
time, and SKS3 is the result sent to Sorg

TS, = Thi + TasMhi + Ttranhi,0,g(|SKSi) (4)

E. Pre-Computation of Local Skylines
If a skyline query is not attached with constraints, the local

skyline result SKi on any single site Si can be directly used
to compare with filtering points. Similarly, if a site Si's data
set is fully contained within the constraints {Cl, C2... , Cr}

550

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

specified in a skyline query, the local skyline SKi is still
directly useful. With this observation, we pre-compute for each
site Si its local skyline SKi without any constraint, and store
SKi to expect that it can be reused by future queries. With
this local optimization we hope to reduce the local skyline
query processing times, and thus shortening the overall query
response times.

V. ENHANCEMENT OF FILTERING POINTS

In [12], one single filtering point is transferred and changed
from peer to peer. During the query forwarding and processing,
the single filtering point is dynamically changed once another
point is found to be more powerful in filtering out unqualified
candidates.
By contrast, as the network connections in this work are

wired with considerably steady and high bandwidth compared
to wireless MANETs, we turn to use multiple filtering points
among sites, expecting to get higher filtering power. Then, we
need to decide which skyline points should be used as filtering
points to achieve the best data reduction rate in the distributed
skyline query processing.

In this section, we first formalize the dominating region
of multiple skyline points with respect to constraints, next
we address how to select multiple filtering points initially,
and then we proceed to discuss how to dynamically change
filtering points during the query processing.

A. Dominating Region ofK Filtering Points

Filtering points are selected from the local skyline result
initially obtained. Suppose the initial skyline result is SKi,it =
{Sl S2, ... SlI}, we need to select K (< 1) points from it
as the multiple filtering points. The concrete value of K is
constrained by I and has effect on network communication
cost and pruning capacity obtained. It is not possible to give
a generic optimal value of K for all situations. We instead
experimentally study this issue in Section VI-B.

1) Dominating Region with Constraints: When K equals 1,
we select the point with the maximum potential of dominating
others, which is measured by the volume of a point's domi-
nating region, the hyper-rectangle determined by the point and
the maximum corner of the data space [12]. Figure 5 shows a
2-dimensional example.

b

pj2

0 pj bI

Fig. 5. Dominating Region without Constraints

In the presence of the constraints specified for relevant
dimensions, the definition of dominating region needs amend-
ments accordingly. As shown in Figure 6, suppose a constraint
range [11, u1] is specified on the dimension P1. Consequently,
for a point tpj (<Pj , . . ., Pj >), its dominating region shrinks
to the smaller one determined by its own value, constraint
upper bound u1, and dimension P2'S upper bound b2.

b2

Pj2

P2

'Ij

0 11 Pjl ul

Max corner
of dat- spaceJct[

0:
b

Fig. 6. Dominating Region with Constraints

Suppose the value range on dimension Pk is [Sk, bkl in terms
of all Ris. Then the volume of tuple tpj's dominating region
with respect to constraints is

n

VDRj = (bk-Pjk)
k=l

where

bk {

(5)

bk, if Ck = 0
Uk, if k < Pjk <Uk
Pjk, otherwise

Note that it does not make sense to define the dominating
region for points out of the region specified by all constraints,
because such points does not appear in the skyline result and
will not be considered when we select filtering points. In the
Formula 5, we ensure the VDR value is zero for any point
uncovered by given constraints, which will prevent it from
being chosen as a filtering point.

Given a collection of skyline points {si,S. . ., sk }, their
dominating regions only differ on their own positions in the
data space. Thus for any si in that collection, its dominating
region is represented by a hyper-rectangle HRi ([pi,, b1],.
[pi, bn]), where bi is determined as Formula 5 describes.

2) Fused Dominating Region: For multiple filtering points,
we need to consider their overall filtering capability which
is measured by the volume of their fused dominating region.
Given any two distinct skyline points si and sj, the volume
of their fused dominating region is

n

VDRi,j = VDRi + VDRj- (bk -max(pik, Pjk)) (6)
k=1

Figure 7 shows an example of fused dominating region of two
skyline points tpi and tpj, where constraint [11, u1] is specified
on the dimension P1.

551

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

b-

pr
Max corner
o~fdata spjac(

tp i0
0 11U1 b

Fig. 7. Fused Dominating Region

By applying the Inclusion-Exclusion principle further, we
can compute the volume of fused dominating region of arbi-
trary number (K) of skyline points.

K

VDRl..K = Z VDRi
i=l

K

+ 1 ((1)j-l
j=2

n

J(bk -max(pik, ,. Pijk)) (7)
1<ii<...<ij<Kk 1=

We call it fused VDR value for K skyline points. Basically,
the computation complexity of the Formula 7 is 0(2K) which
is quite high. What makes it even more complex is that the
optimal selection of multiple filtering points is made by choos-
ing points with the maximum volume of fused dominating
region. For that purpose, we need to enumerate all (K) K-
combinations of SKinit, whose computation complexity is
O((e1) K). Hence the total complexity of computing the fused
VDR values for all K-combinations is O((2K1)K) . This high
complexity renders undesirable the optimal selection of K
filtering points with the maximum fused VDR value. There-
fore, we turn to alternatives that make more computationally
efficient selections at the cost of the quality of the results.

B. Selection ofK Filtering Points

We proceed to present two heuristics to guide the selection
of multiple filtering points.

1) Heuristic I: Maximal Sum of VDRs: The first heuristic
for selecting multiple filtering points is straightforward. It
maximizes the sum of the K VDR values of all possible
choices. To accomplish this, we need to sort points in SKinit
in a non-ascending order and then pick the top-K ones. In an
alternative way, the sorting can be integrated into the skyline
computation, which produces a sorted SKinit for easy picking
of top-K points. For both ways, the time complexity depends
on the sorting method used, which usually does not go beyond
0(l2).

This heuristic, MaxSum for short, actually simplifies the
computation by ignoring the overlapping between different
skyline points' dominating regions. In other words, the over-
lapping between dominating regions determines the accuracy
of this approximation. The smaller the overlapping regions are,
the more accurate the method will be.

2) Heuristic II. Maximal Distance Between Points: In the
second heuristic we intend to take into account the topology
between filtering points, to reduce the overlapping faced by
the first heuristic. Distance is a simple metric to help consider
this. Intuitively, the farther two skyline points are apart, the less
their dominating regions overlap. Hence we propose a greedy
heuristic, MaxDist for short, that maximizes the distance
between filtering points.

The algorithm of this heuristic is shown in Figure 8.
Initially, it picks from SKinit two points between which the
distance is the largest among all pairs (line 2). Then, it
incrementally selects points from SKinit and add them to the
filtering set, until K filtering points are obtained. In every
incremental step, the point with the maximal sum of distances
to all current filtering points is selected (line 5). The time
complexity of this algorithm is 0(12), much less than the exact
approach in Section V-A.2.

Algorithm maxDist(SKi,it, K)
Input: SKinit is the initial skyline

K is the number of filtering points needed
Output: a set of multiple filtering points
1. Fft = 0;
2. Pick si and sj from SKinit satisfying

Si sjl > si/,sj' , V 1 < si/,sj, Kl;
3. Fflt {sihSj}; SK' = SKi {it-{si, sj};
4. while (Fflt < K)
5. Pick si from SK' satisfying

EsjCEFlt si, sj > EsjCEFlt |s',, sj|, V s', e SK';
6. Fflt = Fflt U {s }; SK' = SKiit- {si};
7. return Fflt

Fig. 8. Algorithm of Heuristic MaxDist

C. Dynamic Update of Multiple Filtering Points

After a site Si receives a query request with a set of
filtering points Fflt, it will execute a local query processing.
To take advantage of the filtering points, the local processing
can be implemented in two ways. In an integrated way, Fflt
is checked against every candidate point pt met during the
skyline computation, any dominated pt is ignored, and any
dominated si in Fflt is removed from the set. In a separate
way, a local skyline is computed first, and then it will be com-
pared with Fflt to filter out those unqualified candidates and
dominated sis. The integrated way is seamlessly applicable to
those centralized skyline algorithms that are not based on data
transformation [1], [2], [3], [4], [5], whereas the separate way
is applicable to all existing skyline algorithms.

For either way, we get a local skyline result SKi and the
reduced set of filtering points Fj1t. Now we need to update
the _F,t with points in SKi, so that the dominating capability
of the multiple filtering points is maintained or increased. A
simple yet efficient way is to treat all points in these two sets
equally, and to pick K ones SK4 U F', using the heuristics

552

tpj

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

proposed in Section V-B. To update F17t based on Heuristic
I (MaxSum), SKi is sorted in non-ascending order of fused
VDR values, and merged with S' to get the top-K ones as
those new filtering points. To update 1f,t based on Heuristic
II, the algorithm in Figure 8 is adapted to pick K points from
the union of Ff17 and SKi.

VI. EXPERIMENTAL STUDY
In this section, we evaluate our skyline query mechanism

with extensive experiments. We study the performance of
our skyline computing approach PaDSkyline comparing with
Naive and Random approach. In the Naive approach, a query
originator directly sends out its query request to each site,
receives results and merge with its local result, till all sites
have replied. The naive approach does not execute queries in
any specific order of sites, nor does it employ any filtering
points. The Random approach is almost the same to our
proposal PaDSkyine method (with two heuristics MaxSum and
MaxDist), except that it selects filtering points randomly.
We in the experiments use two kinds of synthetic datasets:

independent and anti-correlated datasets. The parameters used
in the experiments are listed in Table I. Unless stated other-
wise, the default parameter values, given in bold, are used.
Besides, we use a real-life dataset of NBA players' season
statistics from 1949 to 20031, which contains 16,644 records
of 17 attributes and approximates a correlated data distribution.

Parameter Setting
Dimensionality 2, 3, 4, 5
Number of sites 1,000, 2,000, ..., 10,000
Filter points percentage 10%, 20%,..., 50% ..., 90%
Cardinality of each site 1,000
Number of queries 50

TABLE I
PARAMETERS USED IN EXPERIMENTS

All simulation experiments are conducted on a Linux Server
with two Intel(R) Xeon(TM) 2.80GHz processors and 1.OGB
of RAM. We consider three performance metrics. First we
study Data Reduction Efficiency, the efficiency of multiple
filter points towards the local skyline computing in terms of
the data reduction rate DRR, which was proposed in [12]. The
DRR is the proportion of data points reduced by the filtering
point to the number of points in the unreduced skyline. It is
defined as

DRR = -E=XitAorg(uunredSKi - redSK Kj)

Di=RRiAorg *urredSK (

where Ki is the number of filtering points sent to a processing
site, and m is the network size. Second, we consider Response
Time which records the overall query processing time. Third
we investigate Precision, which indicates the quality of skyline
points returned to the query site for a certain query. Except in

1 http://databasebasketball.com

the Naive approach, each group head is regarded as a query
site for its group members. It is formally defined as (P AI),
where A is the set of exact skyline points a query site obtains
finally, and B is the set of resulting points returned to the query
site in the distributed environment. P captures the fraction of
relevant points a query processing approach needs to identify
and returns to the user.

A. Effect of Network Size

In this experiment, we consider the effect of network size
on the performance of different methods. Note that, for the
Naive approach, it returns all the skyline candidates to the
query site, and hence the DRR is zero. Figures 9(a), 10(a)
and 11(a) show that MaxSum yields the best DRR perfor-
mance. Carefully selected filtering points can significantly
reduce the data communication when the skyline query is
forwarded between sites, e.g. MaxSum approach obtains 80%
higher DRR than Random approach. Regarding to MaxSum
and MaxDis, there is a tradeoff between sizes of dominating
regions and overlap of dominating regions when we select
filtering points. From the results, we can see that MaxSum
has better filtering capability overall.

Figures 9(b), 10(b) and 11(b) show the results of response
time. Clearly, the Naive method is the worst among all four
ones, because it requests the local skyline points from all the
data sites in the network, which introduces higher communi-
cation cost and heavier computational workload in the query
originator site to merge all the unfiltered answers. MaxSum
and MaxDist perform better than Random because of their
stronger filtering capabilities, which result in smaller amount
of transferred data and shorter response time. However, the
gap is narrowed as random selection of filtering points is
computationally faster than two heuristics.
The experimental results of precision, indicator of the

quality of skyline points returned to query sites, are reported
in Figures 9(c), 1O(c) and 11(c). Averagely, MaxSum is about
200% better than Naive and 80% better than Random. This
significant performance gain is again attributed to our carefully
selected multiple filtering points, which increase the ratio
of final skyline points to all points transferred through the
network.
As our approaches outperform the competitors in all ex-

perimental cases, we in the sequel will show the results on
independent dataset only due to the space constraint.

B. Effect of Filtering Points

How the performance varies with different number of filter-
ing points is reported in Figure 12. Referring to Figure 12(a),
a larger number of filtering points do not necessarily ensure a
higher DRR. This is because more filtering points also count in
the DRR calculation in Formula 8, and the collective dominat-
ing capability of multiple points does not increase enough to
offset that effect, especially for the Random approach without
any special consideration in points selection.
More filtering points also prolong the response time, as

shown in Figure 12(b), because they need more time to

553

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

0.85
El-l

76 0.8

* 0.75

0 0.7

76 0.65 - MaxSum
MaxDist
Random

0.6

0.55

05
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

the Number of Sites

(a) Data Reduction Rate

20

18

S' 16

Naive
MaxSum
MaxDist
Random

H 14
a)
c 12r

c 10

6 , _ - X

4
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

the Number of Sites

(b) Response time

0.22

0.2

0.18

Naive
-MaxSum
MaxDist
Random

0. 16

0.14-

X0 12

< 0.1

0.08

0 06,
0.04-

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
the Number of Sites

(c) Precision

Fig. 9. Performance on Independent Datasets with Different Network Sizes

0.85

0.8

a) 0.75

C 0.7
0

C)
= 0.65-

0.6

0.55

0.5

- MaxSum
MaxDist
Random

0.45 .. ! ,

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
the Number of Sites

(a) Data Reduction Rate

145
e Naive

130 l-MaxSum
MaxDist

120 Random

E 100

90 ,
80
70

60,0

50,
40
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

the Number of Sites

(b) Response time

0.26

0.24

0.22

C 0.2 ,,02
*,0.184aU)
L 0.16
0

1

Z5 0.14-

0.12

0.1

0.08

-Naive
- MaxSum
MaxDist
Random

0.06
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

the Number of Sites

(c) Precision

Fig. 10. Performance on AntiCorrelated Datasets with Different Network Sizes

22 0.55
Naive

20A MaxSum 0.5
MaxDist

18 Random 0.45-

16 04
E
j_ 14 a) 0.35

o 12 V 03_

rr 1 ay"~~~~~~~~~0.25-
e MaxSum
-m- MaxDist 8 K 0.2

Random
6 015t--'-

0.55
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

the Number of Sites

(a) Data Reduction Rate

4
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

the Number of Sites

(b) Response time

0.1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

the Number of Sites

(c) Precision

Fig. 11. Performance on NBA Dataset with Different Network Sizes

be transferred from site to site through the network. On
the other hand, more filtering points increase the average
precision, as shown in Figure 12(c), because they do rule out
more unqualified intermediate answers (though not enough to
maintain and increase DRR) which otherwise are returned to
the query sites, i.e. group heads.

C. Effect of Dimensionality

The effect of dataset dimensionality is reported in Figure 13.
As the dimensionality increases, DRR decreases for all non-

naive approaches as shown in Figure 13(a), and average

precision increases for all approaches including Naive as

shown in Figure 13(c). The cause for this discrepancy observed

is the cardinality of the final skyline, which grows markedly
as dimensionality increases [16], [17]. A larger final skyline
results in relatively fewer unqualified intermediate answers,

which explains the decrease of DRR. A larger final skyline
certainly produces more valid points returned to the query

site, and thus increasing the average precision. A larger final
skyline also causes more data points to be transferred through
the network, which leads to the longer response time seen in
Figure 13(b).

VII. CONCLUSION

This paper addresses constrained skyline queries in a dis-
tributed network environment without overlay structures. First

554

0.95r

0.9e

0.85-

' 0.8-
c

0
7'= 0.75

0.7-

0.65-

- Naive
-MaxSum
MaxDist
Random

0 .95 22

0.9,

0.6F

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

-MaxSum
MaxDist
Random0.9t

a) 0.8-

007

cJ0 0.76

2 0.5

0.4

10 20 30 40 50 60 70 80 90
the Percentage of Fllter Points

(a) Data Reduction Rate

100

80 - MaxSum
MaxDist

60 Random

200

E 180

160

o140-

120 ,-

100 A

80

60
10 20 30 40 50 60 70 80 90

the Percentage of Fllter Points

(b) Response time

0.35 - - MaxSum

-e- MaxDist
Random

0.3

02
0 1

a) 0.2

0.15-w

0.10 20 30 40 50 60 70 80 90
the Percent of Filter Points

(c) Average Precision

Fig. 12. Performance with Different Numbers of Filtering Points

1400

1200
>

1000

E 800
a)

-MaxSum o 600
-MaxDist
Random 400

200

3 4
Dimensions

(a) Data Reduction Rate

0 e
2 3 4

Dimensions

(b) Response time

5 2 3 4
Dimensions

(c) Average Precision

Fig. 13. Performance with Varying Dimensionality

a specific partition algorithm is proposed which divides all
relevant sites into groups, such that a given query can be
executed in parallel among all site groups. For the query

execution within a single group of sites, we propose query

forwarding plans between sites and designate a group head
responsible for query results merger. Based on the inter-
group and intra-group query execution mechanism, a parallel
distributed skyline algorithm is given, together with a cost
model for cost estimation. As a substantial enhancement, it is
discussed how to select local skylines as filtering points, which
are used in distributed query processing to prevent more data
from being transmitted through the network. Extensive experi-
ments are conducted, producing results which demonstrate that
our proposals are efficient in distributed query processing and
robust to scales of both data and network size.

ACKNOWLEDGMENT

This research was supported by the National Natural Sci-
ence foundation of China under Grant No.60603045, National
Grand Fundamental Research 973 program of China under
Grant No.2004CB318204.

REFERENCES

[1] S. Borzonyi, D. Kossmann, and K. Stocker, "The skyline operator," in
Proc. ICDE, 2001, pp. 421-430.

[2] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, "Skyline with presort-
ing." in Proc. ICDE, 2003, pp. 717-816.

[3] P. Godfrey, R. Shipley, and J. Gryz, "Maximal vector computation in
large data sets." in VLDB, 2005, pp. 229-240.

[4] D. Kossmann, F. Ramsak, and S. Rost, "Shooting stars in the sky: An
online algorithm for skyline queries," in Proc. VLDB, 2002, pp. 275-
286.

[5] D. Papadias, Y Tao, G. Fu, and B. Seeger, "An optimal and progressive
algorithm for skyline queries," in Proc. ACM SIGMOD, 2003, pp. 467-
478.

[6] K.-L. Tan, P.-K. Eng, and B. C. Ooi, "Efficient progressive skyline
computation," in Proc. VLDB, 2001, pp. 301-310.

[7] G. Hjaltason and H. Samet, "Distance browsing in spatial database,"
ACM TODS, vol. 24, no. 2, pp. 265-318, 1999.

[8] W.-T. Balke, U. Giintzer, and J. X. Zheng, "Efficient distributed skylining
for web information systems," in Proc. EDBT, 2004, pp. 256-273.

[9] P. Wu, C. Zhang, Y Feng, B. Y Zhao, D. Agrawal, and A. E. Abbadi,
"Parallelizing skyline queries for scalable distribution." in Proc. EDBT,
2006, pp. 112-130.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A
scalable content-addressable network," in Proc. ACM SIGCOMM, 2001,
pp. 161-172.

[11] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu, "Efficient skyline query
processing on peer-to-peer networks," 2007, pp. 1126-1135.

[12] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi, "Skyline queries against
mobile lightweight devices in MANETs." in Proc. ICDE, 2006, p. 66.

[13] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, Eds., Mobile Ad
Hoc Networking. New Jersey: Wiley-IEEE Press, 2004.

[14] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. James
B. Rothnie, "Query processing in a system for distributed databases
(sdd-1)," ACM TODS, vol. 6, no. 4, pp. 602-625, 1981.

[15] C. T. Yu and C. C. Chang, "Distributed query processing," ACM
Computing Surveys, vol. 16, no. 4, pp. 399-433, 1984.

[16] S. Chaudhuri, N. N. Dalvi, and R. Kaushik, "Robust cardinality and cost
estimation for skyline operator." in Proc. ICDE, 2006, p. 64.

[17] P. Godfrey, "Skyline cardinality for relational processing." in Proc.
FoIKS, 2004, pp. 78-97.

555

0.9

08Cc 0.8-

07

7 0.6

0.5

Naive
-MaxSum
MaxDist
Random

2

0.35
Naive

0.3 - MaxSum
MaxDist
Random

0.25

0.2

0 0.15

0.1

0.05

Authorized licensed use limited to: Peking University. Downloaded on December 15, 2009 at 20:31 from IEEE Xplore. Restrictions apply.

