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ABSTRACT
As the growing demand for mobile communications is constantly increasing, the need for better

coverage, improved capacity and higher transmission quality rises. Thus, a more efficient use

of the radio spectrum is required. Smart antenna systems are capable of efficiently utilizing the

radio spectrum and, thus, is a promise for an effective solution to the present wireless systems’

problems while achieving reliable and robust high-speed high-data-rate transmission. The

purpose of this book is to provide the reader a broad view of the system aspects of smart antennas.

In fact, smart antenna systems comprise several critical areas such as individual antenna array

design, signal processing algorithms, space-time processing, wireless channel modeling and

coding, and network performance. In this book we include an overview of smart antenna

concepts, introduce some of the areas that impact smart antennas, and examine the influence

of interaction and integration of these areas to Mobile Ad-Hoc Networks. In addition, the

general principles and major benefits of using space–time processing are introduced, especially

employing multiple-input multiple-output (MIMO) techniques.
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Adaptive arrays, Switched-beam antennas, Phased array, SDMA, Mutual coupling, Direction

of arrival, Adaptive beamforming, Channel coding, MANET, Network throughput, Space–

time processing.
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C H A P T E R 1

Introduction

In recent years a substantial increase in the development of broadband wireless access technolo-
gies for evolving wireless Internet services and improved cellular systems has been observed [1].
Because of them, it is widely foreseen that in the future an enormous rise in traffic will be expe-
rienced for mobile and personal communications systems [2]. This is due to both an increased
number of users and introduction of new high bit rate data services. This trend is observed for
second-generation systems, and it will most certainly continue for third-generation systems.
The rise in traffic will put a demand on both manufacturers and operators to provide sufficient
capacity in the networks [3]. This becomes a major challenging problem for the service providers
to solve, since there exist certain negative factors in the radiation environment contributing to
the limit in capacity [4].

A major limitation in capacity is co-channel interference caused by the increasing number
of users. The other impairments contributing to the reduction of system performance and capac-
ity are multipath fading and delay spread caused by signals being reflected from structures (e.g.,
buildings and mountains) and users traveling on vehicles. To aggravate further the capacity prob-
lem, in 1990s the Internet gave the people the tool to get data on-demand (e.g., stock quotes,
news, weather reports, e-mails, etc.) and share information in real-time. This resulted in an
increase in airtime usage and in the number of subscribers, thus saturating the systems’ capacity.

Wireless carriers have begun to explore new ways to maximize the spectral efficiency
of their networks and improve their return on investment [5]. Research efforts investigating
methods of improving wireless systems performance are currently being conducted worldwide.
The deployment of smart antennas (SAs) for wireless communications has emerged as one of
the leading technologies for achieving high efficiency networks that maximize capacity and
improve quality and coverage [6]. Smart Antenna systems have received much attention in the
last few years [6–11] because they can increase system capacity (very important in urban and
densely populated areas) by dynamically tuning out interference while focusing on the intended
user [12, 13] along with impressive advances in the field of digital signal processing.

Selected control algorithms, with predefined criteria, provide adaptive arrays the unique
ability to alter the radiation pattern characteristics (nulls, sidelobe level, main beam direction,
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and beamwidth). These control algorithms originate from several disciplines and target specific
applications (e.g., in the field of seismic, underwater, aerospace, and more recently cellular
communications) [14]. The commercial introduction of SAs is a great promise for big increase
in system performance in terms of capacity, coverage, and signal quality, all of which will
ultimately lead to increased spectral efficiency [14].

As the necessity of exchanging and sharing data increases, users demand ubiquitous,
easy connectivity, and fast networks whether they are at work, at home, or on the move.
Moreover, these users are interested in interconnecting all their personal electronic devices
(PEDs) in an ad hoc fashion. This type of network is referred to as Mobile Ad hoc NETwork
(MANET), and it is beginning to emerge using BluetoothTM technology. BluetoothTM is a
short-range, low-power radio link (10–100 m) that allows two or more BluetoothTM devices
to form a communication channel and exchange data [15, 16]. Because BluetoothTM uses
an omnidirectional antenna (operating in the unlicensed 2.4 GHz industrial, scientific, and
medical (ISM) band), it lacks the ability to steer the radiation beam toward the intended users
and form nulls to cancel jammers. This limits the overall system capacity or network throughput
of MANETs. Furthermore, because of the omnidirectional antenna, battery life in PEDs is
reduced since energy is radiated everywhere and not just toward the desired user. Consequently,
the benefits provided by smart antennas would enhance the overall performance of MANETs
[17].

Current trends concentrate on space–time processing and coding, a technique that
promises to greatly improve the performance in wireless networks by using multiple antennas
at the transmitter and the receiver [18]. Space–time processing can be viewed as an evolution
of the traditional array signal processing techniques such as antenna array and beamforming.
Operating simultaneously on multiple sensors, space–time receivers process signal samples both
in time and space, thereby improving resolution, interference suppression, and service qual-
ity. Sophisticated space–time processing methods applied to multiple-input multiple-output
(MIMO) systems are expected to provide great capacity and data rate increases in cellular
systems and wireless local area networks.

This book is organized as follows: in Chapter 2 an overview of wireless communication
systems is presented, a requisite to analyze smart antenna systems. Following this, a chapter
on antenna arrays and diversity techniques is included that describes antenna properties and
classifies them according to their radiation characteristics. In Chapter 4, the functional principles
of smart antennas are analyzed, different smart antenna configurations are exhibited and the
benefits and drawbacks concerning their commercial introduction are highlighted. Chapter 5
deals with different methods of estimating the direction of arrival. The more accurate this
estimate is, the better the performance of a smart antenna system. Chapter 6 is devoted to
beamforming techniques through which the desired radiation patterns of the adaptive arrays are
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achieved. The succeeding chapter presents the results of a project that examines and integrates
antenna design, adaptive algorithms and network throughput. Chapter 8 is devoted to space–
time processing techniques. The fundamental principles are analyzed and, through experimental
results, the enormous improvements in data rates and capacities realized with MIMO systems
are demonstrated. Before the book is concluded, commercial efforts and products of smart
antenna are briefly reviewed in Chapter 9.

This book is a comprehensive effort on smart antenna systems and contains material
extracted from various sources. The authors have attempted to indicate, in the respective
chapters of the book, the sources from which the material was primarily derived and its
development based upon. In particular, the authors would like to acknowledge that major
contributions were derived from many references, especially [17, 19–29]. Also, the authors
have contacted most of the primary authors of these references, who gracefully and promptly
responded favorably. In fact, some of the authors provided expeditiously figures and data
included in this book. Acknowledgement of the sources is indicated in the respective figures.





5

C H A P T E R 2

Mobile Communications Overview

In this chapter, a brief overview of mobile communications is presented to understand its
functional principles and introduce the necessary terminology for the rest of this book.

2.1 GENERAL DESCRIPTION
All communication systems have fundamentally the same goal: to pass along the maximum
amount of information with the minimum number of errors [19]. Modern digital wireless
communications systems are no exception. These systems can usually be separated into several
elements as indicated by Fig. 2.1. Given any digital input, the source encoder eliminates
redundancy in the information bits, thus maximizing the amount of the useful information
transferred in the communications system [19]. The output of the source generator is processed
by the channel encoder, which incorporates error control information in the data to minimize
the probability of error in transmission.

The output of the channel encoder is further processed by the Digital Signal Processing
unit, in order to allow simultaneous communication of many users. An example of this would
be digital beamforming, which by using the geometric properties of the antenna array, is able to
concentrate signals from multiple users in different desired directions, allowing more users to
be served by the system. The generated data stream is then processed by the modulator which
is responsible to shift the baseband signal at its input into the band-pass version at the output,
due to the bandwidth constraints of the communication system [19]. The information sequence
generated at the output of the modulator is then fed into the antenna array and transmitted
through the wireless channel.

On the other end of the radio channel, the reverse procedure takes place. The demodulator
down converts the signals from different users collected by the receiver antenna into their
baseband equivalent. The Digital Signal Processor then separates the different signals that
come from different users. The channel decoder detects and corrects, if possible, errors that are
caused due to propagation through the physical channel. Following that, the source decoder
restores the actual data sequence from its compressed version. The entire procedure aims to
recover the information transmitted on the other end of the physical channel, with the least
possible number of errors.
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FIGURE 2.1: Elements of a communications system [19].

2.2 CELLULAR COMMUNICATIONS OVERVIEW
The wireless communications era began around 1895 when Guglielmo Marconi demonstrated
the use of radio waves to communicate over large distances. Cellular is currently one of the
fastest growing and most demanding telecommunications applications. Today, it represents the
dominant percentage of all new telephone subscriptions around the world. During the early
part of this decade, the number of mobile cellular subscribers has surpassed that of conventional
fixed lines [30]. In many parts of the world, cell phone penetration is already over 100% and the
market is still growing. According to the latest figures from Wireless Intelligence (WI) [31],
the venture between Ovum and the GSM Association that focuses on market data and analysis
on the global wireless industry, worldwide growth is currently running at over 40 million new
connections per month—the highest volume of growth the market has ever seen. Overall, world
market penetration is expected to rise from an estimated 41% at the end of 2006 to 47% by
the end of 2007, on a track to hit the landmark of 3 billion cellular connections! However, as
Wireless Intelligence says, the number of cellular connections does not represent the number of
cellular users, since many subscribers have more than one cellular connection and, in addition,
these figures include accounts that may no longer be active. In general, subscriber growth
is especially strong in Asia, where penetration rates are still low, followed by the Americas
while the saturated Western European market is stagnant [32]. The charts in Fig. 2.2 graph
Micrologic Research’s [33] estimates (a) of the annual worldwide cellular telephone sales and
(b) worldwide number of cellular subscribers from 1998 to 2006.

2.3 THE EVOLUTION OF MOBILE TELEPHONE SYSTEMS
The concept of cellular service is the use of low-power transmitters where frequencies can be
reused within a geographic area. However, the Nordic countries were the first to introduce



MOBILE COMMUNICATIONS OVERVIEW 7

1998 1999 2000 2001 2002 2003 2004 2005 2006
Year

0

100

200

300

400

500

600

700

M
il

li
on

s
of

U
n

it
s

1998 1999 2000 2001 2002 2003 2004 2005 2006
Year

0

500

1000

1500

2000

M
il

li
on

s
of

S
u

b
sc

ri
b

er
s

FIGURE 2.2: (a) Annual worldwide cellular handset shipments and (b) worldwide number of cellular
subscribers [34].

cellular services for commercial use with the introduction in 1981 of the Nordic Mobile
Telephone (NMT).

Cellular systems began in the United States with the release of the advanced mobile phone
service (AMPS) system in 1981. The AMPS standard was adopted by Asia, Latin America,
and Oceanic countries, creating the largest potential market in the world for cellular technology
[35].

In the early 1980s, most mobile telephone systems were analog rather than digital,
like today’s newer systems. One challenge facing analog systems was the inability to handle the
growing capacity needs in a cost-efficient manner. As a result, digital technology was welcomed.
The advantages of digital systems over analog systems include ease of signaling, lower levels of
interference, integration of transmission and switching, and increased ability to meet capacity
demands [35].

GSM, which was first introduced in 1991, is one of the leading digital cellular systems.
Today, it is the de facto wireless telephone standard in Europe, and it is widely used in Europe
and other parts of the world.

CDMA system was first standardized in 1993. CDMA refers to the original ITU IS-
95 (CDMA) wireless interface protocol and is considered a second-generation (2G) mobile
wireless technology which was commercially introduced in 1995. It quickly became one of the
world’s fastest-growing wireless technologies.

In 1999, the International Telecommunications Union selected CDMA as the industry
standard for new “third-generation” (3G) wireless systems. Many leading wireless carriers are
now building or upgrading to 3G CDMA networks in order to provide more capacity for voice
traffic, along with high-speed data capabilities [36]. The new version of CDMA, also known
as CDMA2000 or IS-2000, is both an air interface and a core network solution for delivering
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the services that customers are demanding today [37]. A key component of CDMA2000 is
its ability to support the full demands of advanced 3G services such as multimedia and other
IP-based services. CDMA2000 is the ideal solution for wireless operators who want to take
advantage of the new market dynamics created by mobility and the Internet [37].

Universal Mobile Telecommunications System (UMTS) is an evolution of the GSM
system. The air interface has been changed from a Time Division Multiple Access (TDMA)
based system to a Wideband Code Division Multiple Access (W-CDMA) based air interface.
This change was needed to achieve the data rate of 2 Mbps to the mobile which is a 3G
requirement [38]. Besides voice and data, UMTS will deliver audio and video to wireless devices
anywhere in the world through fixed, wireless, and satellite systems. The UMTS system will
serve most of the European countries. Table 2.1 charts the worldwide development of Mobile
Telephone Systems.

2.4 THE FRAMEWORK
Wireless communication systems usually perform duplex communication between two
points [1]. These two points are usually defined as the Base Station (BS) and the Mobile

TABLE 2.1: The Development of Mobile Telephone Systems[35]

YEAR MOBILE SYSTEM

1981 Nordic Mobile Telephone (NMT) 450

1983 American Mobile Phone System (AMPS)

1985 Total AccessCommunication System (TACS)

1986 Nordic Mobile Telephony (NMT) 900

1991 American Digital Cellular (ADC)

1991 Global System for Mobile Communication (GSM)

1992 Digital Cellular System (DCS) 1800

1993 CDMA One

1994 Personal Digital Cellular (PDC)

1995 PCS 1900-Canada

1996 PCSóUnited States

2000 CDMA2000

2005 UMTS
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Station (MS). The data communication from the BS to the MS is usually referred to as
the downlink or forward channel. Similarly, the data communication from the MS to the
BS is usually referred to as the uplink or reverse channel. Two systems can exist in the
downlink: an antenna system for transmission at the BS and another antenna system for
reception at the MS. Additionally, there can be two systems in the uplink: transmission
at the MS and reception at the BS [1]. An example of such a system is illustrated in
Fig. 2.3.

The cellular telephone system provides a wireless connection to the Public Switched
Telephone Network (PSTN) for any user in the radio range of the system [39]. It consists
of

� Mobile stations
� Base stations, and
� Mobile Switching Center (MSC).

The base station is the bridge between the mobile users and the MSC via telephone lines
or microwave links [39]. The MSC connects the entire cellular system to the PSTN in the
cellular system. Fig. 2.4 provides a simplified illustration how a cellular telephone system
works.
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FIGURE 2.3: A general antenna system for broadband wireless communications [1].
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FIGURE 2.4: A typical setup of a base mobile system [40].

2.5 CELLULAR RADIO SYSTEMS: CONCEPTS AND EVOLUTION
Maintaining capacity has always been a challenge as the number of services and subscribers
increased. To achieve the capacity demand required by the growing number of subscribers,
cellular radio systems had to evolve throughout the years. To justify the need for smart antenna
systems in the current cellular system structure, a brief history in the evolution of the cellular
radio systems is presented. For in-depth details, the reader is referred to [13, 40, 41].

2.5.1 Omnidirectional Systems and Channel Reuse
Since the early days, system designers knew that capacity was going to be a problem, espe-
cially when the number of channels or frequencies allocated by the Federal Communications
Commission (FCC) was limited. Therefore, to accommodate the huge number of subscribers
and achieve the required capacity, a suitable cellular structure had to be designed. The domi-
nant concept is that the capacity may only be increased by using each traffic channel to carry
many calls simultaneously [40]. One way to accomplish this is to use the same channel over
and over. To do so, mobile phones using the same radio channel have to be placed sufficiently
apart from each other in order to avoid disturbance. Cellurization consists of breaking up a
large geographical service area into smaller areas, referred to as cells, each of which can use a
portion of the available bandwidth (frequency reuse), thus making it possible to provide wireless
links to many users despite the limited spectrum [42]. Cells, usually, have irregular shapes and
dimensions. The shape is determined largely by the terrain and man-made features. Depending
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cellR

D

FIGURE 2.5: Typical cellular structure with 7 cells reuse pattern.

on their size, cells can be classified as macrocells (where the base station has sufficient transmit
power to cover areas of radius 1–20 km), microcells (areas of 0.1 to 1 km in radius), and picocells
(indoor environment) [42]. A minimum distance between two cells using identical channels
is required, known as the channel reuse distance. This is also known as channel reuse via spatial
separation [43]. The capacity of the system depends on this distance. An example of such a
structure is depicted in Fig. 2.5.

In Fig. 2.5, each hexagonal area with different shade represents a small geographical
area named cell with maximum radius R [44]. At the center of each cell resides a base station
equipped with an omnidirectional antenna with a given band of frequencies. Base stations in
adjacent cells are assigned frequency bands that contain completely different frequencies than
neighboring cells. By limiting the coverage area within the boundaries of a cell, the same band of
frequencies may be used to cover different cells that are separated from each other by distances
large enough (indicated as D in Fig. 2.5) to keep interference levels below the threshold
of the others. The design process of selecting and allocating the same bands of frequencies
to different cells of cellular base stations within a system is referred to as frequency reuse or
channel reuse [41]. This is shown in Fig. 2.5 by repeating the shaded pattern or clusters [13];
cells having the same shaded pattern use the same frequency bandwidth. In the first cellular
radio systems deployed, each base station was equipped with an omnidirectional antenna [4].
Because only a small percentage of the total energy reached the desired user, the remaining
energy was wasted and polluted the environment with interference. As the number of users
increased, so did the interference, thereby reducing capacity. An immediate solution to this
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cell

microcell

FIGURE 2.6: Cell-splitting.

problem was to subdivide a cell into smaller cells; this technique is referred to as cell splitting
[44].

2.5.2 Cell Splitting
Cell-splitting [44], as shown in Fig. 2.6, subdivides a congested cell into smaller cells called
microcells, each with its own base station and a corresponding reduction in antenna height
and transmitter power. Cell-splitting improves capacity by decreasing the cell radius R and
keeping the D/R ratio unchanged; D is the distance between the centers of the clusters. The
disadvantages of cell-splitting are costs incurred from the installation of new base stations, the
increase in the number of handoffs (the process of transferring communication from one base
station to another base station when the mobile unit travels from one cell to another), and a
higher processing load per subscriber.

2.5.3 Sectorized Systems
As the demand for wireless service grew even higher, the number of frequencies assigned to
a cell eventually became insufficient to support the required number of subscribers. Thus, a
cellular design technique was needed to provide more frequencies per coverage area. Sectorized
systems subdivide the traditional cellular area into sectors that are covered using directional
antennas at the same base station, as shown in Fig. 2.7.

This technique is referred to as cell-sectoring [41] where a single omnidirectional antenna
is replaced at the base station with several directional antennas. Operationally, each sector is
treated as a different cell in the system, the range of which, in most cases, can be greater than
in the omnidirectional case (roughly 35% greater), since the transmission power is focused to a
smaller area [20].

Sectorized cells can increase the efficient use of the available spectrum by reducing the
interference presented by the base station and its users to the rest of the network, and they are
widely used for this purpose. Most systems in commercial service today employ three sectors,
each one with 120◦ coverage. Although larger numbers of sectors are possible, the number of
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FIGURE 2.7: Sectorized antenna system and coverage pattern [20].

antennas and base station equipment become prohibitively expensive for most cell sites [45].
Fig. 2.8 shows a system that employs the 120◦ type of cell sectorization.

In sectoring, capacity is improved while keeping the cell radius unchanged and reducing
the D/R ratio. In other words, capacity improvement is achieved by reducing the number of cells
and, thus, increasing the frequency reuse. However, in order to accomplish this, it is necessary
to reduce the relative interference without decreasing the transmitting power. The co-channel
interference in such cellular system is reduced since only two neighboring cells interfere instead

FIGURE 2.8: Sectorized cellular network employing three sectors, each one covering 120◦ field of view.
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(a) (b)

FIGURE 2.9: Co-channel interference comparison between (a) omnidirectional and (b) sectorized
systems.

of six for the omnidirectional case [44, 46] as shown in Fig. 2.9. Increasing the number of
sectors in a CDMA system has been a technique useful of increasing the capacity of cell sites
[47]. Theoretically, the increase in capacity is proportional to the number of sectors per cell
[48]. The penalty for improved signal-to-interference (S/I ) ratio and capacity is an increase in
the number of antennas at the base station, and a decrease in trunking efficiency [13, 46] due to
channel sectoring at the base station. Trunking efficiency is a measure of the number of users
that can be offered service with a particular configuration of fixed number of frequencies.

2.6 POWER CONTROL
Power control is a technique whereby the transmit power of a base station or handset is decreased
close to the lowest allowable level that permits communication [45]. Due to the logarithmic
relationship between the capacity of the wireless link and the signal-to-interference-and-noise
ratio (SINR) at the receiver [49], any attempt to increase the data rate by simply transmitting
more power is extremely costly. Furthermore, increases in power scales up both the desired
signals and their mutual interference [28]. Therefore, once a system has become limited by
its own interference, power increase is useless. Since mature systems are designed in a way to
achieve maximum capacity, it is the power itself, in the form of interference, that ultimately
limits their performance [50]. As a result, power must be carefully controlled and allocated
to enable the coexistence of multiple geographically dispersed users operating under various
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conditions [28] and has been a topic of active research. For example, both GSM and CDMA
systems use power control on both uplink and downlink. Particularly, CDMA systems require
fast and precise power control since many users share the same RF spectrum, and the system
capacity is thus highly sensitive to inadequate interference control [45].

2.6.1 Spectral Efficiency
Another effective way to improve the data rate is to increase the signal bandwidth along with
power increase. However, the radio spectrum is not an abundant resource in the frequencies of
interest. Moreover, increasing the signal bandwidth beyond the coherence bandwidth results
in frequency selectivity and degradation in the transmission quality. Spectral efficiency, defined
as the ratio of capacity per unit bandwidth, measures the ability of a wireless system to deliver
information with a given amount of radio spectrum and provides another key metric of the
wireless system’s quality. It determines the amount of radio spectrum required to provide a
given service (e.g., 10 Kbps voice service or 100 Kbps data service) and the number of base
stations required to deliver that service to the end-users. In the latter years of deployment, when
subscriber penetration is high, it is, consequently, one of the primary determinants of system
economics. Spectral efficiency is measured in units of bits/second per Hertz/cell (b/s/Hz/cell).
It determines the total throughput each base station (cell or sector) can support with a given
amount of spectrum. The appearance of a “per cell” dimension in measuring spectral efficiency
may seem surprising, but the throughput of a particular base station of a cellular network is almost
always substantially less than that of a single cell in isolation. This difference is attributed to
the self-interference generated in the network.

In a cellular system, the radio communication between a user and a base station gen-
erates radio energy that is detectable in places other than the immediate vicinity of the user,
the base station and an imaginary line between the two. For other users in the vicinity, this
excess energy degrades the radio channel, or makes it completely unusable for conversations.
As the user density increases, radio resources are in consequence exhausted eventually. Systems
with higher spectral efficiency provide more data throughput (services) with a given amount of
spectrum and support more users at a given grade of service before experiencing resource ex-
haustion. The key benefits of higher spectral efficiencies can be enumerated as follows: higher
aggregate capacity (per-cell throughput); higher per-user quality and service levels; higher
subscriber density per base station; small spectrum requirements; and lower capital and opera-
tional costs in deployment. The spectral efficiency for various systems can be calculated easily
using

Spectral Efficiency = Channel Throughput
Channel Bandwidth

. (2.1)
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This simply sums the throughput over a channel in an operating network and divides by
the channel bandwidth. To understand spectral efficiency calculations, consider the PCS-1900
(GSM) system which can be parameterized as follows: 200 KHz carriers, 8 time slots per
carrier, 13.3 Kbps of user data per slot, effective reuse of 7 (i.e., effectively 7 channel groups at
100 percent network load, or only 1/7th of each channels throughput available per cell). The
spectral efficiency is therefore:

SE = 8 slots × 13.3
Kbps
slot

/200 KHz/7 cells

= 0.076 b/s/Hz/cell.
(2.2)

This value of approximately 0.1 b/s/Hz/cell is generally representative of high-mobility
2G and 3G cellular systems, including CDMA systems of all types. It reflects the fact that
the classical techniques for increasing spectral efficiency have been exhausted and that new
techniques are necessary [45]. Finally, it should be noted that the value of approximately
0.1 b/s/Hz/cell represents a major stumbling block for the delivery of next-generation services.
Without substantial increases in spectral efficiency, 3G systems are bound to spectral efficiencies
like those of todays 2G systems. In a typical 3G system with a 5 MHz downlink channel block,
this translates into a total cell capacity of approximately 500 Kbps for the entire cell. With
services advertised in the range of 144–384 Kbps, 1–3 users will completely occupy the cell
capacity! This is far from the approximately 250–500 subscribers per cell needed to make the
system economically viable, and it underscores the need for new methods to boost spectral
efficiency.

2.7 MULTIPLE ACCESS SCHEMES
Mobile communications utilize the range of available frequencies in a number of ways, referred
to as multiple-access schemes. Some basic schemes are FDMA, TDMA, CDMA, and OFDM.

2.7.1 FDMA
In the standard analog frequency division multiple access (FDMA) systems, such as AMPS, the
most widely cellular phone system installed in North America, different carrier frequencies are
allocated to different users. Individual conversations use communication channels appropriately
separated in the frequency domain. In a system using the FDMA scheme, six frequencies
are assigned to six users, and six simultaneous calls may be made as shown in Fig. 2.10(a).
FDMA systems transmit one voice circuit per channel. Each conversation gets its own, unique,
radio channel. The channels are relatively narrow, usually 30 KHz or less, and are defined as
either transmit or receive channels. A full duplex conversation requires a transmit and receive
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FIGURE 2.10: Channel usage for different multiple access schemes: (a) FDMA; (b) TDMA;
(c) CDMA [40].

channel pair. For example, if a FDMA system had 200 channels, the system can handle 100
simultaneously full duplex conversations (100 channels for transmitting and 100 channels for
receiving).

2.7.2 TDMA
With time division multiple access (TDMA) systems, separate conversations in both frequency
and time domains take place, as shown in Fig. 2.10(b). Each frequency (channel) supports
multiple conversations, which use the channel during specific time slots. Typically there is a
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maximum number of conversations which can be supported on each physical channel and each
conversation occupies a logical “channel.” For example, a system using this scheme creates
two TDMA channels and divides each into three time slots, serving six users. Global System
Mobile (GSM) communications, a unified pan-European system, is a time division-based
digital cellular system. It employs 8 user time slots per frame in a 200 KHz channel. Like other
TDMA systems, staggered transmit and receive time slots allow modems to use half-duplex
radios, thereby reducing their costs. The transmit/receive offset still leaves enough idle time for
the mobile to participate in handovers by monitoring neighboring cell channel signal strengths.

2.7.3 CDMA
Code Division Multiple Access (CDMA) systems use spread-spectrum (SS) signaling to create
wideband sequences for transmission. This is achieved by several methods, such as pseudonoise
(PN) sequences, frequency- or time-hopping techniques, as shown in Fig. 2.10(c). A number
of users simultaneously and asynchronously access a channel by modulating their information-
bearing signals with preassigned signature sequences [51].

In the case of PN sequences, for example, also known as Direct Sequence CDMA
(DS-CDMA), each user in the system uses a separate code for transmission, as shown in
Fig. 2.10(c). The design aims to spread the bandwidth of the information sequence by mul-
tiplying it by a PN sequence yielding a longer random sequence and simultaneously reducing
the spectral density of the signal [40]. This new sequence consists of inverted and non-
inverted versions of the original PN sequence. Since it is noisy-like, it possesses a wider
frequency bandwidth that is less susceptible to the effects of noise and narrowband jam-
mers during transmission [52]. CDMA systems provide protection against multipath inter-
ference and antijamming capability. Additionally, there is low probability of interception and,
thus, unauthorized parties become less capable of detecting the information message during
transmission.

In frequency hopping CDMA (FH-CDMA), each user is identified by a unique spread-
ing sequence to create a pseudo random hop pattern of the transmission frequencies over the
entire bandwidth. These sequences are available at the receiver to identify the users. In frequency
hopping CDMA, the carrier frequency of the modulated information signal is not constant but
changes periodically. During time intervals T, the carrier frequency remains the same, but after
each time interval the carrier hops to another (or possibly the same) frequency. The hopping
pattern is decided by the spreading code. The set of available frequencies the carrier can attain
is called the hop-set. The frequency occupation of an FH-SS system differs considerably from
a DS-SS system. A DS system occupies the entire frequency band when it transmits, whereas
an FH system uses only a small part of the bandwidth when it transmits, but the location of
this part differs in time.
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In time-hopping CDMA (TH-CDMA), the information-bearing signal is not transmit-
ted continuously. Instead, the signal is transmitted in short bursts at time intervals determined
by the spreading code assigned to the user. In-time hopping CDMA the data signal is trans-
mitted in rapid bursts at time intervals. The time axis is divided into frames, and each frame is
divided into M, for example, time slots. During each frame the user transmits in one of the M
time slots. The code signal assigned to the user defines which of the M time slots is transmitted.
Since a user transmits all of its data in one, instead of M time slots, the frequency it needs for
its transmission increases by a factor of M.

In theory, the capacity provided by the three multiple access schemes is the same and
is not altered by dividing the spectrum into frequencies, time slots, or codes, as explained
in the following example [53]. Assume that there are six carrier frequencies available for
transmission covering the available bandwidth. The channel usage for FDMA, TDMA, and
CDMA is depicted in Fig. 2.10. In a system using the FDMA scheme, six frequencies are
assigned to six users, and six simultaneous calls may be made. TDMA generally requires a
larger bandwidth than FDMA. A system using this scheme can create two TDMA channels
and divides each into three time slots, serving six users [40]. A CDMA channel requires a
larger bandwidth than the other two and serves six calls by using six codes, as illustrated in
Fig. 2.10(c).

2.7.4 OFDM
The principle of orthogonal frequency division multiple (OFDM) access has existed for several
decades. However, it was only in the last decade that it started to be used in commercial
systems. Digital Audio and Video Broadcasting (DAB and DVB), wireless local area networks
(WLAN), and more recently wireless local loop (WLL) are the most important wireless
applications that use OFDM [54]. The main concept of the method is that one data stream,
of Q bps for example, is divided into N data streams, each at a rate of Q/N bps where each
one is carried by a different frequency. In OFDM, the subcarrier pulse used for transmission is
chosen to be rectangular. This has the advantage that the task of pulse forming and modulation
can be performed by a simple Inverse Discrete Fourier Transform (IDFT). Thus, the N data
streams are combined together using the Inverse Fast Fourier Transform (IFFT), which can be
implemented very efficiently, to obtain a time-domain waveform for transmission as an IFFT.
Therefore, in the receiver, a forward FFT is needed to reverse this operation. According to the
theorems of the Fourier Transform the rectangular pulse shape will lead to a sin(x)/x spectrum
of the subcarriers as shown in Fig. 2.11.

The parallel, and slower data streams, are allowed to overlap in frequency. In this way,
the bandwidth of the modulated symbol effectively decreases by N, and its duration increases
by N, as well. Therefore, with the appropriate choice of N, frequency-selectivity and ISI (Inter
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FIGURE 2.11: OFDM and the orthogonality principle.

Symbol Interference) can be removed. The carrier frequency spacing � f is selected so that
each subcarrier is orthogonal to all other subcarriers, thus � f = 1/T, where T is the OFDM
symbol duration (or, more precisely, the effective duration of the Fourier transform).

OFDM is particularly suited for transmission over a dispersive (i.e., frequency selective)
channel. In 1993 Linnertz et al. proposed the multi-carrier code division multiple access (MC-
CDMA) [55]. It is a new CDMA system based on a combination of CDMA and orthogonal
frequency division OFDM where the spreading is performed in the frequency domain, rather
than in the time domain as in a DS-CDMA system. In MC-CDMA, each of the M carriers in a
multi-carrier system is multiplied by a spreading sequence unique to each user. This system has
gained much attention, because the signal can be easily transmitted and received using the Fast
Fourier Transform (FFT) device without increasing the transmitter and receiver complexities
and is potentially robust to channel frequency selectivity with a good frequency use efficiency
[56].
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C H A P T E R 3

Antenna Arrays and Diversity
Techniques

An antenna in a telecommunications system is the device through which, in the transmission
mode, radio frequency (RF) energy is coupled from the transmitter to the free space, and from
free space to the receiver in the receiving mode [57–59].

3.1 ANTENNA ARRAYS
In many applications, it is necessary to design antennas with very directive characteristics
(very high gains) to meet demands for long distance communication. In general, this can only
be accomplished by increasing the electrical size of the antenna. Another effective way is to
form an assembly of radiating elements in a geometrical and electrical configuration, without
necessarily increasing the size of the individual elements [9]. Such a multielement radiation
device is defined as an antenna array [59].

The total electromagnetic field of an array is determined by vector addition of the fields
radiated by the individual elements, combined properly in both amplitude and phase[58, 59].
Antenna arrays can be one-, two-, and three-dimensional. By using basic array geometries, the
analysis and synthesis of their radiation characteristics can be simplified. In an array of identical
elements, there are at least five individual controls (degrees of freedom) that can be used to
shape the overall pattern of the antenna. These are the [59]:

i. geometrical configuration of the overall array (linear, circular, rectangular, spherical,
etc.)

ii. relative displacement between the elements

iii. amplitude excitation of the individual elements

iv. phase excitation of the individual elements

v. relative pattern of the individual elements
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3.2 ANTENNA CLASSIFICATION
In general, antennas of individual elements may be classified as isotropic, omnidirectional and
directional according to their radiation characteristics. Antenna arrays may be referred to as
phased arrays and adaptive arrays according to their functionality and operation [59].

3.2.1 Isotropic Radiators
An isotropic radiator is one which radiates its energy equally in all directions. Even though such
elements are not physically realizable, they are often used as references to compare to them the
radiation characteristics of actual antennas.

3.2.2 Omnidirectional Antennas
Omnidirectional antennas are radiators having essentially an isotropic pattern in a given plane
(the azimuth plane in Fig. 3.1) and directional in an orthogonal plane (the elevation plane in
Fig. 3.1). Omnidirectional antennas are adequate for simple RF environments where no spe-
cific knowledge of the users directions is either available or needed. However, this unfocused
approach scatters signals, reaching desired users with only a small percentage of the overall
energy sent out into the environment [4]. Thus, there is a waste of resources using omnidirec-
tional antennas since the vast majority of transmitted signal power radiates in directions other
than the desired user. Given this limitation, omnidirectional strategies attempt to overcome
environmental challenges by simply increasing the broadcasting power. Also, in a setting of
numerous users (and interferers), this makes a bad situation worse in that the signals that miss
the intended user become interference for those in the same or adjoining cells. Moreover, the
single-element approach cannot selectively reject signals interfering with those of served users.
Therefore, it has no spatial multipath mitigation or equalization capabilities. Omnidirectional
strategies directly and adversely impact spectral efficiency, limiting frequency reuse. These

FIGURE 3.1: Omnidirectional antennas and coverage patterns [4].
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limitations of broadcast antenna technology regarding the quality, capacity, and geographic
coverage of wireless systems initiated an evolution in the fundamental design and role of the
antenna in a wireless system.

3.2.3 Directional Antennas
Unlike an omnidirectional antenna, where the power is radiated equally in all directions in
the horizontal (azimuth) plane as shown in Fig. 3.1, a directional antenna concentrates the
power primarily in certain directions or angular regions [59]. The radiating properties of these
antennas are described by a radiation pattern, which is a plot of the radiated energy from the
antenna measured at various angles at a constant radial distance from the antenna. In the near
field the relative radiation pattern (shape) varies accorging to the distance from the antenna,
whereas in the far field the relative radiation pattern (shape) is basically independent of distance
from the antenna. The direction in which the intensity/gain of these antennas is maximum is
referred to as the boresight direction [59, 60]. The gain of directional antennas in the boresight
direction is usually much greater than that of isotropic and/or omnidirectional antennas. The
radiation pattern of a directional antenna is shown in Fig. 3.2 where the boresight is in the
direction θ = 0◦. The plot consists of a main lobe (also referred to as major lobe), which contains
the boresight and several minor lobes including side and rear lobes. Between these lobes are
directions in which little or no radiation occurs. These are termed minima or nulls. Ideally, the
intensity of the field toward nulls should be zero (minus infinite d Bs ). However, practically
nulls may represent a 30 or more dB reduction from the power at boresight. The angular
segment subtended by two points where the power is one-half the main lobe’s peak value is
known as the half-power beamwidth.

3.2.4 Phased Array Antennas
A phased array antenna uses an array of single elements and combines the signal induced on
each element to form the array output. The direction where the maximum gain occurs is usually
controlled by adjusting properly the amplitude and phase between the different elements [59].
Fig. 3.3 describes the phased array concept.

3.2.5 Adaptive Arrays
Adaptive arrays for communication have been widely examined over the last few decades. The
main thrust of these efforts has been to develop arrays that would provide both interference
protection and reliable signal acquisition and tracking in communication systems [61]. The
radiation characteristics of these arrays are adaptively changing according to changes and
requirements of the radiation environment. Research on adaptive arrays has involved both
theoretical and experimental studies for a variety of applications. The field of adaptive array
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FIGURE 3.2: Radiation pattern of a directional antenna [17].

FIGURE 3.3: Phased array antenna concept [20].
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sensor systems has now become a mature technology, and there is a wealth of literature available
on various aspects of such systems [62].

Adaptive arrays provide significant advantages over conventional arrays in both commu-
nication and radar systems. They have well-known advantages for providing flexible, rapidly
configurable, beamforming and null-steering patterns [62]. However, this is often assumed
because of its flexibility in using the available array elements in an adaptive mode and, thus,
can overcome most, if not all, of the deficiencies in the design of the basic or conventional
arrays [63]. Therefore, conventional goals, such as low sidelobes and narrow beamwidth in the
array design can be ignored in the implementation of an adaptive array. Nevertheless, much
work has drawn attention toward these impairments of adaptive arrays and reported the serious
problems, such as grating nulls, with improper selection of element distributions and patterns
[64].

An adaptive antenna array is the one that continuously adjusts its own pattern by means of
feedback control [9]. The principal purpose of an adaptive array sensor system is to enhance the
detection and reception of certain desired signals [62]. The pattern of the array can be steered
toward a desired direction space by applying phase weighting across the array and can be shaped
by amplitude and phase weighting the outputs of the array elements [65]. Additionally, adaptive
arrays sense the interference sources from the environment and suppress them automatically,
improving the performance of a radar system, for example, without a priori information of the
interference location [66]. In comparison with conventional arrays, adaptive arrays are usually
more versatile and reliable.

A major reason for the progress in adaptive arrays is their ability to automatically respond
to an unknown interfering environment by steering nulls and reducing side lobe levels in the
direction of the interference, while keeping desired signal beam characteristics [66]. Most
arrays are built with fixed weights designed to produce a pattern that is a compromise between
resolution, gain, and low sidelobes. However, the versatility of the array antenna invites the use
of more sophisticated techniques for array weighting [65]. Particularly attractive are adaptive
schemes that can sense and respond to a time-varying environment. The precise control of null
placement in adaptive arrays results in slight deterioration in the output SNR.

Adaptive antenna arrays are commonly equipped with signal processors which can au-
tomatically adjust by a simple adaptive technique the variable antenna weights of a signal
processor so as to maximize the signal-to-noise ratio. At the receiver output, the desired signal
along with interference and noise are received at the same time. The adaptive antenna scans its
radiation pattern until it is fixed to the optimum direction (toward which the signal-to-noise
ratio is maximized). In this direction the maximum of the pattern is ideally toward the desired
signal.
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Adaptive arrays based on DSP algorithms can, in principle, receive desired signals
from any angle of arrival. However, the output signal-to-interference plus-noise ratio (SINR)
obtained from the array, as the desired and interference signal angles of arrival and polarizations
vary, depends critically on the element patterns and spacings used in the array [61].

3.3 DIVERSITY TECHNIQUES
Diversity combining [67] is an effective way to overcome the problem of fading in radio
channels. It utilizes the fact that if some receive antennas are experiencing a low signal level
due to fading, also called a deep fade, some others will probably not suffer from the same deep
fade, provided that they are displaced in appropriate positions, or in polarity [68].

Let us now consider the transmission of an information sequence over a frequency non-
selective channel. The average bit error probability (BEP) is given by

Pb =
∞∫

0

Pb(γb)p(γb)dγb (3.1)

where Pb(γb) is the bit error probability as a function of the received signal-to-noise-ratio
(SNR), γb , and p(γb) is the probability density function (PDF) of the received SNR. As
an example, we examine the transmission of Binary Phase Shift Keying (BPSK) information
sequence over a Rayleigh fading channel. In this case, Pb(γb) is given by

Pb(γb) = Q
(√

γb
)

(3.2)

where γb = α2 Eb/N0 is the received SNR and Eb is the energy of the transmitted information
bit. Moreover, for a Rayleigh fading channel, it can be easily shown that

p(γb) = 1
γb

e−γb/γ̄b (3.3)

where γ̄b is the average SNR defined by

γ̄b = Eb

N0
E
{
α2} (3.4)

where E{·} denotes the expectation value. Substituting Pb(γb) and p(γb) into the expression for
Pb in (3.1), we obtain the average bit error probability as

Pb = 1
2

(
1 −

√
γ̄b

1 + γ̄b

)
. (3.5)

The bit error probabilities for BPSK modulation over AWGN and Rayleigh fading channels
are shown in Fig. 3.4. When simulating the performance of any information bearing sequence
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FIGURE 3.4: Bit error probability for BPSK modulation over AWGN and Rayleigh fading channels.

transmitted through a particular wireless channel, a bit error occurs if the decision for the
received bit does not match the originally transmitted data bit. The bit error rate (BER) is the
ratio of the number of bit errors to the total number of transmitted data bits [69]. From Fig. 3.4,
we observe that while the error probability decreases exponentially with SNR for the AWGN
channel, it decreases only inversely for the Rayleigh fading channel case [70]. Therefore, fading
degrades the performance of a wireless communication system significantly.

In order to combat fading, the receiver is typically provided with multiple replicas of the
transmitted signal. In this way, the transmitted information is extracted with the minimum
possible number of errors since all the replicas do not typically fade simultaneously. This method
is called diversity and is one of the most effective techniques to combat multipath fading.
There exist many diversity techniques including temporal, frequency, space, and polarization
diversity. A block diagram of a digital communication system with diversity is shown in
Fig. 3.5. The diversity combiner combines the received signals from the different diversity
branches. The combiner simply exploits the information embedded in each branch to form the
decision variable [26, 70].

In temporal diversity, the same signal is transmitted at different times, where the sep-
aration between the time intervals is at least equal to the coherence time, Tc . Therefore,
the separated in time channels fade independently and thus, proper diversity reception is
achieved.

Frequency diversity exploits the fact that frequencies separated by at least the coherence
bandwidth of the channel, Bc , fade almost independently of each other. Thus, if a signal is
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FIGURE 3.5: Model of a digital communication system with diversity [70].

transmitted simultaneously using frequencies appropriately apart from each other, the receiver
is provided with independent fading branches through several frequency channels.

In spatial (antenna) diversity, spatially separated antennas are used at the transmitter
and/or the receiver. In this way, the replicas of the transmitted signal are provided to the
receiver via separate spatial channels [26, 70]. It has been shown that a spatial separation
of at least half-wavelength is necessary that the signals received from antenna elements are
(almost) independent in a rich scattering, or more precisely in a uniform scattering environment
[71].

In antenna diversity, signals received by the different antenna branches are demodulated
to baseband with quadrature demodulator and processed with correlator or matched filter
detector. The output is then applied to a diversity combiner. This procedure guarantees that
fading will be slow and generally not change through a time slot. The option to select the best
antenna significantly improves performance [68].

One method of combining in spatial diversity is to weight each diversity branch with
its complex conjugate of its own channel gain (so that the phase introduced by the channel to
be as much as possible removed). The combiner then adds the outputs of this process from
each individual branch to form its decision. This technique is also known as the maximum
ratio combiner (MRC) and is the optimal diversity scheme. However, it needs perfect channel
knowledge for maximum performance.

Although optimal, MRC is expensive to implement and requires an accurate tracking of
the complex fading which is difficult to achieve in practice [26]. Equal gain combining (EGC)
diversity technique is a simple alternative to MRC. It consists of the co-phasing of the signals
received from each diversity branch using unit weights before added by the combiner [26]. The
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performance of EGC is found to be very close to that of MRC. The SNR of the combined
signals using EGC is only 1 dB below the SNR provided by MRC [72].

In switched diversity (SC), the decision is made using a branch with SNR larger than
a predetermined threshold. If the SNR drops below this threshold, the combiner switches to
another branch that satisfies the threshold criterion.

Another combining scheme is selection diversity (SC) in which all the branches are
monitored simultaneously [70]. The branch yielding the highest SNR ratio is always selected
at any one time. The received signal is then multiplied by the complex conjugate of the
corresponding branch. The formed decision is based upon this output.

At this point, it would be useful to see the performance of a particular antenna diversity
scheme. For example, employing MRC and BPSK modulation, the probability of bit error is
given by

Pb =
(

1 − µ

2

)L L − 1∑
l = 0

(
L − 1 + l

l

)(
1 + µ

2

)l

(3.6)

where L is the number of the present diversity branches and µ =
√

γ b
1 + γ b

. For large values of
the average bit-to-noise ratio, (3.6) simplifies to [73]

Pb ≈
(

1
4γ b

)(
2L − 1

L

)
. (3.7)

Thus, at high values of SNR, it possesses in its diagram a slope approximately equal to −L
dB/decade. Fig. 3.6 shows the performance of MRC for different number of branches L. As the
diversity order increases, the BER performance is improved, or equivalently there is a significant
gain in SNR for a given BER. However, this increase in performance is accompanied by the
trade-off of more expensive and complicated infrastructure and additional required transmission
power.

The polarization diversity scheme achieves its diversity based on the different propa-
gation characteristics of the vertically and horizontally polarized electromagnetic waves [74].
Polarization diversity is different from space diversity. It is based on the concept that in high
multipath environments, the signal from a portable received at the base station has varying
polarization. The mechanism of decorrelation for the different polarizations is the multipath
reflections encountered by a signal traveling between the portable and base station. Typically,
an improvement in the uplink performance can be achieved by using two receive antennas with
orthogonal polarizations and combining these signals. Because the two receive antennas do not
need to be spaced apart horizontally to accomplish this, they can be mounted under the same
radome [75]. Polarization diversity does have its benefits. It is easy to obtain a suitable site
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FIGURE 3.6: The MRC diversity technique [72].

because large structures that are required for space-diversity techniques are not needed. But
polarization diversity is completely effective only in high multipath environments. Some man-
ufacturers have promoted polarization diversity as performing better than space diversity in all
environments [75]. However, when high multipath environments do not exist, the performance
of the polarization-diversity antennas may not be as good as the space-diversity system. Polar-
ization diversity is a useful technique in the proper environment, where the necessary multipath
is present. Before assuming that polarization diversity may work in a particular environment,
field testing must be performed to compare space diversity and polarization diversity.

Angular antenna diversity has been considered as an attempt to control the dispersive
type of fading along with the traditional antenna space diversity being utilized to reduce the
impact of flat fading [76]. In angle diversity, antennas with narrow beamwidths are positioned
in different angular directions or regions. The use of narrower beams increases the gain of the
base station antenna and provides angular discrimination that can reduce interference [77].
Furthermore, it has been shown practically, by Perini [77] and others, that the effect of angular
diversity is quite similar to that of using space diversity, especially in dense urban areas.

Fig. 3.7 shows three antenna diversity options with four antenna elements for a 120◦

sectorized system. Fig. 3.7(a) shows spatial diversity with approximately seven wavelengths
(7λ) spacing between the elements (3.3 m at 1900 MHz). A typical antenna element has a gain
of 18 dBi. The horizontal and vertical beamwidths are 65◦ and 80◦, respectively. Fig. 3.7(b)
shows two dual polarization antennas, where the antennas can be either closely spaced (λ/2) to
provide both angle and polarization diversity in a small profile, or widely spaced (7λ) to provide
both spatial and polarization diversity [20]. The antenna elements shown are the commonly
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FIGURE3.7: Antenna diversity options with four antenna elements: (a) spatial diversity; (b) polarization
diversity with angular and spatial diversity; (c) angular diversity [20].

used 45◦ slant polarization antennas, rather than vertically and horizontally polarized antennas.
Finally, in Fig. 3.7(c) a closely spaced (λ/2) vertically polarized array is shown. Such an array
provides angle diversity in a small profile [20].





33

C H A P T E R 4

Smart Antennas

4.1 INTRODUCTION
Many refer to smart antenna systems as smart antennas, but in reality antennas by themselves
are not smart. It is the digital signal processing capability, along with the antennas, which make
the system smart. Although it may seem that smart antenna systems are a new technology,
the fundamental principles upon which they are based are not new. In fact, in the 1970s and
1980s two special issues of the IEEE Transactions on Antennas and Propagation were devoted to
adaptive antenna arrays and associated signal processing techniques [78, 79]. The use of adap-
tive antennas in communication systems initially attracted interest in military applications [27].
Particularly, the techniques have been used for many years in electronic warfare (EWF) as coun-
termeasures to electronic jamming. In military radar systems, similar techniques were already
used during World War II [80]. However, it is only because of todays advancement in powerful
low-cost digital signal processors, general-purpose processors and ASICs (Application Specific
Integrated Circuits), as well as innovative software-based signal processing techniques (algo-
rithms), that smart antenna systems are gradually becoming commercially available [17, 59].

4.2 NEED FOR SMART ANTENNAS
Wireless communication systems, as opposed to their wireline counterparts, pose some unique
challenges [42]:

i. the limited allocated spectrum results in a limit on capacity

ii. the radio propagation environment and the mobility of users give rise to signal fading
and spreading in time, space and frequency

iii. the limited battery life at the mobile device poses power constraints

In addition, cellular wireless communication systems have to cope with interference due to
frequency reuse. Research efforts investigating effective technologies to mitigate such effects
have been going on for the past twenty five years, as wireless communications are experiencing
rapid growth [42]. Among these methods are multiple access schemes, channel coding and
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FIGURE 4.1: Wireless systems impairments [81].

equalization and smart antenna employment. Fig. 4.1 summarizes the wireless communication
systems impairments that smart antennas are challenged to combat.

An antenna in a telecommunications system is the port through which radio frequency
(RF) energy is coupled from the transmitter to the outside world for transmission purposes,
and in reverse, to the receiver from the outside world for reception purposes [57, 59]. To date,
antennas have been the most neglected of all the components in personal communications
systems. Yet, the manner in which radio frequency energy is distributed into and collected from
space has a profound influence upon the efficient use of spectrum, the cost of establishing new
personal communications networks and the service quality provided by those networks [20].
The commercial adoption of smart antenna techniques is a great promise to the solution of the
aforementioned wireless communications’ impairments.

4.3 OVERVIEW
The basic idea on which smart antenna systems were developed is most often introduced with
a simple intuitive example that correlates their operation with that of the human auditory
system. A person is able to determine the Direction of Arrival (DoA) of a sound by utilizing a
three-stage process:
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FIGURE 4.2: Human auditory function [17].

� One’s ears act as acoustic sensors and receive the signal.
� Because of the separation between the ears, each ear receives the signal with a different

time delay.
� The human brain, a specialized signal processor, does a large number of calculations to

correlate information and compute the location of the received sound.

To better provide an insight of how a smart antenna system works, let us imagine two
persons carrying on a conversation inside an isolated room as illustrated in Fig. 4.2. The listener
among the two persons is capable of determining the location of the speaker as he moves about
the room because the voice of the speaker arrives at each acoustic sensor, the ear, at a different
time. The human “signal processor,” the brain, computes the direction of the speaker from the
time differences or delays received by the two ears. Afterward, the brain adds the strength of
the signals from each ear so as to focus on the sound of the computed direction.

Utilizing a similar process, the human brain is capable of distinguishing between multiple
signals that have different directions of arrival. Thus, if additional speakers join the conversation,
the brain is able to enhance the received signal from the speaker of interest and tune out
unwanted interferers. Therefore, the listener has the ability to distinguish one person’s voice,
from among many people talking simultaneously, and concentrate on one conversation at a
time. In this way, any unwanted interference is attenuated. Conversely, the listener can respond
back to the same direction of the desired speaker by orienting his/her transmitter, his/her
mouth, toward the speaker.

Electrical smart antenna systems work the same way using two antennas instead of two
ears, and a digital signal processor instead of the brain as seen in Fig. 4.3. Thus, based on the
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FIGURE 4.3: A two-element electrical smart antenna.

time delays due to the impinging signals onto the antenna elements, the digital signal processor
computes the direction-of-arrival (DOA) of the signal-of-interest (SOI), and then it adjusts
the excitations (gains and phases of the signals) to produce a radiation pattern that focuses on
the SOI while tuning out any interferers or signals-not-of-interest (SNOI).

Transferring the same idea to mobile communication systems, the base station plays the
role of the listener, and the active cellular telephones simulate the role of the several sounds
heard by human ears. The principle of a smart antenna system is illustrated in Fig. 4.4.

A digital signal processor located at the base station works in conjunction with the an-
tenna array and is responsible for adjusting various system parameters to filter out any interferers
or signals-not-of-interest (SNOI) while enhancing desired communication or signals-of-interest
(SOI). Thus, the system forms the radiation pattern in an adaptive manner, responding dynam-
ically to the signal environment and its alterations. The principle of beamforming is essentially
to weight the transmit signals in such a way that the receiver obtains a constructive super-
position of different signal parts. Note that some knowledge of the transmission channel at
the transmitter is necessary in order for beamforming to be feasible [82]. A comprehensive
overview of beamforming techniques is given in [83]. Fig. 4.5 illustrates the general idea of
adaptive beamforming.



SMART ANTENNAS 37

“intelligence”

control

RF in/out

To/from radio
subsystem

Steerable
lobe

Antenna
element

FIGURE 4.4: Principle of a smart antenna system [80].

4.4 SMART ANTENNA CONFIGURATIONS
Basically, there are two major configurations of smart antennas:

� Switched-Beam: A finite number of fixed, predefined patterns or combining strategies
(sectors).

� Adaptive Array: A theoretically infinite number of patterns (scenario-based) that are
adjusted in real time according to the spatial changes of SOIs and SNOIs.

In the presence of a low level interference, both types of smart antennas provide significant gains
over the conventional sectorized systems. However, when a high level interference is present, the
interference rejection capability of the adaptive systems provides significantly more coverage
than either the conventional or switched beam system [4]. Fig. 4.6 illustrates the relative
coverage area for conventional sectorized, switched-beam, and adaptive antenna systems.

Both types of smart antenna systems provide significant gains over conventional sectorized
systems. The low level of interference environment on the left represents a new wireless system
with lower penetration levels. However the environment with a significant level of interference
on the right represents either a wireless system with more users or one using more aggressive
frequency reuse patterns. In this scenario, the interference rejection capability of the adaptive
system provides significantly more coverage than either the conventional or switched beam
systems [4].
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FIGURE 4.5: Adaptation procedure: (a) Calculation of the beamformer weights [20] and (b) Beam-
formed antenna amplitude pattern to enhance SOI and suppress SNOIs.

Now, let us assume that a signal of interest and two co-channel interferers arrive at the
base station of a communications system employing smart antennas. Fig. 4.7 illustrates the
beam patterns that each configuration may form to adapt to this scenario.

The switched-beam system is shown on the left while the adaptive system is shown on the
right. The light lines indicate the signal of interest while the dark lines display the direction of
the co-channel interfering signals. Both systems direct the lobe with the greatest intensity in the
general direction of the signal of interest. However, switched fixed beams achieve coarser pattern
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FIGURE 4.6: Coverage patterns for switched beam and adaptive array antennas [20].
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FIGURE 4.7: Beamforming lobes and nulls that Switched-Beam (left) and Adaptive Array (right)
systems might choose for identical user signals (light line) and co-channel interferers (dark lines) [20].

control than adaptive arrays [84]. The adaptive system chooses a more accurate placement, thus
providing greater signal enhancement. Similarly, the interfering signals arrive at places of lower
intensity outside the main lobe, but again the adaptive system places these signals at the lowest
possible gain points. The adaptive array concept ideally ensures that the main signal receives
maximum enhancement while the interfering signals receive maximum suppression.

4.4.1 Switched-Beam Antennas
A switched-beam system is the simplest smart antenna technique. It forms multiple fixed
beams with heightened sensitivity in particular directions. Such an antenna system detects
signal strength, chooses from one of several predetermined fixed beams, and switches from one
beam to another as the cellular phone moves throughout the sector, as illustrated in Fig. 4.8.
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FIGURE 4.8: Switched-beam coverage pattern [85].

The switched-beam, which is based on a basic switching function, can select the beam
that gives the strongest received signal. By changing the phase differences of the signals
used to feed the antenna elements or received from them, the main beam can be driven in
different directions throughout space. Instead of shaping the directional antenna pattern, the
switched-beam systems combine the outputs of multiple antennas in such a way as to form
narrow sectorized (directional) beams with more spatial selectivity that can be achieved with
conventional, single-element approaches. Other sources in the literature [86] define this concept
as phased array or multibeam antenna. Such a configuration consists of either a number of fixed
beams with one beam turned on toward the desired signal or a single beam (formed by phase
adjustment only) that is steered toward the desired signal.

A more generalized to the Switched-Lobe concept is the Dynamical Phased Array
(DPA). In this concept, a direction of arrival (DOA) algorithm is embedded in the system
[20]. The DOA is first estimated and then different parameters in the system are adjusted in
accordance with the desired steering angle. In this way the received power is maximized but
with the trade-off of more complicated antenna designs.

The elements used in these arrays must be connected to the sources and/or receivers by
feed networks. One of the most widely-known multiple beamforming networks is the Butler
matrix [87, 88]. It is a linear, passive feeding, N × N network with beam steering capabilities
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FIGURE 4.9: A schematic diagram of a 4 × 4 Butler matrix [90].

for phased array antennas with N outputs connected to antenna elements and N inputs or beam
ports. The Butler matrix performs a spatial fast Fourier transform and provides N orthogonal
beams, where N should be an integer power of 2 (i.e. N = 2n, n ∈ Z

+) [89]. These beams
are linear independent combinations of the array element patterns. A Butler matrix-fed array
can cover a sector of up to 360◦ depending on element patterns and spacing. Each beam can
be used by a dedicated transmitter and/or receiver and the appropriate beam can be selected
using an RF switch. A Butler matrix can also be used to steer the beam of a circular array by
exciting the Butler matrix beam ports with amplitude and phase weighted inputs followed by a
variable uniform phase taper [89]. The only required transmit/receive chain combines alternate
rows of hybrid junctions (or directional couplers) and fixed phase shifters [90]. Fig. 4.9 shows
a schematic diagram of a 4 × 4 Butler matrix.

A total of (N/2) × log2 N hybrids and (N/2) × log2(N − 1) fixed phase shifters are
required to form the network. The hybrids can be either 90◦ or 180◦ 3 dB hybrids, depending
on if the beams are to be symmetrical distributed about the broadside or whether one of the
beams is to be in the broadside direction [91]. A Butler matrix serves two functions:

i. distribution of RF signals to radiating antenna elements and

ii. orthogonal beam forming and beam steering.

By connecting a Butler matrix between an antenna array and an RF switch, multiple beam-
forming can be achieved by exciting two or more beam ports with RF signals at the same time.
A signal introduced at an input port will produce equal excitations at all output ports with a
progressive phase between them, resulting in a beam radiated at a certain angle in space. A signal
at another input port will form a beam in another direction, achieving beam steering. Referring
to Fig. 4.10, if ports 1R and 4L are excited at the same time with RF signals of equal amplitude
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FIGURE 4.10: 8 orthogonal beams formed by an 8 × 8 Butler matrix [90].

and phase, beams 2R and 3L will radiate simultaneously. Although multiple beamforming is
possible, there is a limitation. Two adjacent beams cannot be formed simultaneously as they
will add to produce a single beam [92].

4.4.2 Adaptive Antenna Approach
The adaptive antenna systems approach communication between a user and a base station in
a different way by adding the dimension of space. By adjusting to the RF environment as it
changes (or the spatial origin of signals), adaptive antenna technology can dynamically alter
the signal patterns to optimize the performance of the wireless system. Adaptive array systems
[78, 79] provide more degrees of freedom since they have the ability to adapt in real time the
radiation pattern to the RF signal environment; in other words, they can direct the main beam
toward the pilot signal or SOI while suppressing the antenna pattern in the direction of the
interferers or SNOIs. To put it simply, adaptive array systems can customize an appropriate
radiation pattern for each individual user. Fig. 4.11 illustrates the general idea of an adaptive
antenna system.

The adaptive concept is far superior to the performance of a switched-beam system, as
it is shown in Fig. 4.6. Also, it shows that switched-beam system not only may not be able to
place the desired signal at the maximum of the main lobe, but also it exhibits inability to fully
reject the interferers. Because of the ability to control the overall radiation pattern in a greater
coverage area for each cell site, as illustrated in Fig. 4.7, adaptive array systems can provide great
increase in capacity. Adaptive array systems can locate and track signals (users and interferers)
and dynamically adjust the antenna pattern to enhance reception while minimizing interference
using signal processing algorithms. A functional block diagram of the digital signal processing
part of an adaptive array antenna system is shown in Fig. 4.12.
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FIGURE 4.11: Adaptive array coverage: A representative depiction of a main lobe extending toward a
user with nulls directed toward two co-channel interferers.
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FIGURE 4.12: Functional block diagram of an adaptive array system.

After the system downconverts the received signals to baseband and digitizes them, it
locates the SOI using the direction-of-arrival (DOA) algorithm, and it continuously tracks
the SOI and SNOIs by dynamically changing the complex weights (amplitudes and phases of
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the antenna elements). Basically, the DOA computes the direction-of-arrival of all the signals
by computing the time delays between the antenna elements, and afterward, the adaptive
algorithm, using a cost function, computes the appropriate weights that result in an optimum
radiation pattern. Because adaptive arrays are generally more digital processing intensive and
require a complete RF portion of the transceiver behind each antenna element, they tend to be
more expensive than switched-beam systems.

Adaptive arrays utilize sophisticated signal-processing algorithms to continuously dis-
tinguish between desired signals, multipath, and interfering signals, as well as calculate their
Directions of Arrival (DOA). This approach updates its transmit strategy continuously based
on changes in both the desired and interfering signal locations. A number of well-documented
algorithms exist for estimating the DOA; for example, MUSIC, ESPRIT, or SAGE. These
algorithms, which are discussed in Chapter 5, make use of a data matrix with the array snapshots
collected within the coherence time of the channel. In essence, spatial processing dynamically
creates a different sector for each user and conducts a frequency/channel allocation in an on-
going manner in real time. Fig. 4.13 illustrates the beams of a fully adaptive antenna system
supporting two users.

In adaptive beamforming techniques, two main strategies are distinguished. The first
one is based on the assumption that part of the desired signal is already known through the

User One User Two

(a)

User One

User Two

(b)

FIGURE 4.13: Fully adaptive spatial processing supporting two users on the same conventional channel
simultaneously in the same cell [20].
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use of a training sequence. This known signal is then compared with what is received, and the
weights are then adjusted to minimize the Mean Square Error (MSE) between the known and
the received signals. In this way, the beampattern can be adjusted to null the interferers. This
approach optimizes the signal-to-interference ratio (SIR), and is applicable to non-line-of-sight
(NLOS) environments [93]. Since the weights are updated according to the incoming signals,
not only the interference is reduced but the multipath fading is also mitigated. In the second
one, the directions of arrivals from all sources transmitting signals to the array antenna are first
identified. The complex weights are then adjusted to produce a maximum toward the desired
angle and null toward interfering signals. This strategy may turn out to be deficient in practical
scenarios where there are too many DOAs due to multipaths, and the algorithms are more
likely to fail in properly detecting them. This is more likely to occur in NLOS environments
where there are many local scatterers close to the users and the base station, thus resulting in a
wider spread of the angle of arrival [93].

Another significant advantage of the adaptive antenna systems is the ability to share spec-
trum. Because of the accurate tracking and robust interference rejection capabilities, multiple
users can share the same conventional channel within the same cell. System capacity increases
through lower inter-cell frequency reuse patterns as well as intra-cell frequency reuse. Fig. 4.13
shows how adaptive antenna approach can be used to support simultaneously two users in the
same cell on the same conventional channel.

In each of the two plots, the pattern on the left is used to communicate with the user
on the left while the pattern on the right is used to talk with the user on the right. The drawn
lines delineate the actual direction of each signal. Notice that as the signals travel down the
indicated line toward the base station, the signal from the right user arrives at a null of the left
pattern or minimum gain point and vice versa. As the users move, beam patterns are constantly
updated to insure these positions. The plot at the bottom of the figure shows how the beam
patterns have dynamically changed to insure maximum signal quality as one user moves toward
the other. Fig. 4.14 summarizes the different smart antenna concepts and the functions of each
one.

4.5 SPACE DIVISION MULTIPLE ACCESS (SDMA)
A concept completely different from the previously described multiple access schemes, is the
spatial division multiple access (SDMA) scheme. SDMA systems utilize techniques by which
signals are distinguished at the BS based on their origin in space. They are usually used in
conjunction with either FDMA, TDMA, or CDMA in order to provide the latter with the
additional ability to explore the spatial properties of the signals [85]. SDMA is among the
most sophisticated utilizations of smart antenna technology; its advanced spatial processing
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FIGURE 4.14: Different smart antenna concepts [20].

capability enables it to locate many users, creating different beams for each user, as shown in
Fig. 4.15.

The SDMA scheme is based upon the concept that a signal arriving from a distant source
reaches different antennas in an array at different times due to their spatial distribution [40].
This delay is utilized to differentiate one or more users in one area from those in another

FIGURE 4.15: SDMA concept [20].
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area. The scheme allows an effective transmission to take place in one cell without disturbing
a simultaneous transmission in another cell. For example, conventional GSM/GPRS allows
one user at a time to transmit or receive in a frequency band to the base station, where
GSM/GPRS with SDMA allows multiple simultaneous transmissions in that same frequency
band, multiplying the capacity of the system. CDMA system capacity is limited by its SIR,
hence, with SDMA boosting the SIR in the system, more users will be allowed access by the
network [94].

Filtering in the space domain can separate spectrally and temporally overlapping signals
from multiple mobile units and it enables multiple users within the same radio cell to be
accommodated on the same frequency and time slot [20], as illustrated in Fig. 4.15. This
means that more than one user can be allocated to the same physical communication channel in
the same cell simultaneously, with only separation in angle. This is accomplished by having N
parallel beamformers at the base station operating independently, where each beamformer has its
own adaptive beamforming algorithm to control its own set of weights and its own direction-of-
arrival algorithm (DOA) to determine the time delay of each user’s signal [95, 96] as shown in
Fig. 4.16. Each beamformer creates a maximum toward its desired user while nulling or
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A/D
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y1

DSP

wM-1

 

Adaptive
Algorithm

DOA
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y2

yN

Beamformer 2

Beamformer N

FIGURE 4.16: SDMA system block diagram [94, 95].
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FIGURE 4.17: Channel reuse via angular separation [43].

attenuating the other users. This technology dramatically improves the interference suppression
capability while greatly increases frequency reuse resulting in increased capacity and reduced
infrastructure cost.

With SDMA, several mobiles can share the same frequency within a cell. Multiple signals
arriving at the base station can be separated by the base station receiver as long as their angular
separation is larger than the transmit/receive beamwidths [43]. This is shown in Fig. 4.17.
The beams that have the same shading use the same frequency band. This technique is called
channel reuse via angular separation.

Methods acting against fading are required for high data rate and highly reliable
mobile communication systems [97]. A SDMA system is an effective measure to cope
with fading, since it distinguishes radio signals in space or angular domain by using an-
tenna directivity or beamforming according to the direction of arrival (DOA) of signals
[9, 98].

4.6 ARCHITECTURE OF A SMART ANTENNA SYSTEM
Any wireless system can be separated to its reception and transmission parts. Because of the
advanced functions in a smart antennas system, there is a greater need for better co-operation
between its reception and transmission parts.
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4.6.1 Receiver
Fig. 4.18 shows schematically the block diagram of the reception part of a wireless system
employing a smart antenna with M elements. In addition to the antenna itself, it contains a
radio unit, a beam forming unit, and a signal processing unit [80].

The number of elements in the array should be relatively low (the minimum required),
in order to avoid unnecessarily high complexity in the signal processing unit. Array antennas
can be one-, two-, and three-dimensional, depending on the dimension of space one wants
to access. Fig. 4.19 shows different array geometries that can be applied in adaptive antennas
implementations [80].

The first structure is used primarily for beamforming in the horizontal plane (azimuth)
only. This will normally be sufficient for outdoor environments, at least in large cells. The first
example (a) shows a one-dimensional linear array with uniform element spacing of �x. Such
a structure can perform beamforming in one plane within an angular sector. This is the most
common structure due to its low complexity [20]. The second example (b) shows a circular array
with uniform angular spacing between adjacent elements of �ϕ = 2π/N, where N represents
the number of elements. This structure can perform beamforming in any direction but, because
of its symmetry, is more appropriate for azimuthal beamforming. The last two structures are
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FIGURE 4.18: Reception part of a smart antenna [20].
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FIGURE 4.19: Different uniform array geometries for smart antennas [20].

used to perform two-dimensional beamforming, i.e. in both azimuthal and elevation angles.
Such specifications are usually desirable for indoor or dense urban environments. The front
view of a two-dimensional rectangular array with horizontal element spacing of �x and vertical
element spacing of �y is shown in (c). Beamforming in the entire space, within all angles,
requires some sort of cubic or spherical structure (three-dimensional configuration). The fourth
example (d) shows a cubic structure with element separations of �x, �y , and �y , respectively,
in each direction in space.

The radio unit consists of down-conversion chains and (complex) analog-to-digital con-
version (A/D). There must be M down-conversion chains, one for each of the array elements.
The received signals from the mobile units are combined into one, which is the input to the
remaining part of the receiver (amplifier, channel decoding, etc.).

Based on the received signal, the signal-processing unit calculates the complex weights
w1, w2, . . . , wM with which the received signal from each of the array elements is multiplied.
These weights will determine the antenna pattern in the uplink direction. The estimate of the
weights can be optimized using one of the two main criteria depending on the application and
complexity:

a. Maximization of the power of the received signal from the desired user (e.g., switched-
beam or phased array), or
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b. Maximization of the SIR by suppressing the signal received from the interference
sources (adaptive array).

In theory, with M antenna elements M − 1 sources of interference can be “nulled out”, but this
number will normally be lower due to the multipath propagation environment.

The method for calculating the weights differs depending on the type of optimization
criterion. When the switched-beam (SB) is used, the receiver will test all the predefined
weight vectors (corresponding to the beam set) and choose the best one giving the strongest
received signal level. If the phased array approach (PA) is used, which consists of directing a
maximum gain beam toward the strongest signal component, the weights are calculated after
the direction-of-arrival (DOA) is first estimated. A number of well-documented methods exist
for estimating the DOA and will be presented in Chapter 5. In the adaptive array approach
(AA), where maximization of SIR is needed, the optimum weight vector (of dimension M)
wo pt can be computed using a number of algorithms such as optimum combining and others
that will follow.

When the beam forming is done digitally (after A/D), the beam forming and signal
processing units can normally be integrated in the same unit (Digital Signal Processor, DSP).
The separation in Fig. 4.18 is done to clarify the functionality. The beam forming can be
performed in either at radio frequency (RF) or intermediate frequency (IF).

4.6.2 Transmitter
Normally the adaptive process is applied to the uplink/reception only (from the mobile to
the base station). In that case the mobile unit consumes less transmission power, and the
operational time of the battery is extended. However, the benefits of adaptation are very
limited, if no beamforming is applied in the downlink transmission (from the base station to
the mobile). In principle, the methods used in the uplink can be carried over the downlink [99].
The transmission part of a smart antenna system is schematically similar to its reception part
as shown in Fig. 4.20.

The signal is split into N branches, which are weighted by the complex weights
w1, w2, . . . , wN in the lobe-forming unit. The signal-processing unit calculates suitably the
weights, which form the radiation pattern in the downlink direction. The radio unit consists
of D/A converters and the up-converter chains. In practice, some components, such as the
antennas themselves and the DSP, will be the same as in reception. The principal difference
between uplink and downlink is that since there are no smart antennas applied to the user
terminals (mobile stations), there is only limited knowledge of the Channel State Information
(CSI) available. Therefore, the optimum beamforming in downlink is difficult and the same
performance as the uplink cannot be achieved.
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FIGURE 4.20: Transmission part of a smart antenna [20].

Typically there exist two approaches to overcome this impairment. The first one is to
devise methods that do not require any CSI, but with somewhat limited performance gain.
The second one is the assumption of directional reciprocity, i.e., the direction from which the
signal is arrived on the uplink is closely related to the downlink CSI. This assumption has been
strengthened by recent experimental results.

Physically an adaptive antenna looks very much like an ordinary antenna but has built-in
electronics and control software. It cooperates with the receiver’s adaptive control system in real
time. It may also communicate interactively with the cellular radio network control system.

Smart antenna techniques have only recently been considered for implementation in land
mobile stations and vehicle installed units because of their high system complexity and large
power consumption [69, 100]. A number of smart antenna arrays for base station applications
have already been proposed in [12, 13, 27]. However, only limited efforts have been yet
considered for developing adaptive antenna array receivers suitable for handsets [101–103]. In
fact, there exist several practical difficulties with the implementation of such a solution at the
handset level [104]. These are:

i. The space on the handset device is limited and does not allow the implementation
of an antenna array with number of elements necessary enough for efficient spatial
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signal processing. In addition, two (or multiple) antennas in proximity may reduce the
effectiveness of the antenna system due to coupling.

ii. The problem related to the movement of the mobile that provides an omnidirectional
scenario.

iii. The cost and the complexity of the implementation at every mobile is much greater
than the implementation at each base radio station.

Besides these difficulties, the adaptive algorithm for signal processing at the handset must be fast;
however it needs only a few simple calculations, and requires a simple hardware implementation
[104]. To justify further research efforts in employing multiple antennas at handsets, the gain in
performance should be large enough to offset the additional cost and power consumption [69].
Finally, it can be stressed that the use of digital beamforming antennas, both in satellites and
in land-fixed and mobile units, remains a challenge for future satellite communication systems.

4.7 BENEFITS AND DRAWBACKS
The introduction of smart antennas is expected to have a large impact on the performance of
cellular communications networks. It will also affect many aspects of both the planning and
deployment of mobile systems. The great interest in smart antennas is the increase in capacity
and range. In densely populated areas the main source of noise is the interference from other
users. The deployment of adaptive arrays is to simultaneously increase the useful received signal
level and lower the interference level, thus providing significant improvement in the Signal to
Interference Ratio (SIR). An immediate impact to the increase of the SIR is the possibility for
reduced frequency reuse distance. This will lead to a large capacity increase since more carriers
can be allocated per cell. An immediate advantage will be noticed in TDMA systems (GSM)
which are more concerned about increased SIR. An example is shown in Fig. 4.21, where the
traditional seven-cell cluster has been reduced to a three-cell cluster. This will lead to a capacity
increase of 7/3.

Using smart antennas, an increase of the range of coverage by a base station is possi-
ble since they are able to focus their energy toward the intended users instead of directing
and wasting it in other unnecessary directions. In other words, smart antennas are more di-
rective than traditional sectorized or omnidirectional antennas. Thus, base stations can be
placed further apart, potentially leading to more cost-efficient deployment [20]. Therefore,
in rural and sparsely populated areas, where radio coverage rather than capacity is more im-
portant, smart antenna systems are also well-suited [13]. Moreover, using transmit and re-
ceive beams that are directed toward the mobile user of interest, the multipath [105] and the
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(a) (b)

FIGURE 4.21: (a) Traditional 7-cell cluster and (b) possible 3-cell cluster enabled by interference
reduction like when employing smart antennas [20].

inter-symbol-interference, due to multipath propagation present in mobile radio environments,
are mitigated.

Another added advantage of smart antenna systems is security. In a society that becomes
more dependent on conducting business and distributing personal information, security is an
important issue. Smart antennas make it more difficult to tap a connection because the intruder
must be positioned in the same direction as the user as “seen” from the base station to successfully
tap a connection [13].

Finally, due to the spatial detection nature of smart antenna systems, the network will have
access to spatial information about users [20]. This information may be exploited in estimating
the positions of the users much more accurately than in existing networks. Consequently, exact
positioning can be used in services to locate humans in case of emergency calls or for any other
location-specific service [20].

Although the benefits of using smart antennas are considered many, there also ex-
ist some important drawbacks. A smart antenna transceiver is much more complicated than
a traditional base station transceiver [80]. Separate transceiver chains are needed for each
of the array antenna elements and accurate real-time calibration of each of them is re-
quired. Moreover, adaptive beamforming is a computationally intensive process; thus the smart
antenna base station must include very powerful numeric processors and control systems.
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FIGURE 4.22: Picture of an eight-element array antenna at 1.8 GHz. (Antenna property of Telia
Research AB, Sweden) [80].

Smart antenna base stations will no doubt be much more expensive than conventional base
stations.

Even though smart antennas are mainly a radio technology, it will unavoidably put new
demands on network functions such as resource and mobility management. SDMA involves
different users using the same physical communication channel in the same cell, separated only
by angle. When angular collisions between these users occur, one of them must quickly switch
to another channel so that the connection is not broken.

For the smart antenna to obtain a reasonable gain, an antenna array with several elements
is necessary. Typically arrays consisting of six to ten horizontally separated elements have
been suggested for outdoor mobile environments. The necessary element spacing is 0.4–0.5
wavelengths. An eight-element antenna, for example, would be approximately 1.2 meters
wide at a frequency of 900 MHz and 60 cm at 2 GHz. With a growing public demand
for less visible base stations, geometries with size of several wavelengths (corresponding to
current carrier frequencies used), although not excessive, could provide a problem. Fig. 4.22,
showing a picture of an eight-element antenna array operating at 1.8 GHz, reinforces the
argument.

4.8 BASIC PRINCIPLES
The diagram of Fig. 4.23 shows the principal system elements of a “smart” antenna system.

The smart antenna consists of the sensor array, the patternforming network, and the
adaptive processor:



56 INTRODUCTION TO SMART ANTENNAS

LTV
filter 2 Σ

wav
e 

fro
nt

s(t)

θ

1

2

N

Adaptive 
processor

y(t)

Array
output

x1(t)

x2(t)

xN(t)

LTV
filter 1

LTV
filter N

1

2

N

xk(t) for k=1 ... N
y(t)
spatial structure
temporal structure
training sequence
feedback signals

k

FIGURE 4.23: Functional diagram of an N element smart antenna [43].

i. Sensor Array: The sensor array consists of N sensors designed to receive (and transmit)
signals. The physical arrangement of the array (linear, circular, etc.) can be chosen
arbitrarily, depending on the required specifications. However, it places fundamental
limitations on the capability of the smart antenna.

ii. Patternforming Network: The output of each of the N sensor elements is fed into
the patternforming network, where the outputs are processed by linear time-variant
(LTV) filters. These filters determine the directional pattern1 of the smart an-
tenna. The outputs of the LTV filters are then summed to form the overall out-
put y(t). The complex weights of the LTV filters are determined by the adaptive
processor.

iii. Adaptive Processor: The adaptive processor determines the complex weights of the
patternforming network. The signals and known system properties used to compute
the weights include the following:
� The signals received by the sensor array, i.e., xn(t), n = 1, 2, . . . , N.
� The output of the smart antenna, i.e., y(t).
� The spatial structure of the sensor array.
� The temporal structure of the received signal.
� Feedback signals from the mobiles.
� Network topology.

1The relative sensitivity of response to signals for a specified frequency from various directions.
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FIGURE 4.24: A uniform linear array (ULA) with two sensor elements along with an impinging
uniform plane EM wave [43].

We can explain the functioning principle of a “smart” antenna using a simple example.
In the example, we consider a uniform linear array (ULA) consisting of two identical omnidi-
rectional sensors as shown in Fig. 4.24. We assume that a signal s (t) is generated by a source in
the far-field of the “smart” antenna. The impinging signal on the sensor array is approximately
a uniform plane wave, as shown in Fig. 4.24. With respect to sensor 1, sensor 2 experiences a
time delay of

�τ = d sin θs

υ0
(4.1)

where d is the spacing between the two elements and υ0 the wave speed. Similarly, knowing d
and measuring �τ , the angle θs of the direction of arrival is found using

θs = sin−1
[
υ0�τ

d

]
. (4.2)

If s (t) is a narrowband signal with carrier frequency fc , then the time delay �τ corre-
sponds to a phase shift of

�ψ = 2π
d sin θs

λc
(4.3)

where λc is the wavelength corresponding to the carrier frequency, i.e., λc = υ0
fc

. Clearly, for
an incoming signal from a direction perpendicular to the array normal (θs = 0), both the time
delay and phase shift between the two sensors are zero.

Now, let us assume that an interfering signal n(t) with the same carrier frequency fc

impinges on the array. As an example, the directions of s (t) and n(t) are set to 0◦ and 30◦,
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respectively. We denote the complex sensor weights as w1 = w1,1 + jw1,2 and w2 = w2,1 +
jw2,2, respectively. Thus, the array output due to s (t) is given by

S(t) = s (t) [(w1,1 + jw1,2) + (w2,1 + jw2,2)]
= s (t) [(w1,1 + w2,1) + j (w1,2 + w2,2)] .

(4.4)

According to (4.3), for interelement spacing d = λ
2 and θs = 30◦, sensor 2 exhibits a phase

lag of �ψ = π
2 with respect to sensor 1. Thus, the array output due to n(t) is given

by

N(t) = n(t)
[
(w1,1 + jw1,2) + e− j π

2 (w2,1 + jw2,2)
]

= n(t) [(w1,1 + w2,2) + j (w1,2 − w2,1)] .
(4.5)

The goal of the “smart” antenna is to cancel out completely the interfering signal n(t)
and fully recover the desireed signal s (t). To achieve this objective, using (4.4) and (4.5), it is
necessary that

w1,1 + w2,1 = 1 (4.6a)
w1,2 + w2,2 = 0 (4.6b)
w1,1 + w2,2 = 0 (4.6c)
w1,2 − w2,1 = 0. (4.6d)

Solution of (4.6) yields

w1,1 = w1,2 = w2,1 = 1
2

and w2,2 = −1
2

(4.7)

or

w1 = 1
2

(1 + j ) (4.8a)

w2 = 1
2

(1 − j ). (4.8b)

For every array antenna, its steering vector can be defined. The steering vector contains
the responses of all elements of the array to a source with a single frequency component of
unit power [40]. Since the array response is different in different directions, a steering vector
is associated with each directional source. The array geometry defines the uniqueness of this
association [106]. For an array of identical elements, each component of this vector has unit
magnitude. The phase of its nth component is equal to the phase difference between signals
induced on the nth element and the reference element due to the source associated with the
steering vector [40]. The reference element usually is set to have zero phase. This vector is also
known as the space vector since each component of this vector denotes the phase delay caused by
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FIGURE 4.25: A ULA of N elements and element spacing d along with an impinging planar wavefront.

the spatial position of the corresponding element of the array. It is also referred to as the array
response vector, as it measures the response of the array due to the source under consideration
[40].

For example, the steering vector of an N-element ULA with spacing d between adjacent
elements, as shown in Fig. 4.25, is given by

a(θ ) =
[
1, e− j 2πd

λ
sin θs , . . . , e− j (N−1) 2πd

λ
sin θs

]T
. (4.9)

Once the steering vector for an array antenna is derived, its radiation pattern is formed by
applying to each entry of the steering vector the excitation, in amplitude and phase, of the
corresponding antenna element.

The normalized radiation pattern of an N-element ULA of omnidirectional elements
with inter-element spacing d is given in dB by

G(θ ) = 10log10

{∣∣wTa(θ )
∣∣2

wHw

}

= 10log10




∣∣∣∣
N−1∑
n=0

wnexp
(
− j2πnd sin θ

λc

)∣∣∣∣
2

wHw




(4.10)

where w is the N-dimensional vector consisting of the complex weights of the antenna elements.
Fig. 4.26 shows the normalized radiation patter for a two-element antenna array without any
weighting in the pattern forming network.
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FIGURE 4.26: Normalized radiation pattern for a non-weighted two-sensor array.

Fig. 4.27 shows the normalized radiation pattern for a two-element antenna array when
the weights of (4.7) are applied in the pattern forming network. It is seen that now a null is
placed exactly at an azimuth of 30◦, the direction of the interferer.

By this simple example, we see how the complex weights of an array of antenna elements
can be adjusted such that to completely null the interfering signal n(t) and the output to be
equal to the desired signal s (t). This model can be easily expanded in the case of a ULA
with N elements. Such an array, can recover the desired signal s (t) and fully cancel out N − 1
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FIGURE 4.27: Normalized radiation pattern for a weighted two-sensor array.
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interfering signals. To demonstrate this capability, let us assume a scenario in which the desired
source and N − 1 interfering sources transmit signals towards an N-element ULA. The useful
signal s (t) arrives from angle θs . The phase shift between the mth sensor and the first sensor
due to s (t) is given by

�ψs ,m = 2π
(m − 1)d sin θs

λc
, m = 1, 2, . . . , N. (4.11)

The interfering signals arrive from angles θ1, θ2, . . . , θN−1. The phase shift between the mth
sensor and the first sensor due to the nth interfering signal is given by

�ψn,m = 2π
(m − 1)d sin θn

λc
,

{
m = 1, 2, . . . , N
n = 1, 2, . . . , N − 1.

(4.12)

The complex sensor weights are w1 = w1,1 + jw1,2, w2 = w2,1 + jw2,2, . . . , wN = wN,1 +
jwN,2. Therefore, the array output due to s (t) is given by

S(t) = s (t)
[
(w1,1 + jw1,2) + e− j�ψs ,2 (w2,1 + jw2,2) + . . .+

+ e− j�ψs ,N (wN,1 + jwN,2)
] (4.13)

and due to the nth interfering signal nn(t) is given by

Nn(t) = nn(t)
[
(w1,1 + jw1,2) + e− j�ψn,2 (w2,1 + jw2,2) + . . .+

+ e− j�ψn,N (wN,1 + jwN,2)
]
, n = 1, 2, . . . , N − 1.

(4.14)

The total array output is given by

y(t) = S(t) + N(t) = S(t) +
N−1∑
n=1

Nn(t). (4.15)

There are 2N unknowns to be determined, the N real parts and the N imaginary parts of the N
complex weights such that the N-element ULA to recover the desired signal and fully cancel
out the N − 1 interfering signals. Equivalently, the total array output must be equal to the
useful signal, or

y(t) = s (t). (4.16)

For convenience, we define the 2N-dimensional vector w as

w = [
wT

1 , wT
2

]T
(4.17)
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where both w1 and w2 are N-dimensional vectors consisting of the real and imaginary parts of
the complex weights of the N array elements, respectively, or

w1 = [w1,1, w2,1, . . . , wN,1]T (4.18)
w2 = [w1,2, w2,2, . . . , wN,2]T . (4.19)

Furthermore, we define the four matrices R1, R2, R3, and R4, all ∈ R
N×N, as

R1 =




1 cos (�ψs ,2) . . . cos (�ψs ,N)
1 cos (�ψ1,2) . . . cos (�ψ1,N)
...

...
. . .

...
1 cos (�ψN−1,2) . . . cos (�ψN−1,N)


 (4.20)

R2 =




0 sin (�ψs ,2) . . . sin (�ψs ,N)
0 sin (�ψ1,2) . . . sin (�ψ1,N)
...

...
. . .

...
0 sin (�ψN−1,2) . . . sin (�ψN−1,N)


 (4.21)

R3 = −R2 (4.22)

R4 = R1. (4.23)

Using (4.13), (4.14), (4.15), (4.17), (4.19), and (4.23), the total array output is obtained by

y(t) = [s (t), n1(t), n2(t), . . . , nN−1(t)]
{
[R1 R2] + j [R3 R4]

}
w. (4.24)

From (4.24), solution to (4.16) is given by

w = R−1M. (4.25)

where the matrix R ∈ R
2N×2N is given by

R =
[

R1 R2

R3 R4

]
. (4.26)

The 2N-dimensional vector M can be written as

M =
[

MT
1 , MT

2

]T
(4.27)
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FIGURE 4.28: Normalized radiation pattern for a weighted five-sensor array.

where both M1 and M2 are N-dimensional vectors. M1 is written as

M1 = [1, 0, 0, . . . , 0]T (4.28)

and is interpreted as preserving the real part of the useful signal s (t) and cancelling out the real
parts of all the interfering signals nn(t), n = 1, 2, . . . , N − 1. Similarly, M2 is written as

M2 = [0, 0, . . . , 0]T . (4.29)

and is interpreted as nulling out the imaginary parts of the useful signal s (t) and all the
interfering signals nn(t), n = 1, 2, . . . , N − 1.

Fig. 4.28 represents a more complicated example of a patternforming network. In this
example, we assume a ULA with five omnidirectional sensors. The incoming signal of interest
arrives from angle θs = 0◦ and the four interfering signals from angles θ1 = −75◦, θ2 = −45◦,
θ3 = 30◦, and θ4 = 60◦.

In Fig. 4.26, Fig. 4.27, and Fig. 4.28, we see that the radiation pattern is identical in
directions symmetric about the linear array axis, or

G(θ ) = G(π − θ ), 0 ≤ θ ≤ π, and (4.30a)
G(θ ) = G(−π + θ ), −π ≤ θ ≤ 0. (4.30b)

For a plane wave arriving from angle either θ or 180◦ − θ , each element in the array experiences
identical time delay. This observation is useful for the analysis that follows.
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At this point, one may wonder: Is the solution to the complex elements weights always
feasible? The answer to this question is yes, if and only if the set of 2N equations which yield
the solution to w are independent, or equivalently the matrix R in (4.25) is of full rank 2N2. For
this to happen, there should not exist any pair of angles of arrivals symmetrical about the axis
of the linear array. Any pair of angles of arrivals symmetrical about the axis of the linear array
reduces the rank of the matrix R by 2 (since both the real and imaginary parts of the complex
weights are taken into account).

In case the number of interferers is less than N − 1, one may impose an additional number
of required nulls, which will be of no practical interest, such that none possible combination of
pairs of angle of arrivals is symmetric about the axis of the array.

Similarly, in case the number of interferers is greater than N − 1, there should be pairs of
angle of arrivals symmetric about the axis of the array. The number of this pairs must be exactly
the excess of the total number of interfering signals from N − 1. A smaller number leads to an
array design that cannot cancel out all the present interferers.

This flexibility of an N-element array to be able to fix the pattern at N − 1 places is
known as the degree of freedom of the array [40]. For a ULA, this is similar to an N − 1 degree
polynomial of N − 1 adjustable coefficients, with the first coefficient having the value of unity.

4.9 MUTUAL COUPLING EFFECTS
In the previous example, we ignored any array imperfections and the radiation influence be-
tween each other elements in the array. However, when the radiating elements in the array are
in the vicinity to each other, the radiation characteristics, such as the input impedance and the
radiation pattern, of an excited antenna element are influenced by the presence of the others.
This effect is known as mutual coupling, and it can have a deleterious impact on the performance
of a smart antenna array. Mutual coupling usually causes the maximum and nulls of the radiation
pattern to shift; consequently, the DOA algorithm and the beamforming algorithm produce
inaccurate results unless this effect is taken into account. Furthermore, this detrimental effect
intensifies as the interelement spacing is reduced [58, 59, 108]. For more details on the effects
of mutual coupling on the performance of adaptive arrays, and compensation techniques, the
interested reader is referred to the literature [108–113]. However, a simple example follows
to illustrate the effects of mutual coupling on adaptive beamforming. More on mutual cou-
pling later in Section 7.3 Mutual coupling of Chapter 7: Integration and Simulation of Smart
Antennas.

2The rank of a matrix is the minimum number of linearly independent rows or columns in the matrix, whichever is
less [107].
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FIGURE 4.29: Two-element ULA receiving a desired signal (SOI) at θs = 0◦ and an interferer (SNOI)
at θn = 30◦ in the presence of mutual coupling.

Let us consider again the example of the uniform linear array with two sensor elements
of Fig. 4.24. The spacing between the elements is half-wavelength (d = λ/2) and the desired
signal (SOI) is arriving at an angle θs = 0◦. Also, it is required to tune out an interferer (SNOI)
at θn = 30◦. For simplicity, the elements in the array are assumed to be omnidirectional and
the impinging signals sinusoids. However, this time mutual coupling between the radiating
elements is considered. Fig. 4.29 illustrates this configuration [59].

The output y(t) of the array due to the desired signal s (t) is analyzed first, followed by
the output due to the interferer n(t). Assuming an angular frequency ω0, the output y(t) of the
array due to s (t) is [59]

y(t) = Se jω0t [(c 11 + c 12) w̃1 + (c 21 + c 22) w̃2] (4.31)

where c 11, c 12, c 21, and c 22 represent, respectively, the mutual coupling coefficients. These
coefficients describe the way an element is affected due to the presence of another. Therefore,



66 INTRODUCTION TO SMART ANTENNAS

for the output y(t) to be equal only to the desired signal, s (t), it is necessary that

(c 11 + c 12) w̃1 + (c 21 + c 22) w̃2 = 1. (4.32)

On the other hand, the output y(t) due to the interfering signal n(t) is given as [59]

y(t) = N
[
e( jω0t+π/4) (c 11w̃1 + c 21w̃2) + e( jω0t−π/4) (c 12w̃1 + c 22w̃2)

]
(4.33)

where the +π/4 and −π/4 terms appear due to the phase lead and lag of elements 1 and 2,
respectively, in reference to the impinging interfering signal on the array midpoint. Because

e( jω0t±π/4) = e jω0t

√
2

(1 ± j ) (4.34)

(4.33) can be written as

y(t) = Ne jω0t

√
2

2

{
[(1 + j )c 11 + (1 − j )c 12] w̃1 + [(1 + j )c 21 + (1 − j )c 22] w̃2

}
. (4.35)

Therefore, for the output response to reject totally the interference, it is necessary that

[(1 + j )c 11 + (1 − j )c 12] w̃1 + [(1 + j )c 21 + (1 − j )c 22] w̃2 = 0. (4.36)

Solving simultaneously the linear system of complex equations for w̃1 and w̃2 in (4.32) and
(4.36) yields

w̃1 = 1
2

(
c 22 − c 21

c 11c 22 − c 12c 21
+ j

c 22 + c 21

c 11c 22 − c 12c 21

)
(4.37a)

w̃2 = 1
2

(
c 11 − c 12

c 11c 22 − c 12c 21
− j

c 11 + c 12

c 11c 22 − c 12c 21

)
. (4.37b)

Note that the above-computed weights in the presence of mutual coupling are related to those

weights in the absence of mutual coupling by [59]

w̃1 = w1

(
c 22

c 11c 22 − c 12c 21
+ j

c 21

c 11c 22 − c 12c 21

)
(4.38a)

w̃2 = w2

(
c 11

c 11c 22 − c 12c 21
− j

c 12

c 11c 22 − c 12c 21

)
(4.38b)

where w1 and w2 are the computed weights in the absence of mutual coupling as derived in

(17).
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FIGURE 4.30: Comparison of array factors in the absence and presence of mutual coupling.

Based on the formulation in [108], let us now assume that the values for c 11, c 12, c 21, and
c 22 are given by [17]

c 11 = c 22 = 2.37 + j0.34 (4.39a)
c 12 = c 21 = −0.13 − j0.0517. (4.39b)

Then, using the weights of (17) and the mutual coupling coefficients of (41), the computed
altered weights in the presence of mutual coupling are

w̃1 = w̃1,1 + jw̃1,2 = 0.250 + j0.167 (4.40a)
w̃2 = w̃2,1 + jw̃2,2 = 0.189 − j0.224. (4.40b)

Based on the weights of (42) and those of (17), the computed patterns with and without mutual
coupling are displayed in Fig. 4.30.

It is apparent that mutual coupling plays a significant role in the formation of the pattern.
For example, in the presence of coupling, the pattern minimum (in the direction of the SNOI)
is displaced approximately at θ = 32.4◦ and at a level of approximately 41.57 dB below the
value of the pattern in the direction of the SOI, while in the absence of coupling, the null is
exactly at θ = 30◦ and at a level of nearly −∞ dB.
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C H A P T E R 5

DOA Estimation Fundamentals

In many practical signal processing problems, the objective is to estimate from a collection of
noise “contaminated” measurements a set of constant parameters upon which the underlying true
signals depend [21]. Moreover, as clearly understood from the previous chapter, the accurate
estimation of the direction of arrival of all signals transmitted to the adaptive array antenna
contributes to the maximization of its performance with respect to recovering the signal of
interest and suppressing any present interfering signals. The same problem of determining the
DOAs of impinging wavefronts, given the set of signals received at an antenna array from
multiple emitters, arises also in a number of radar, sonar, electronic surveillance, and seismic
exploration applications.

The resolution properties of antenna arrays have been extensively investigated by many
researchers. A significant portion of these efforts has been devoted to the estimation of per-
formance bounds for any given array geometry. The reason is the comparison of the perfor-
mance of the DOA estimation and beamforming methods to several basic array geometries.
The theoretical performance bound studies are concerned mostly with the derivation of the
Cramé r–Rao lower bound (CRLB) for DOA estimation variance given an arbitrary array ge-
ometry. The CRLB gives the variance lower bound of the unbiased estimator of a parameter
or parameter vector [110]. In [114], there are detailed discussions and derivations, as well, of
the CRLB for various scenarios.

In the case of the DOA estimation, the CRLB provides the metric to compare the arrays
in an algorithm-independent way, because specific algorithms may exploit special properties
of certain geometries and thus, performance comparisons using any given algorithm cannot be
considered conclusive. In the studies by Messer et al. [115] and Mirkin and Sibul [116], as well,
CRLB expressions for azimuth and elevation angles estimates of a single source using arbitrary
two-dimensional array geometries are derived. Nielsen [117] and Goldberg and Messer [118],
as well, have derived single source DOA estimation and CRLB expressions are derived for
arbitrary three-dimensional antenna array geometries while in Dogandzic and Nehorai [119],
CRLB expressions are derived for the range, velocity and DOA estimates of a single signal
source when arbitrary 3D antenna array geometries are used. It is also shown that the CRLBs
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depend only on the “moment of inertia” of the array geometry. Furthermore, Ballance and
Shaffer [120], and Bhuyan and Schultheiss [121], have provided CRLB expressions when
there are two signal sources in the system. To the best of our knowledge, no result for CRLB
expressions for systems with three or more signals or more sources can be found in the published
literature so far.

5.1 INTRODUCTION
In this chapter, we discuss the DOA estimation algorithms which are directly associated with
the received signals. Data from an array of sensors are collected, and the objective is to locate
point sources assumed to be radiating energy that is detectable by the sensors. Mathematically,
such problems are modeled using Green’s functions for the particular differential operator that
describes the physics of radiation propagation from the sources to the sensors [122]. Although
most of the so-called high resolution direction finding (DF) algorithms (e.g., MUSIC [123],
maximum likelihood, autoregressive modelling techniques, etc.) have been presented in the
context of estimating a single angle per emitter (e.g., azimuth only), generalizations to the
azimuth/elevation case are relatively straightforward. Additional parameters, such as frequency,
polarization angle, and range can also be incorporated, provided that the response of the array
is known as a function of these parameters. A simple example of such an application, for
the DOA to be the parameter for estimation, is depicted in Fig. 5.1, where signals from
two sources impinge on an array of three coplanar receivers. The patterns associated with
each receiver indicate their relative directional sensitivity. For the intended application, a
few reasonable assumptions can be invoked to make the problem analytically tractable. The
transmission medium is assumed to be isotropic and nondispersive and the sources are located
in the far-field of the array so that the radiation impinging on the array is in the form of sum
of plane waves [122]. Otherwise, for closely located sources (in the near-field of the array) the
wavefronts would possess the analogous curvature.

The main difficulties associated with these methods are that both computational and
storage costs tend to increase rapidly with the dimension of the parameter vector. The increased
costs are usually prohibitive even for the two-dimensional (2D) case, and the result is that, in
practice, systems typically employ nonparametric techniques (e.g., beamforming) to solve what
in reality are parametric problems. Though these classical DF techniques are less complicated,
their performance is known to be poor [124].

In general, the DOA estimation algorithms can be categorized into two groups; the
conventional algorithms and the subspace algorithms. Before we proceed in presenting them,
we first need to introduce the concepts of the array response vector and the signal autocovariance
matrix.
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FIGURE 5.1: Illustration of a simple source location estimation problem [21].

5.2 THE ARRAY RESPONSE VECTOR
Assuming that an antenna array is composed of identical isotropic elements, each element
receives a time-delayed version of the same plane wave with wavelength λ. In other words, each
element receives a phase-shifted version of the signal. For example, with a uniform linear array
(ULA), as shown in Fig. 5.2, the relative phases are also uniformly spaced, with ψ = 2π

λ
d sin θ

being the relative phase difference between adjacent elements.
The vector of relative phases is referred to as the steering vector (SV), also mentioned in

the previous chapter. A more general concept is the array response vector (ARV) which is the
response of an array to an incident plane wave. It is a combination of the steering vector and
the response of each individual element to the incident wave. The general normalized ARV
expression for a three-dimensional array of N elements is

a(θ, φ) =




G1(θ, φ)e− jβ ·r1

G2(θ, φ)e− jβ ·r2

...
G N(θ, φ)e− jβ ·rN


 (5.1)

where β is the vector wavenumber of the incident plane wave (β = [sin θ cos φ,

sin θ sin φ, cos θ] in cartesian coordinates), ri = [xi , yi , zi ] is the three-dimensional position
vector of the ith element in the array and Gi (θ, φ) is the gain of the ith element toward the
direction (θ , ϕ), where θ and ϕ are the elevation and azimuth angles, respectively. For an array
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FIGURE 5.2: Array response vector for a uniform linear array [19].

of isotropic radiators, the ARV simplifies to the SV:

a(θ, φ) =
[
e− jβ ·r1, e− jβ ·r2, . . . , e− jβ ·rN

]T
. (5.2)

In the paper by Chambers et al. [125], the CRLB for the azimuth and elevation DOA estimation
variances for an arbitrary three-dimensional array are given by:

CRLB(θ ) = 1 + ASN R

2N (ASN R)2

AVφφ

AVθθ AVφφ − AV 2
θφ

(5.3a)

CRLB(φ) = 1 + ASN R

2N (ASN R)2

AVθθ

AVθθ AVφφ − AV 2
φθ

(5.3b)

where ASNR is the antenna signal-to-noise ratio and

AVθθ = ∂aH

∂θ

∂a
∂θ

, (5.4a)

AVφφ = ∂aH

∂φ

∂a
∂φ

, and (5.4b)

AVθφ = AVφθ = ∂aH

∂θ

∂a
∂φ

= ∂aH

∂φ

∂a
∂θ

. (5.4c)
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5.3 RECEIVED SIGNAL MODEL
Let us first assume that K uncorrelated sources transmit signals to an N-element antenna array.
It is assumed here that the array response for each signal is a function of only one angle parameter
(θ ). For our analysis we will employ the well-established narrowband data model. The model
inherently assumes that as the signal wavefronts propagate across the array, the envelop of
the signal is essentially unchanged [21]. The term narrowband is used under the assumption,
satisfied in most of the cases, of a slowing varying signal envelope when either the signals’ or
the sensor elements’ bandwidth is small relative to the frequency of operation. This assumption
can be also extended to wideband signals, provided the frequency response of the array is
approximately flat over the signals’ bandwidth and the propagation time across the array is small
compared to the reciprocal bandwidths. Under this model, the received signals can be expressed
as a superposition of signals from all the sources and linearly added noise represented by

x(t) =
K∑

k=1

a(θk)s k(t) + n(t) (5.5)

where x(t) ∈ C
N is the complex baseband equivalent received signal vector at the antenna array

at time t, or

x(t) = [x1(t), x2(t), . . . , xN(t)]T
, (5.6)

sk(t) is the incoming plane wave from the kth source at time t and arriving from the direction
θk , a(θk) ∈ C

N is the array response vector to this direction, and n(t) ∈ C
N represents additive

noise. Note that whatever appears in the complex vector n(t) is the noise either “sensed” along
with the signals or generated internal to the instrumentation [126]. A single observation x(t)
from the array is often referred to as a snapshot. In matrix notation, (5.5) can be written as

x(t) = A (�) s(t) + n(t) (5.7)

where A(�) ∈ C
N×K is the array response matrix parameterized by the direction of arrival

(DOA) (i.e. each column of which represents the array response vector for each signal source), or

A (�) = [a(θ1), a(θ2), . . . , a(θK )] , (5.8)

� is the vector of all the DOAs, or

� = [θ1, θ2, . . . , θK ]T (5.9)

and s(t) ∈ C
K represents the vector of the incoming signal in amplitude and phase from each

signal source at time t, or

s(t) = [s1(t), s2(t), . . . , s K (t)]T
. (5.10)
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Usually, s(t) is referred to as the desired signal portion of x(t). The three most important features
of (5.7) are that the matrix A (�) must be time-invariant over the observation interval, the
model is bilinear in A (�) and s(t), and the noise is additive [21].

The set of array response vectors corresponding to all possible directions of arrival in
(5.7), A(�), is also referred to as the array manifold (AM). In simple words, each element ai j

(i = 1, 2, . . . , N, j = 1, 2, . . . , K ) of the AM, A (�), indicates the response of the ith element
to a signal incident from the direction of the j th signal. The majority of algorithms developed
for the estimate of the DOAs require that the array response matrix A (�) be completely
known for a given parameter vector � [127]. This is usually accomplished by direct calibration
in the field, or by analytical means using information about the position and response of each
individual sensor (such as is done with a uniform linear array, for example).

An unambiguous array manifold A(�) is defined to be one which any collection of K ≤ N
distinct vectors from A(�) forms a linearly independent set. For example, an element from the
array manifold (an array response vector for a single signal source) of a uniform linear array of
identical sensors, as shown in Fig. 5.2, is proportional to

a(θk) =




1
e j 2π

λ
d sin θk

e j 2π
λ

2d sin θk

...
e j 2π

λ
(N−1)d sin θk




(5.11)

where λ is the wavelength of the impinging wavefront and d is the distance between adjacent
elements. For a range of angles of arrival θ ∈ [−π

2 , π
2

]
(meaningful for the particular geometry),

it is obvious that the AM maintains its unambiguity provided d < λ
2 . In the case that θmax < π

2
is the maximum bearing deviation from broadside that is expected or imposed by operational
considerations, then the wavefield must be sampled at a rate such that d < λ

2
1

sin θmax
. For more

widely spaced sensors, it is possible that there may exist pairs of angles θi and θ j , with θi �= θ j ,
such that a(θi ) = a(θ j ). This equality holds when d

λ
sin θi = n + d

λ
sin θ j , where n ∈ Z, n �= 0.

In such cases, the array response for a signal arriving from angle θi is indistinguishable from
that arriving from angle θ j .

Uniform sampling of the wavefield implies that all the lags are sampled at least once,
and hence, no ambiguous locations should result since the correlation function is completely
known [125]. Even though the sampling structure leads to a convenient method of computing
a beamformed output by exploiting a structure amenable to FFT processing, it does not need to
be uniform [125]. In fact, there may exist cases that it is not required or desirable. Note at this
point that the requirement for the interelement spacing in a uniform linear array to be less than
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half of the wavelength of the highest frequency in the receiver band can be interpreted as the
spatial analog to the well-known Nyquist sampling criterion which allows the reconstruction of
a continuous-time wavefront occupying a bandwidth B from its discrete-time samples if these
are taken with sampling frequency of not less than 2B. If A (�) is unambiguous and N ≥ K ,
then A (�) will be of full-rank K . In a similar manner, for an array manifold with resolved
ambiguity, knowing the mode vector a(θi ) is tantamount to knowing the angle θi [126].

Furthermore, for a set of data observations L > K , we can form the matrices

X = [x(1), x(2), . . . , x(L)] , (5.12a)
S = [s(1), s(2), . . . , s(L)] , and (5.12b)

N = [n(1), n(2), . . . , n(L)] (5.12c)

where X and N ∈ C
N×L and S ∈ C

K×L, and further write

X = A (�) S + N. (5.13)

5.4 THE SUBSPACE-BASED DATA MODEL
Ignoring the noise effects in (5.13), each observation of the received signal, A (�) S, is con-
strained to lie in the K-dimensional subspace C

N defined by the K columns of A (�).
Fig. 5.3 illustrates this idea for the special case of two sources (K = 2) and four snapshots

(L = 4). Each of the two sources has associated with it a response vector a (θk) from the array
manifold, and the four snapshots x(t1), . . . , x(t4) lie in the two-dimensional subspace spanned
by these vectors. The specific positions of these vectors depend on the signal waveforms at each
time instant. Note that the array manifold intersects the signal subspace at only two points,
each corresponding to a response of one of the signals [21].

Even though L > K , it is possible, however, for the signal subspace to have dimension
smaller than K . This occurs if the matrix of signal samples S has a rank less than K . This
situation may arise, for example, if one of the signals is a linear combination of the others.
Such signals are referred to as coherent or fully-correlated signals, and occur most frequently in
the sensor array problem in a multipath propagation scenario. Multipath results when a given
signal is received at the array from several different directions or paths due to reflections from
various objects in the wireless channel. It may also be possible that the available snapshots are
fewer than the emitting sources, in which case the signal subspace cannot exceed the number
of observations [21]. In either case, the dimension of the signal subspace is less than the
number of present sources. However, this does not imply that estimates of the number of
sources are impossible. For instance, it can be shown [126] that for one-parameter vectors,
the angle of arrival in our case (or any other one parameter per source), the signal parameters
are still identifiable if A (�) is unambiguous and N > 2K − K ′, where K ′ = rank [A (�) S].
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FIGURE 5.3: A geometric view of the DOA estimation problem [21].

The identifiability condition, geometrically obvious, is that the signal subspace be spanned by
a unique set of K vectors from the array manifold.

In the event that the measurements made are more than the present signals (i.e., the
number of sources K is less than the number of elements N), the data model in (5.7) admits
an appealing geometric interpretation and provides insight into the sensor array processing
problem [21]. The measurements taken form the vectors of complex values with dimension
in space equal to the number of elements in the array (N). In the absence of noise, the
expression which gives x(t) in (5.7), A (�) s(t), is confined to a space dimension K ′ (at most a
K-dimensional subspace of C

N), referred to as the signal subspace and it spans either the entire
or some fraction of the column space of A (�). If any of the impinging signals are perfectly
correlated, i.e., one signal is simply complex scalar multiple of another, the span of the signal
subspace K ′ will be less than K . Consequently, if there is sufficient excitation, in other words no
signals are perfectly correlated, the signal subspace is K-dimensional. Considering noise, since it
is typically assumed to possess energy in all dimensions of the observation space, (5.7) is often
referred to as a low-rank signal in full-rank noise data model.

This entire geometric picture leads to the accurate parameter estimation problem by
handling it as subspace intersection. Because of the many applications for which the subspace-
based data method is appropriate, numerous subspace-based techniques have been developed to
exploit it [21].
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5.5 SIGNAL AUTOCOVARIANCE MATRICES
Before we discuss the algorithms for DOA estimation, we first need to define two commonly
used terms: the received signal autocovariance matrix Rxx and the desired signal autocovariance
matrix Rs s given by

Rxx = E
{

x(t)xH(t)
}

(5.14)
Rs s = E

{
s(t)sH(t)

}
(5.15)

where H denotes Hermitian (or complex-conjugate transpose) matrix operation and E{·} is
the expectation operation on the argument. In reality, the expected value cannot be obtained
exactly since an infinite time interval is necessary and estimates, as the average over a finite,
sufficiently enough, number of data “snapshots” must be used in practical implementations as

R̂xx � lim
M→∞

1
M

M∑
m=1

x(tm)xH(tm). (5.16)

The same approximation holds for R̂s s . With the typical assumption that the incident signals
are noncoherent, the source covariance matrix Rs s is positive definite [128]. In addition, the
noise is typically assumed to be a complex stationary Gaussian random process. The motivation
for this assumption is that if there are many sources of noise, the sum will be Gaussian
distributed according to the central limit theorem [129]. Also, further analysis of direction
finding performance is greatly simplified by assuming white Gaussian noise.

If, additionally, it is assumed to be uncorrelated both with the signals, and for successive
signal samples, (5.14) can be written as

Rxx = A (�) Rs s AH (�) + E
{

n(t)nH(t)
}

= A (�) Rs s AH (�) + σ 2
n �

(5.17)

where σ 2
n is the noise variance and � is normalized so that det (�) = 1. The simplifying

assumption of spatial whiteness (i.e., � = I, where I is the identity matrix) is often made.
The assumptions of a known array response and known noise covariance are never prac-

tically valid. Due to changes in the weather, reflective and absorptive bodies in the nearby
surrounding environment, and antenna location, the response of the array may be substan-
tially different than it was last calibrated [130]. Furthermore, the calibration measurements
themselves are subject to gain and phase errors. For the case of analytically calibrated arrays
of identical elements, including orientation, errors may occur because the elements are not
really identical and their locations are not precisely known. Depending on the degree to which
the actual antenna response differs from its nominal value, the performance of a particular
algorithm may significantly be degraded [130].
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Since the surrounding environment of the array may be time-varying, the requirement
of known noise statistics is also difficult to satisfy in practice. In addition, effects of unmodeled
“noise” phenomena such as distributed sources, reverberation, noise due to the antenna platform,
and undesirable channel crosstalk are often unable to be accounted for. Measurement of the
noise statistics is usually a complicated task due to the fact that signals-of-interest are often
observed along with the noise and interference. When signal subspace methods are applied
for DOA estimation, it is often assumed that the noise field is isotropic, independent from
channel to channel and equal at each one [130], which is not the case in reality. For high
signal-to-noise (SNR) ratio, deviations of the noise from these assumptions are not critical
since they contribute little to the statistics of the received by the array signal. However, at low
SNR values, the degradation in the algorithms’ performance may be severe.

5.6 CONVENTIONAL DOA ESTIMATION METHODS
Two methods are usually classified as conventional methods: the Conventional Beamforming
Method and Capon’s minimum Variance Method [13].

5.6.1 Conventional Beamforming Method
The conventional beamforming method (CBF) is also referred to as the delay-and-sum method
or Bartlett method. The idea is to scan across the angular region of interest (usually in discrete
steps), and whichever direction produces the largest output power is the estimate of the desired
signal’s direction. More specifically, as the look direction θ is varied incrementally across
the space of access, the array response vector a(θ ) is calculated and the output power of the
beamformer is measured by

PC B F (θ ) = aH(θ )Rxxa(θ )
aH(θ )a(θ )

. (5.18)

This quantity is also referred to as the spatial spectrum and the estimate of the true DOA is the
angle θ that corresponds to the peak value of the output power spectrum.

The method is also referred to as Fourier method since it is a natural extension of the
classical Fourier based spectral analysis with different window functions [131, 132]. In fact,
if a ULA of isotropic elements is used, the spatial spectrum in (5.18) is a spatial analog of
the classical periodogram in time-series analysis. Note that other types of arrays correspond
to nonuniform sampling schemes in time-series analysis. As with the periodogram, the spatial
spectrum has a resolution threshold. That is, an array with only a few elements is not able
to form neither narrow nor sharp peaks and hence, its ability to resolve closely spaced signals
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sources is limited [13]. More accurately, waves arriving with electrical angle separation1 less
than 2π/N cannot be resolved with this method. For example, using a five-element ULA with
an element separation of d = λ/2 results in a resolution threshold of 23◦ [133]. The poor
resolution is a significant weakness of the method. Other choices of weighting vectors w, that
result in lower resolution thresholds, have been therefore investigated.

5.6.2 Capon’s Minimum Variance Method
The Capon’s minimum variance method is also known as the minimum variance distortionless
look (MVDL). The MVDL is an attempt to overcome the poor resolution problem associated
with the delay-and-sum method and it results a significant improvement [17]. In this method,
the output power is minimized with the constraint that the gain in the desired direction remains
unity. Solving this constraint optimization problem for the weight vector [13, 134] we obtain

w = R−1
xx a(θ )

aH(θ )R−1
xx a(θ )

(5.19)

which gives the Capon’s Spatial Spectrum:

PCapon(θ ) = wHRxxw = 1

aH(θ )R−1
xx a(θ )

. (5.20)

Again, the estimate of the true direction of arrival is the angle θ that corresponds to the peak
value in this spectrum. The MVDL only requires an additional matrix inversion compared to
the CBF and exhibits greater resolution in most cases.

In general, the conventional DOA estimation algorithms provide some important ad-
vantages. Computing the spatial power spectrum for one range of θ does not prevent the
algorithm from subsequently computing the spectrum for another range of θ using the same
data. The spatial characteristics of the data for all directions are compactly represented by Rxx ,
and they are needed to be computed only once. Thus, the method does not have blind spots in
time during which transient signals, away from directions of constantly transmitting sources,
can appear intermittently and fail to be detected [134]. Another advantage is that by steering
the antenna electronically rather than mechanically, the speed of the scan through a region of
interest is limited by computational speed instead of mechanical speed.

5.7 SUBSPACE APPROACH TO DOA ESTIMATION
The other main group of DOA estimation algorithms are called the subspace methods. Geomet-
rically, the received signal vectors form the received signal vector space whose vector dimension

1The electrical angle for a ULA is defined as kd sin θ .
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is equal to the number of array elements N. The received signal space can be separated into
two parts: the signal subspace and the noise subspace. The signal subspace is the subspace spanned
by the columns of A (�) [21], and the subspace orthogonal to the signal subspace is known as
the noise subspace. The subspace algorithms exploit this orthogonality to estimate the signals’
DOAs.

5.7.1 The MUSIC Algorithm
Within the class of the so-called signal-subspace algorithms, MUSIC (MUltiple SIgnal Classi-
fication)[123, 135] has been the most widely examined. In a detailed performance evaluation
based on hundreds of simulations, MIT’s Lincoln Laboratories concluded that, among the
high-resolution algorithms then available, MUSIC was the most promising and a leading
candidate for further study and actual hardware implementation [136].

The popularity of the MUSIC algorithm is in large part due to its generality. For example,
it is applicable to arrays of arbitrary but known configuration and response, and can be used
to estimate multiple parameters per source (e.g., azimuth, elevation, range, polarization, etc.).
However, this generality is accompanied with the expense that the array response must be
known for all possible combinations of source parameters; i.e., the response must be either
measured (calibrated) and stored, or one must be able to characterize it analytically (e.g., as
in the case of root-MUSIC [123, 137]). In addition, MUSIC requires a priori knowledge
of the second-order spatial statistics of the background noise and interference field. These
assumptions are never satisfied in reality as explained earlier.

The MUSIC algorithm was developed by Schmidt [123, 126] by noting that the desired
signal array response is orthogonal to the noise subspace. The signal and noise subspaces are
first identified using eigendecomposition of the received signal covariance matrix. Following,
the MUSIC spatial spectrum is computed, from which the DOAs are estimated. Inside the
algorithm, we first define the general array manifold to be the set

A = {
a(θi ) : θi ∈ �

}
(5.21)

for some region � of interest in the DOA space. The array manifold is assumed unambiguous
and known for all the values of angle θ , either analytically or through some calibration procedure.
The objective is to apply appropriate methods to the received signals so as to extract the region
θ out of the range of �.

If noise was absent in (5.7), the observations x(t) would be confined entirely to the
K-dimensional subspace of C

K defined by the span of A (�). Determining the DOAs for
the no-noise case is simply a matter of finding the K unique elements of A that intersect this
subspace [130]. A different approach is necessary in the presence of noise since the observations
become “full-rank”. The approach of MUSIC, and other subspace-based methods, is to first
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estimate the dominant subspace of the observations, and then find the elements of A that are
in some sense closest to this subspace.

The subspace estimation step is typically achieved by eigendecomposition of the autoco-
variance matrix of the received data Rxx . For MUSIC to be applicable, the emitter covariance
Rs s is required to be full-rank, i.e., that K ′ = K . Using the model in (5.17) and assuming spatial
whiteness2, i.e., E

{
n(t)nH(t)

} = σ 2
n I, the eigendecomposition of Rxx will give the eigenvalues

λn such that λ1 > λ2 > . . . > λK > λK+1 = λK+2 = . . . = λN = σ 2
n and the corresponding

eigenvectors en ∈ C
N, n = 1, 2, . . . , N, of Rxx . Furthermore, it is easily shown that Rxx can

be written in the following form [138]:

Rxx =
N∑

n=1

λneneH
n = E�EH = Es �s EH

s + En�nEH
n

= Es �s EH
s + σ 2

n EnEH
n = Es �̃s EH

s + σ 2
n I

(5.22)

where E = [e1, e2, . . . , eN], Es = [e1, e2, . . . , eK ], En = [eK+1, eK+2, . . . , eN], � =
diag {λ1, λ2, . . . , λN}, �s = diag {λ1, λ2, . . . , λK }, �n = diag {λK+1, λK+2, . . . , λN}, and
�̃s = �s − σ 2

n I. The eigenvectors E = [Es , En] can be assumed to form an orthonormal basis
(i.e., EEH = EHE = I). The span of the K vectors Es defines the signal subspace, and the
orthogonal complement spanned by En defines the noise subspace. For a detailed analysis of
the eigenstructure properties of the signal autocovariance matrices Rxx and Rs s the reader is
referred to [126]. Once the subspaces are determined, the DOAs of the desired signals can be
estimated by calculating the MUSIC spatial spectrum over the region of interest [21]:

PMUSIC(θ ) = aH(θ )a(θ )
aH(θ )EnEH

n a(θ )
. (5.23)

Note that the a(θ )s are the array response vectors calculated for all angles θ within the range of
interest. Because the desired array response vectors A (�) are orthogonal to the noise subspace,
the peaks in the MUSIC spatial spectrum represent the DOA estimates for the desired signals.
Due to imperfections in deriving Rxx , the noise subspace eigenvalues will not be exactly equal
to σ 2

n . They do, however, form a group around the value σ 2
n and can be distinguished from

the signal subspace eigenvalues. The separation becomes more pronounced as the number of
samples used in the estimation of Rxx increases (ideally reaches infinity).

To demonstrate the efficiency of the algorithm, we choose as an example a ULA with
N = 8 and d = λ/2. We assume four equal-power uncorrelated sources (K = 4) located in
the far-field of the array, with θ1 = +60◦, θ2 = +15◦, θ3 = −30◦, and θ4 = −75◦. Moreover,

2The assumption of spatially white noise is not necessary; the extension to an arbitrary noise autocovariance σ 2
n = �

is straightforward, provided that � is known.
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FIGURE 5.4: Spatial spectrum of the MUSIC algorithm.

uncorrelated spatially white Gaussian noise with zero mean and unit variance (σ 2
n = 1) is assumed.

A total of 500 observations are taken (L = 500). Fig. 5.4 displays the obtained MUSIC spatial
spectrum. The performance of the algorithm is shown to be excellent, since the peaks in the
spatial spectrum are located at angles being exactly the DOAs.

A final remark for the algorithm’s performance is that MUSIC yields asymptotically
unbiased parameter estimates, even for multiple incident wavefronts, because both Rs s and En

are asymptotically perfectly measured [139].

5.7.2 The ESPRIT Algorithm
Although the performance advantages of MUSIC are substantial, they are achieved at a con-
siderable cost in computation (searching over parameter space) and storage (of array calibration
data). Moreover, even for the one-dimensional MUSIC estimation (DOA in the particular
case), there exist several drawbacks although being conceptually easy. Primarily, problems in
the finite measurement case arise from the fact that since K signals are known to be present,
the search for their DOAs, (θ1, θ2, . . . , θK ), should be sought simultaneously by maximizing
an appropriate functional rather than obtaining estimates one at a time as is done in the search
for spectral peaks over PMU SIC (θ ). However, multidimensional searches are accompanied with
an intense expense compared to one-dimensional searches. The reduction in computational
load achieved with an one-dimensional search for K parameters comes with the trade-off of the
method being finite-sample-biased in a multisource environment [122]. Furthermore, in either
low SNR scenarios or closely spaced sources (i.e., multiple peaks observed in the measurements)
MUSIC’s performance reduces dramatically. Nevertheless, despite its drawbacks, it should be
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emphasized that MUSIC has proven to outperform techniques existed prior to its development
[136].

ESPRIT (Estimation of Signal Parameters via Rotational Invariant Techniques) is similar
to MUSIC in that it correctly exploits the underlying data model. Beyond retaining most of
the essential features of the arbitrary array of sensors, ESPRIT achieves a significant reduction
in the aforementioned computation and storage costs. This is done by imposing a constraint
on the structure of the sensor array to possess a displacement invariance, i.e., sensors occur in
matched pairs with identical displacement vectors [122]. Such conditions, are or can be satisfied
in many practical problems. In addition to obtaining signal parameters efficiently, ESPRIT is
also less sensitive to array imperfections than other techniques including MUSIC [137]. The
discussions herein will be focused on the DOA estimation problem, although ESPRIT is
generally applicable to a wide variety of problems. The method simultaneously estimates the
number of sources and DOAs [140].

The majority of the algorithms developed for the DOA estimation problem require
that the array response matrix A(�) be completely known for a given parameter vector �.
This is usually accomplished by either analytical means using information about the position
and response of each individual sensor (such as is done with a ULA, for example) or direct
calibration in the field. A notable expression is the ESPRIT algorithm [140, 141], which
assumes, instead, that the N -element array is composed of two identical translated N′-element
subarrays, where N′ < N ≤ 2N′, as depicted in Fig. 5.5. The individual elements of each
subarray may have arbitrary directional gain and phase responses, provided that each one has an
identical twin in the companion subarray [124]. The elements in each pair of identical sensors,
or doublet, are assumed to be separated by a fixed displacement vector D. For certain special
array configurations, the subarrays may overlap, i.e., an array element may be a member of
both subarrays (N < 2N′) as shown in Fig. 5.5(a). For subarrays that do not share elements,
N = 2N′, as shown in Fig. 5.5(b).

The ESPRIT assumption of rotationally invariant subarrays leads to a very special form
of A(θ ). Employing the configuration shown in Fig. 5.5, the output of the array is modeled as

x(t) =
[

A1(�)
A2(�)

]
s(t) +

[
n1(t)
n2(t)

]
(5.24)

where A1(�), A2(�) ∈ C
N′×K indicate the array manifold of each subarray, respectively, and

n1(t), n2(t) ∈ C
N′×1 represent the noise collected by each subarray, respectively. Furthermore,
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FIGURE 5.5: ESPRIT sensor array geometry: (a) One array consists of two overlapping arrays, whereas
the other (b) consists of two identical and disjoint arrays [140].

if we let J1 and J2 represent the N′ × N selection matrices that assign the elements of the entire
array to each of the two subarrays as

J1 =
[

IN′
... 0N′×(N−N′)

]
(5.25a)

J2 =
[

0N′×(N−N′)
... IN′

]
(5.25b)

where IN′ is the N′ × N′ identity matrix and 0N′×(N−N′) is the N′ × (N − N′) matrix of zeros,
it is easy to see that an array composed of two identical subarrays satisfies [142]

JA(�) =
[

J1

J2

]
A(�) =

[
A1(�)

A1(�)�

]
(5.26)

where � is a unitary diagonal matrix with diagonal elements φi given by [142]

φi = exp
{− jβT

i · D
}
, i = 1, 2, . . . , K (5.27)

where β i is the vector wavenumber of the incident plane from the ith narrowband source and
D is the vector displacement between the two subarrays. If we assume the total array to be
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linear and the orientation of D to be toward π
2 (rather than −π

2 ), as shown in Fig. 5.5(a), β i · D
simplifies to − 2π

λ
sin θi , where λ is the wavelength of the narrowband signal, with θi being the

angle of arrival from the ith source. As it is obvious from (5.26), ESPRIT does not exploit the
entire array manifold. The knowledge that is used, and consequently required, is the response
of one subarray and the displacement structure of the array. Since A1(� ) must be full-rank
(K ≤ N′ for all �), the resolvable sources when applying the ESPRIT algorithm are limited
to N′.

ESPRIT exploits the structure of (5.26) in the following way. If Es ∈ C
N×K represents

the eigenvectors corresponding to the K largest eigenvalues of the received signal autocovariance
matrix Rxx , and if no pairs of signals are correlated, then it is easily shown that [142]

Es �
[

E1

E2

]
=
[

A1(�)
A1(�)�

]
T (5.28)

for some full-rank matrix T ∈ C
K×K . Solving for A1(�) and substituting into the lower block

of (5.28), leads to [142]

E2 = E1T−1
�T = E1� (5.29)

where the matrix � = T−1
�T has been defined (or � = T�T−1). Thus, since � and � are

related by a similarity transformation, the eigenvalues of � must be equal to the diagonal
elements of �. Furthermore, the columns of T are the eigenvectors of � [122]. This is the
fundamental relationship in the development of ESPRIT and its properties. Consequently, if
N′ ≥ K and D = |D| < λ

2 , the DOAs may be uniquely determined from the eigenvalues of
the operator � that maps E1 onto E2 as

θk = sin−1

{
arg {ψi}

2π
λ

D

}
, i = 0, 1, . . . , K (5.30)

where ψi represents each of the eigenvalues of �. Note that this result is independent of the
actual value A(�) (as long as remains full-rank) and, thus, the array needs not to be calibrated
in order to estimate the DOAs [124].

5.8 UNIQUENESS OF DOA ESTIMATES
Given a number of uncorrelated signals less than the number of sensors and an unlimited
supply of data, most of the preceding DF methods can uniquely and exactly locate the sources.
However, in the presence of too many signals, or the availability of only a finite amount of data,
any given DF algorithm can yield erroneous DOA estimates or fail completely [134]. In [143],
Wax and Ziskind derive a maximum in the number of present signals such that the DOAs can
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be estimated uniquely. They show that certain conditions on the array manifold, the number of
sensors, the number of signals, and the rank of the autocovariance matrix of the received signals,
determine whether or not the DOAs of the signals can be estimated uniquely. Depending on
the strength of the conditions, uniqueness can be either guaranteed for every possible batch of
received data or assured with unitary probability. Both cases require that the array manifold be
known and that the array response vectors corresponding to maximum N distinct DOAs be
linearly independent for all those choices of DOAs.

The strongest condition states that uniqueness is guaranteed if the number K of signals
is less than the average of the number N of sensors and the rank of the signal autocorrelation
matrix [143]:

K <
N + rank

{
Rs s
}

2
. (5.31)

For example, if the signals are uncorrelated and rank rank
{

Rs s
} = N, then (5.31) merely states

the familiar condition K < N. However, the effect of correlated signals is to reduce the rank
of Rs s and consequently to reduce the maximum number of sources that can be localized
uniquely. For example, if all signals are fully-correlated, i.e., rank

{
Rs s
} = 1, the number of

uniquely localized sources reduces to L < (M + 1)/2. The strong condition in (5.31) seems to
be very restrictive in the case of a multipath environment. If uniqueness with probability one
can be accepted, rather than guaranteed uniqueness, the following weaker condition is sufficient
[143]:

K <
2rank

{
Rs s
}

2rank
{

Rs s
}+ 1

M. (5.32)

This condition reduces to K < N for uncorrelated signals, as well, but for fully-correlated
signals reduces to the improved limit K < 2

3 N.
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C H A P T E R 6

Beamforming Fundamentals

With the direction of the incoming signals known or estimated, the next step is to use spatial
processing techniques to improve the reception performance of the receiving antenna array based
on this information. Some of these spatial processing techniques are referred to as beamforming
because they can form the array beampattern to meet the requirements dictated by the wireless
system. Given a 1D linear array of elements and an impinging wavefront from an arbitrary
point source, the directional power pattern P (θ ) can be expressed as [59, 125]

P (θ ) =
∫

a(x)e− jβd (x,θ )d x (6.1)

where a(x) is the amplitude distribution along the array, β is the phase constant, and d (x, θ ) is
the relative distance the impinging wavefront, with an angle of arrival θ , has to travel between
points uniformly spaced a distance x apart along the length of the array. The exponential term
is the one that primarily scans the beam of the array in a given angular direction. The integral
of (6.1) can be generalized for two- and three-dimensional configurations [59]. Equation (6.1)
is basically the Fourier transform of a(x) along the length of the array and is the basis for
beamforming methods [125]. The amplitude distribution a(x), necessary for a desired P (θ ),
is usually difficult to implement practically [59]. Therefore, realization of (6.1) most of the
times is accomplished using discrete sources, represented by a summation over a finite number
of elements [59]. Thus, by controlling the relative phase between the elements, the beam can
be scanned electronically with some possible changes in the overall shape of the array pattern.
This is the basic principle of array phasing and beam shaping.

The main objective of this spatial signal pattern shaping is to simultaneously place a beam
maximum toward the signal-of-interest (SOI) and ideally nulls toward directions of interfering
signals or signals-not-of-interest (SNOIs). This process continuously changes to accommodate
the incoming SOIs and SNOIs. The signal processor of the array must automatically adjust,
from the collected information, the weight vector w = [w1, w2, . . . , wN]T which corresponds
to the complex amplitude excitation along each antenna element. It is usually convenient to
represent the signal envelopes and the applied weights in their complex envelope form [62].
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This relationship is represented by

r(t) = Re
[
x(t)e jωc t] (6.2)

where ωc is the angular frequency of operation and x(t) is the complex envelope of the re-
ceived real signal r(t). The incoming signal is weighted by the array pattern and the output is
represented by

y(t) = Re

[
N∑

n=1

w∗
n(t)xn(t)e jωc t

]
= Re

[
wH(t)x(t)e jωc t] (6.3)

where n indicates each of the array elements and wH(t)x(t) is the complex envelope repre-
sentation of y(t). Since for any modern electronic system, signal processing is performed in
discrete-time, the weight vector w combines linearly the collected discrete samples to form a
single signal output expressed as

y(k) =
N∑

n=1

w∗
n xn(k) = wHx(k) (6.4)

where k denotes discrete time index of the received signal sample being considered. The concept
of beamforming is applicable in both continuous-time and discrete-time signals. Therefore, each
element of the receiving antenna array possesses the necessary electronics to downconvert the
received signal to baseband and for analog-to-digital (AD) conversion for digital beamforming.
To simplify the analysis of this chapter, only baseband equivalent complex signal envelopes
along with discrete-time processing will be considered herein.

Various adaptive algorithms have already been developed to calculate the optimal weight
coefficients that satisfy several criteria or constraints. Once the beamforming weight vector w
is calculated, the response of this spatial filter is represented by the antenna radiation pattern
(beampattern) for all directions, which is expressed as

P (θ ) = ∣∣wH(θ )a(θ )
∣∣2 . (6.5)

In (6.5), P (θ ) represents the average power of the spatial filter output when a single, unity-
power signal arrives from angle θ [134]. With proper control of the magnitude and phase in
w, the pattern will exhibit a main beam in the direction of the desired signal and, ideally, nulls
toward the direction of the interfering signals.

6.1 THE CLASSICAL BEAMFORMER
In classical beamforming, the beamforming weight is set to be equal to the array response vector of
the desired signal. For any particular direction θ0, the antenna pattern formed using the weight
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vector wb = a(θ0) has the maximum gain in this direction compared to any other possible
weight vector of the same magnitude. This is accomplished because wb adjusts the phases of
the incoming signals arriving at each antenna element from a given direction θ0 so that they
add in-phase (or constructively). Because all the elements of the beamforming weight vector are
basically phase shifts with unity magnitude, the system is commonly referred to as phased array.
Mathematically, the desired response of the method can be justified by the Cauchy–Schwartz
inequality

∣∣wH(θ )a(θ0)
∣∣2 ≤ ‖w‖2‖a(θ0)‖2 (6.6)

for all vectors w, with equality holding if and only if w is proportional to a(θ0) [134]. In the
absence of array ambiguity, the effective pattern in (6.5) possesses a global maximum at θ0. Even
though the classical beamformer is the ideal choice to direct the maximum of the beampattern
toward the direction of a SOI, since the complex weight vector w can be easily derived in closed
form, it lacks the additional ability to place nulls toward any present SNOIs, often required
in pragmatic scenarios [59]. This is obvious when observing the expression in (6.5) where,
besides the look direction θ0, control of the beampattern cannot be achieved in the rest of the
angular region of interest. Thus, to accommodate all the requirements, a more advanced spatial
processing technique is necessary to be applied.

To demonstrate this principle, we consider a six-element uniform linear array of omni-
directional elements with half-wavelength spacing between adjacent elements. We assume that
three equal-power uncorrelated sources are transmitting signals toward the array. Furthermore,
the SOI is in the θ = 30◦ direction, toward which it is desired for the beampattern to possess
its maximum and ideally also two nulls (for the two SNOIs) toward θ = −45◦ and θ = 0◦.
Fig. 6.1 shows the two beamformed patterns: one using the classical beamformer [59] and the
other based on a specific adaptive beamforming algorithm. As expected, the classical beam-
former directs its maximum toward the direction of the SOI but fails to form nulls toward the
directions of the SNOIs, since it does not have control of the beampattern beyond θ0, whereas
the adaptive beamforming algorithms achieve simultaneously to form a maximum toward the
direction of the SOI and place nulls in the directions of the SNOIs.

6.2 STATISTICALLY OPTIMUM BEAMFORMING WEIGHT
VECTORS

Depending on how the beamforming weights are chosen, beamformers can be classified as data
independent or statistically optimum. The weights in a data independent beamformer do not
depend on the received array data and are chosen to present a specified response for all signal
and interference scenarios [22]. In practice, propagating waves are perturbed by the propagating
medium or the receive mechanism. In this case, the plane wave assumption may no longer hold
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FIGURE 6.1: Classical and adaptive beamforming.

and weight vectors based on plane-wave delays between adjacent elements will not combine
coherently the waves of the desired signal [22].

Matching of a randomly perturbed signal with arbitrary characteristics can be realized only
in a statistical sense by using a matrix weighting of input data which adapts to the received signal
characteristics [62]. This is referred to as statistically optimum beamforming. In this case, the
weight vectors are chosen based on the statistics of the received data. The weights are selected
to optimize the beamformer response so that the array output contains minimal contributions
due to noise and signals arriving from directions other than that of the desired signal [144].

Any possible performance degradation may result due to a deviation of the actual oper-
ating conditions from the assumed ideal and can be minimized by the use of complementary
methods that introduce constraints [22]. Due to the interest in applying array signal processing
techniques in cellular communications, where mobile units can be located anywhere in the
cell, statistically optimum beamformers provide the ability to adapt to the statistics of different
subscribers. There exist different criteria for determining statistically-optimum beamformer
weights, several of which are reviewed in this chapter.

6.2.1 The Maximum SNR Beamformer
The maximum SNR beamformer is essentially an extension of the classical beamformer. In the
presence of noise, the weight vector w that maximizes the Signal to Noise Ratio (SNR) is given
by [19]

wmaxSN R = R−1
nn a(θ0) (6.7)
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where Rnn is the noise covariance matrix. This beamforming weight vector gives an output
with the maximum SNR when the noise covariance matrix is known. When the noise is
spatially white, i.e., the noise covariance is a multiple of the identity matrix I, the maximum
SNR beamformer is equivalent to the classical beamformer [19]. Since only the desired signal
direction is taken into account when calculating the beamformer weight vector, as in the case of
the classical beamformer, the maximum SNR beamformer works adequately in a single-source
scenario but cannot deal satisfactorily with interfering sources [19].

6.2.2 The Multiple Sidelobe Canceller and the Maximum SINR Beamformer
In the case of more than one user in the communication system, it is often desired to suppress
the interfering signals, in addition to noise, using appropriate signal processing techniques.
There are some intuitive methods to accomplish this, for example, the multiple sidelobe canceller
(MSC) [144]. The basic idea of the MSC is that the conventional beamforming weight vectors
for each of the signal sources are first calculated and the final beamforming vector is a linear
combination of them in a way that the desired signal is preserved whereas all the interference
components are eliminated [19]. The method for a particular geometry (ULA) has been already
analyzed in a previous chapter to demonstrate the functional principle of smart antennas. MSC
has some limitations, however. For instance, for a large number of interfering signals it cannot
cancel all of them adequately and can result in significant gain for the noise component [144].
The solution to these limitations is the maximum SINR beamformer that maximizes the output
signal to interference and noise power ratio.

Recall that the output of the beamformer is given by [19]

y = wHx = wH (s + i + n) = ys + yI N (6.8)

where all the components collected by the array at a single observation instant are N × 1
complex vectors and are classified as: s is the desired signal component arriving from DOA
θ0, i = ∑I

i=1 si is the interference component (assuming I such sources to be present), and n
is the noise component. In (6.8), we also separate the desired signal array response weighted
output, ys = wHs, and the interference-plus-noise total array response, yI N = wH (i + n).
Consequently, the weighted array signal output power is [22]

E
{|ys |2

} = wHE
{

ssH}w = wHRs s w (6.9)

where Rs s is the autocovariance matrix of the signal vectors s and the weighted interference-
plus-noise output power is [22]

E
{|yI N|2} = wHE

{|i + n|2}w = wHRI Nw (6.10)
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where RI N is the autocovariance matrix of the vectors n + i. Therefore, the weighted output
SINR can be expressed as [22]

SI N R = E
{|ys |2

}
E
{|yI N|2} = wHRs s w

wHRI Nw
. (6.11)

With appropriate factorization of RI N and manipulation of the SINR expression, the maxi-
mization problem can be recognized as an eigen-decomposition problem. The expression for
w that maximizes the SINR is found to be [22]

wmaxSI N R = R−1
I Na(θ0). (6.12)

This is the statistical optimum solution in maximizing the output SINR in an interference plus
noise environment, but it requires a computationally intensive inversion of RI N, which may be
problematic when the number of elements in the antenna array is large [19].

6.2.3 Minimum Mean Square Error (MMSE)
If sufficient knowledge of the desired signal is available, a reference signal d can then be
generated. These reference signals are used to determine the optimal weight vector wMSE =
[w1, w2, . . . , wN]T. This is done by minimizing the mean square error of the reference signals
and the outputs of the N-element antenna array [145]. The concept of reference signal use
in adaptive antenna system was first introduced by Widrow in [145] where he described
several pilot-signal generation techniques. One of the proposed techniques used a two-mode
adaptation process whereby the transmitter alternated between sending a known pilot signal
and actual data. The receiver had knowledge of the pilot signal and used it as the desired
response for the LMS adaptive algorithm (described later in this chapter). During actual data
transmission, adaptation would be switched off and the weights would coast until the pilot
signal was turned back on. While an adaptive antenna utilizing this technique was probably
never constructed, the concept provided the necessary impetus which eventually grew into
actual hardware implementations [146].

For beamforming considerations, the reference signal is usually obtained by a periodic
transmission of a training sequence, which is a priori known at the receiver and is referred
to as temporal reference. Note that information about the direction of the signal of interest is
usually referred to as spatial reference. The temporal reference is of vital importance in a fading
environment due to lack of angle of arrival information [70]. As described by Compton [147],
the adaptive array reference signal need not necessarily be an exact replica of the desired signal,
even though this is what occurs in most of the cases. In general, it can be unknown but needs to
be correlated with the desired signal and uncorrelated with any possible interference. Compton
goes on to describe several experimental antenna systems designed for use with spread spectrum



BEAMFORMING FUNDAMENTALS 93

Automatic
circuit for weights’

adjustment

x1

x2

xN

w∗
1

w∗
2

w∗
N

Σ

Σ

e

d

y

−

+

1

2

N

•
•

•

FIGURE 6.2: Reference signal adaptive antenna [22].

signals where the spreading sequence provides the necessary discrimination between desired
signal and interference. A tutorial discussion on adaptive beamformers with self-generated
reference signals can be found in [146].

A block diagram of an adaptive system using reference signals is shown in Fig. 6.2. At
each observation instance k, the error e (k) between the reference signal d (k) and the weighted
array output y(k) is given by

e (k) = d (k) − y(k) = d (k) − wHx(k). (6.13)

Mathematically, the MMSE criterion can be expressed as

min
w

E
{

Jw,w∗
}

where Jw,w∗ = |e (k)|2 denotes the real-valued objective function of the weight vector w to
be solved (w∗ is the conjugate of w). The maximum rate of change of Jw,w∗ is given by
∂ Jw,w∗
∂w∗ [83, 148]. In order to get a meaningful result, the objective function needs to have

explicit dependency on the conjugate of the weight vector [23]. Usually this simply translates
into changing transposition to conjugate transposition (or Hermitian). For a more detailed
discussion on the topic, see [83, 148]. Therefore, we have

∂ Jw,w∗

∂w∗ =
∂
{[

d (k) − wHx(k)
]H [d (k) − wHx(k)

]}

∂w∗
= −2e ∗(k)x(k).

(6.14)
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To minimize the objective function, we set (6.14) to zero. Considering additionally the
expectation value of the minimum of Jw,w∗ , it yields

2Rxxw − 2rxd = 0 (6.15)

where Rxx = E
{

xxH
}

is the signal autocovariance matrix and rxd = E {xd∗} is the reference
signal covariance vector. Thus, the optimal MMSE weight solution is given by

wMSE = R−1
xx rxd . (6.16)

and is usually referred to as the Wiener–Hopf solution. One disadvantage using this method is
the generation of an accurate reference signal based on limited knowledge at the receiver [22].

6.2.4 Direct Matrix Inversion (DMI)
If the desired and interference signals are known a priori, (6.16) provides the most direct and
fastest solution to compute the optimal weights. However, the signals are not known exactly
since the signal environment undergoes frequent changes. Thus, the signal processing unit
must continually update the weight vector to meet the new requirements imposed by the
varying conditions [98]. This need to update the weight vector, without a priori information,
leads to estimating the covariance matrix, Rxx , and the cross-correlation vector, rxd , in a
finite observation interval. Note that this is a block-adaptive approach where the statistics are
estimated using temporal blocks of the array data [70]. The adaptivity is achieved via a sliding
window, say of length L symbols. The estimates R̂xx and r̂xd can be evaluated as:

R̂xx = 1
L

N2∑
i=N1

x(i)xH(i) (6.17a)

r̂xd = 1
L

N2∑
i=N1

x(i)d∗(i) (6.17b)

where N1 and N2 are, respectively, the lower and upper limits of the observation interval such
that N2 = N1 + L − 1. Thus, the estimate for the weight vector is given by

ŵMSE = R̂
−1
xx r̂xd . (6.18)

The advantage of the method is that it converges faster than any adaptive method, and the rate
of convergence does not depend on the power level of the signals. However, two major problems
are associated with the matrix inversion. First, the increased computational complexity cannot
be easily overcomed through the use of integrated circuits, and second, the use of finite-precision
arithmetic and the necessity of inverting a large matrix may result in numerical instability.
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6.2.5 Linearly Constrained Minimum Variance (LCMV)
In the MMSE criterion, the Wiener filter minimizes the MSE with no constraints imposed
on the solution (i.e., the weights). However, it may be desirable, or even mandatory, to design
a filter that minimizes a mean square criterion subject to a specific constraint. The LCMV
constrains the response of the beamformer so that signals from the direction of interest are
passed through the array with a specific gain and phase [149]. However it requires knowledge,
or prior estimation, of the desired signal array response a (θ0) with DOA θ0. Its weights are
chosen to minimize the expected value of the output power/variance subject to the response
constraints. That is [22]

min
w

{
wHRxxw

}
subject to CHw = g∗

where C ∈ C
N×K has K linearly independent constraints and g ∈ C

K×1 is the constraint
response vector.

The constraints have an effect of preserving the desired signal while minimizing contri-
butions to the array output due to interfering signals and noise arriving from directions other
than that of interest [22]. The solution to this constrained optimization problem requires the
use of the Lagrange multiplier vector b ∈ C

K . Letting F(w) = wHRxxw be the cost function
and G(w) = CHw − g∗ be the constraint function, the following expression is formed [22]:

H(w) = 1
2

F(w) + bHG(w)

= 1
2

wHRxxw + bH
(

CHw − g∗
)

.

(6.19)

F(w) has its minimum value at a point w subject to the constraint G(w) = CHw − g∗ = 0,
i.e., when H(w) is minimum. Therefore, to find the minimum point in equation (6.19), we
differentiate with respect to w and set it equal to zero, which yields [22]:

wopt = −R−1
xx Cb. (6.20)

Substituting wopt back into the constraint equation yields [22]

b = −
[

CHR−1
xx C

]−1
g∗ (6.21)

where the existence of
[

CHR−1
xx C

]
follows from the fact that Rxx is positive definite and C is

full-rank. Therefore, the LCMV estimate of the weight vector is [22]

wopt = R−1
xx

[
CHR−1

xx C
]−1

g∗. (6.22)
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As a special case, a requirement would be to force the beam pattern to be constant in the
boresight direction; concisely, this can be stated mathematically as [150]

min
w

{
wHRxxw

}
subject to wHa(θ0) = g∗

where g is a complex scalar which constrains the output response to a(θ0). In this case, the
LCMV weight estimate is [22]

wopt = g∗ R−1
xx a(θ0)

aH(θ0)R−1
xx a (θ0)

. (6.23)

For the special case when g = 1 (i.e., the gain constant is unity), the optimum solution of
(6.23) is termed as the minimum variance distortionless response (MVDR) beamformer, and it
is also referred to as the maximum likelihood method (MLM) because the algorithm maximizes
the likelihood function of the input signal [98].

The advantage of using LCMV criteria is its general constraint approach that permits
extensive control over the adapted response of the beamformer [22]. It is a flexible technique that
does not require knowledge of the desired signal autocovariance matrix Rxx , the interference-
plus-noise autocovariance matrix RI N, or any reference signal d (k) [22]. A certain level of
beamforming performance can be attained through the design of the beamformer, allowed
by the constraint matrix [22]. However, the disadvantage of using LCMV criteria is the
computation complexity of the constraint weight vector. There are several constraint designs
for the LCMV performance such as point constraints, eigenvector constraints, etc., which are
beyond the scope of the present discussion.

6.3 ADAPTIVE ALGORITHMS FOR BEAMFORMING
As previously shown, statistically optimum weight vectors for adaptive beamforming can be
calculated by the Wiener solution. However, knowledge of the asymptotic second-order statis-
tics of the signal and the interference-plus-noise was assumed. These statistics are usually not
known but with the assumption of ergodicity, where the time average equals the ensemble aver-
age, they can be estimated from the available data [22]. For time-varying signal environments,
such as wireless cellular communication systems, statistics change with time as the target mobile
and interferers move around the cell. For the time-varying signal propagation environment, a
recursive update of the weight vector is needed to track a moving mobile so that the spatial
filtering beam will adaptively steer to the target mobile’s time-varying DOA, thus resulting in
optimal transmission/reception of the desired signal [22]. To solve the problem of time-varying
statistics, weight vectors are typically determined by adaptive algorithms which adapt to the
changing environment.
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FIGURE 6.3: Functional diagram of an N-element adaptive array [22].

Fig. 6.3 shows a generic adaptive antenna array system consisting of an N-element
antenna array with a real time adaptive array signal processor containing an update control
algorithm. The data samples collected by the antenna array are fed into the signal processing
unit which computes the weight vector according to a specific control algorithm.

Steady-state and transient-state are the two classifications of the requirement of an
adaptive antenna array. These two classifications depend on whether the array weights have
reached their steady-state values in a stationary environment or are being adjusted in response
to alterations in the signal environment. If we consider that the reference signal for the adaptive
algorithm is obtained by temporal reference, a priori known at the receiver during the actual
data transmission, we can either continue to update the weights adaptively via a decision
directed feedback or use those obtained at the end of the training period [70]. Several adaptive
algorithms can be used such that the weight vector adapts to the time-varying environment at
each sample; some of them are now reviewed. The text and tables, appearing in the descriptions
of the adaptive algorithms 1–2 and 4–5 that follow, are in great part reproduced and adopted
from [23] (pp. 9–15)1.

6.3.1 The Least Mean-Square (LMS) Algorithm
The LMS algorithm [150, 151] is probably the most widely used adaptive filtering algo-
rithm, being employed in several communication systems. It has gained popularity due to

1The material was reproduced with the courtesy and permission of the author of [23] who retains its copyright.
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its low computational complexity and proven robustness [23]. It incorporates new obser-
vations and iteratively minimizes linearly the mean-square error [62, 83, 145]. The LMS
algorithm changes the weight vector w along the direction of the estimated gradient based
on the negative steepest descent method [152]. By the quadratic characteristics of the
mean square-error function E

{|e (k)|2} that has only one minimum, the steepest descent is
guaranteed to converge. At adaptation index k, given a mean-square-error (MSE) function
E{|e (k)|2} = E{|d (k) − wHx(k)|2}, the LMS algorithm updates the weight vector according to
[22]

w(k + 1) = w(k) − µ

2
∂ Jw,w∗

∂w∗
= w(k) + µe ∗(k)x(k)

(6.24)

where the rate of change of the objective function Jw,w∗ = |e (k)|2 has been derived earlier in
(6.14) and µ is a scalar constant which controls the rate of convergence and stability of the
algorithm. In order to guarantee stability in the mean-squared sense, the step size µ should be
restricted in the interval [22]

0 < µ <
2

λmax
(6.25)

where λmax is the maximum eigenvalue of Rxx . Alternatively, in terms of the total power of the
vector x [22]

λmax ≤ trace
{

Rxx
}

(6.26)

where trace
{

Rxx
} =

N∑
i=1

E
{

x2
i

}
is the total input power. Therefore, a condition for satisfactory

Wiener solution convergence of the mean of the LMS weight vector is [22]

0 < µ <
2

N∑
i=1

E
{

x2
i

} (6.27)

where N is the number of elements in the array. The pseudo-code for the LMS algorithm is
shown in Table 6.1 [23]. A normalized version of the LMS algorithm, the NLMS algorithm
[150, 153, 154], also referred to as the projection algorithm (PA) in the control literature [155],
is obtained by substituting the step size in (6.24) with the time-varying step size µ/‖x(k)‖2,
where 0 < µ < 2 [154]. A significant drawback from the use of the LMS and the NLMS
algorithms is their slow convergence for colored noise input signals [23].

The LMS algorithm is a member of a family of stochastic gradient algorithms since the
instantaneous estimate of the gradient vector is a random vector that depends on the input data
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TABLE 6.1: The Least Mean-Square Algorithm [22]

LMS ALGORITHM

for each k
{

e (k) = d (k) − wH(k)x(k)
w(k + 1) = w(k) + µe ∗(k)x(k)

}

vector x(k) [156]. It requires about 2N complex multiplications per iteration, where N is the
number of weights (elements) used in the adaptive array. The convergence characteristics of
the LMS depend directly on the eigenstructure of Rxx [22]. Its convergence can be slow if the
eigenvalues are widely spread. When the covariance matrix eigenvalues differ substantially, the
algorithm convergence time can be exceedingly long and highly data dependent [62]. Therefore,
depending on the eigenvalue spread, the LMS algorithm may not have sufficient iteration time
for the weight vector to converge to the statistically optimum solution and adaptation in real
time to the time-varying environment will not be able to be performed [22]. In addition,
employing the LMS algorithm, it is assumed that sufficient knowledge of the desired signal is
known so as to generate reference signal sequences. However, acquiring this knowledge could
be very expensive for wireless communication systems, especially in fast-fading scenarios [22].
In cases where the convergence speed of the LMS algorithm is not satisfied, the following
algorithms may serve as acceptable alternatives.

6.3.2 The Recursive Least-Squares (RLS) Algorithm
Unlike the LMS algorithm [150, 157] which uses the method of steepest descent to update the
weight vector, the RLS adaptive algorithm approximates the Wiener solution directly using
the method of least squares to adjust the weight vector, without imposing the additional burden
of approximating an optimization procedure [144]. In the method of least squares, the weight
vector w(k) is chosen so as to minimize a cost function that consists of the sum of error squares
over a time window, i.e., the least-square (LS) solution is minimized recursively [23]. In the
method of steepest-descent, on the other hand, the weight vector is chosen to minimize the
ensemble average of the error squares. The recursions for the most common version of the RLS
algorithm, which is presented in its standard form in Table 6.2 [23], are a result of the weighted
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TABLE 6.2: The Recursive Least-Squares Algorithm [23]

RLS ALGORITHM

R−1(0) = δ−1I, δ small positive constant and
I the N × N identity matrix
for each k
{

k(k) = R−1(k − 1)x(k)
κ(k) = k(k)

λ+xH (k)k(k)

R−1(k) = 1
λ

[
R−1(k − 1) − k(k)kH (k)

λ+xH (k)k(k)

]
e (k) = d (k) − wH(k)x(k)
w(k + 1) = w(k) + e ∗(k)κ(k)

}

least-squares (WLS) objective function

Jw,w∗ =
k∑

i=1

λk−1|e (i)|2 (6.28)

where the error signal e (i) has been defined earlier and 0 < λ ≤ 1 is an exponential scaling
factor which determines how quickly the previous data are de-emphasized [156] and is referred
to as the forgetting factor [23]. Usually, λ is chosen close to, but less than, unity. However, in
a stationary environment λ should be equal to 1, since all data past and present should have
equal weight [156]. Differentiating the objective function Jw,w∗ with respect to w∗ and solving
for the minimum yields [23]

[
k∑

i=1

λk−1x(i)xH(i)

]
w(k) =

k∑
i=1

λk−1x(i)d∗(i). (6.29)

Furthermore, defining the quantities [23]

R(k) =
k∑

i=1

λk−1x(i)xH(i) (6.30)

and

p(k) =
k∑

i=1

λk−1x(i)d∗(i) (6.31)
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the solution is obtained as [23]

w(k) = R−1(k)p(k). (6.32)

The recursive implementations are a result of the formulations

R(k) = λR(k − 1) + x(k)xH(k) (6.33)

and

p(k) = λp(k − 1) + x(k)d∗(k). (6.34)

The inverse R−1(k) can be obtained recursively in terms of R−1(k − 1) using the matrix inversion
lemma2 [151], thus avoiding direct inversion of R(k) at each time instant k.

An important feature of the RLS algorithm is that it utilizes information contained in
the input data, extending back to the time instance the algorithm was initiated. The resulting
rate of convergence is therefore typically an order of magnitude faster than the simple LMS
algorithm. This improvement in performance, however, is achieved at the expense of a large
increase in computational complexity. The RLS algorithm requires 4N2 + 4N + 2 complex
multiplications per iteration, where N is the number of weights used in the adaptive array.
Other drawbacks associated with its implementation are potential divergence behavior in a
finite-precision environment and stability problems that usually result in loss of symmetry and
positive definiteness of the matrix R−1(k) [23].

6.3.3 The Constant-Modulus (CM) Algorithm
Many communication signals, frequency or phase modulated, such as FM, CPFSK modulation,
and square pulse-shaped complex pulse amplitude modulation (PAM) have a constant complex
envelope [159]. This property is usually referred to as the constant modulus (CM) signal property.
For these types of communication signals, one can take advantage of the prior knowledge of this
characteristic and specify the adaptation algorithm to achieve a desired steady state response
from the array [160]. The constant-modulus algorithm is the most well-known algorithm of this
kind. It is suitable for the transmission of a modulated signal over the wireless channel, since
noise and interference corrupt the CM property of the desired signal [159]. A signal traveling
through a frequency selective channel is almost sure to also lose its constant modulus property.

2If A, B, C, and D are matrices with dimensions n × n, n × m, m × m, and m × n, respectively, then

[A + BCD]−1 = A−1 − A−1B
[

DA−1B + C−1
]−1

DA−1, provided that the inverses of the indicated square ma-
trices exist. For a proof of the lemma, the reader is referred to [152]. A special case, known as Woodbury’s
identity, results for B being an n × 1 column vector u, C a scalar of unity and D a 1 × n row vector uT . Then[
A + uuT

]−1 = A−1 − A−1uuT A−1

1+uT A−1u
[158].
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Thus, the CM provides an indirect measure of the quality of the filtered signal. It adjusts the
weight vector of the adaptive array so as to minimize the variation of the desired signal at the
array. After the algorithm converges, a beam is steered in the direction of the signal of interests,
whereas nulls are placed in the direction of interference. In general, the CM algorithm seeks a
beamformer weight vector that minimizes a cost function of the form

J p,q = E
{∣∣|y(k)|p − 1

∣∣q} . (6.35)

Equation (6.35) describes a family of cost functions. The convergence of the algorithm depends
on the coefficients p and q in (6.35). A particular choice of p and q yields a specific cost function
called the (p,q) CM cost function. The (1, 2) and (2, 2) CM cost functions are the most popular.
The objective of CM beamforming is to restore the array output y(k) to a constant envelope
signal. Using the method of steepest descent, the weight vector is updated using the following
recursive equation,

w(k + 1) = w(k) − µ∇w,w∗
(

J p,q
)

(6.36)

where the step-size parameter has been denoted by µ. When the (1,2) CM function is used,
the gradient vector is given by [156]

∇w,w∗ (J1,2) = ∂ J1,2

∂w∗ = E
[

x(k)
(

y(k) − y(k)
|y(k)|

)∗]
. (6.37)

Ignoring the expectation operation in (6.37), the instantaneous estimate of the gradient vector
can be written as

∇w,w∗
(

Ĵ1,2(k)
) = x(k)

[
y(k) − y(k)

|y(k)|
]∗

(6.38)

and therefore, using (6.38), the resulting weight vector is given by

w(k + 1) = w(k) − µ

[
y(k) − y(k)

|y(k)|
]∗

x(k) =
= w(k) + µe ∗(k)x(k)

(6.39)

where e (k) = y(k)/|y(k)| − y(k). Comparing the CM and the LMS algorithms, we notice that
they are very similar to each other. The term y(k)

|y(k)| in CM plays the same role as the desired
signal d (k) in the LMS. However, the reference signal d (k) must be sent from the transmitter
to the receiver and must be known for both the transmitter and receiver if the LMS algorithm
is used. The CM algorithm does not require a reference signal to generate the error signal at
the receiver [156]. Several other properties of the constant modulus algorithm are discussed in
[161]. The pseudo-code for the CM (1,2) algorithm is shown in Table 6.3.
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TABLE 6.3: The Constant-Modulus Algorithm [23]

(1,2) CM ALGORITHM

for each k
{

y(k) = wH(k)x(k)
e (k) = y(k)

|y(k)| − y(k)
w(k + 1) = w(k) + µe ∗(k)x(k)

}

6.3.4 The Affine-Projection (AP) Algorithm
It is well known that the normalized LMS algorithm often converges faster than the basic
LMS algorithm and in many times can effectively replace the RLS algorithm [23]. Examples
of such low-complexity algorithms are the binormalized data-reusing least mean-square (BN-
DRLMS) [162], the normalized new data-reusing (NNDR) [163], and the affine-projection
(AP) [164–166] algorithms. Studies have shown that the idea of reutilizing past and present
information in the coefficient update, referred to as data-reusing, to be a promising approach in
achieving balance between convergence speed and computational complexity of the algorithm
[23]. The BNDRLMS algorithm utilizes current and past data-pairs in its update. The rela-
tionships between a number of reusing algorithms are addressed in [167]. The AP projection
algorithm can be seen as a general normalized data-reusing algorithm that reuses an arbitrary
number of data-pairs. It updates its coefficient vector such that the new solution belongs to
the intersection of P hyperplanes defined by the present and the P − 1 previous data pairs{

x(i), d (i)
}k

i=k−P+1. The optimization criterion used for the derivation of the AP algorithm is
given by

w(k + 1) = arg min
w

‖w − w(k)‖2 subject to d(k) = XT(k)w∗

where

d(k) = [d (k), d (k − 1), . . . , d (k − P + 1)]H and (6.40a)
X(k) = [x(k), x(k − 1), . . . , x(k − P + 1)] . (6.40b)

The updating equations for the AP algorithm obtained as the minimization problem in (6.3.4)
are presented in Table 6.4 [23]. To control stability, convergence, and final error, a step size µ

is introduced where 0 < µ < 2 [165]. To improve robustness, a diagonal matrix δI is used to
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TABLE 6.4: The Affine-Projection Algorithm [23]

AP ALGORITHM

for each k
{

e(k) = d(k) − XT(k)w∗(k)

t(k) =
[

XH(k)X(k) + δI
]−1

e∗(k)

w(k + 1) = w(k) + µX(k)t(k)
}

regularize the inverse matrix in the AP algorithm, where δ is a small positive constant and I is
an N × N identity matrix [23].

6.3.5 The Quasi-Newton (QN) Algorithm
The fast convergence of the RLS algorithm relies on the estimation of the inverse of the
correlation matrix R−1(k) which is required to remain symmetric and positive definite for the
algorithm’s stability [23]. However, implementation in finite precision may cause R−1(k) to
become indefinite [168]. One algorithm that provides convergence speed comparable to that
of the RLS algorithm, but is guaranteed to be stable even under high input-signal correlation
and fixed-point short-wordlength arithmetic, is the quasi-Newton (QN) algorithm [168, 169].
In the QN algorithm, the weight vector is updated as

w(k + 1) = w(k) + µ(k)h(k) (6.41)

where µ(k) is a step size obtained through an exact line search, and h(k) is the direction of the
update given by

h(k) = −R−1(k − 1)
∂ Jw,w∗

∂w∗ (6.42)

where the cost function is once more Jw,w∗ = |e (k)|2. Performing an exact line search results in
a step size [168]

µ(k) = 1

2xH(k)R−1(k − 1)x(k)
. (6.43)

The update of R−1(k − 1) is crucial for the numerical behavior of the QN algorithm, and differ-
ent approximations lead to different QN algorithms [23]. For an approximation of R−1(k − 1),
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TABLE 6.5: The Quasi-Newton Algorithm [23]

QN ALGORITHM

for each k
{

e (k) = d (k) − wH(k)x(k)
t(k) = R−1(k − 1)x(k)
τ (k) = xH(k)t(k)
µ(k) = 1

2τ (k)

R−1(k) = R−1(k − 1) + [µ(k)−1]
τ (k) t(k)tH(k)

w(k + 1) = w(k) + α e ∗(k)
τ (k) t(k)

}

which is robust and remains positive definite even for highly correlated input signals and
short wordlength arithmetic, as given in [168], the QN algorithm can be implemented as
shown in Table 6.5 [23]. In Table 6.5 a positive constant α is used to control the speed of
convergence and the misadjustment. Convergence in the mean and the mean-squared sense
of the weight vector is guaranteed for 0 < α < 2 provided that R−1(k − 1) is positive definite
[168–170].
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C H A P T E R 7

Integration and Simulation of Smart
Antennas

Unlike most of the work for smart antennas that covered each area individually (antenna-array
design, signal processing, communications algorithms and network throughput), the work in this
chapter may be considered as an effort on smart antennas that examines and integrates antenna
array design, the development of signal processing algorithms (for angle of arrival estimation
and adaptive beamforming), strategies for combating fading, and the impact on the network
throughput [24, 171–174]. In particular, this work considers problems dealing with the impact
of the antenna design on the network throughput. In addition, fading channels and tradeoffs
between diversity combining and adaptive beamforming are examined as well as channel coding
to improve the system performance.

7.1 OVERVIEW
The main goal of this chapter and reported in [24, 171–174], is to design smart antennas
for Mobile Ad-Hoc Network (MANET) devices operating at a frequency of 20 GHz. This
objective was instrumental in selecting elements that can conform to the geometry of the de-
vice and an array architecture that could control the radiation pattern both in the azimuth
and elevation directions. Consequently, this led to the selection of microstrip patches ar-
ranged in a planar configuration. In addition, the number of radiating elements was chosen to
meet beamwidth requirements while maintaining reasonable cost and complexity for hardware
implementation.

To analyze the average network throughput, a channel access protocol was proposed for
MANETs employing smart antennas. The proposed protocol was based on the MAC protocol
of IEEE 802.11 WLANs for TDMA environment [175].

Results showed that network throuput was influenced by both the number of elements in a
planar antenna array and different array designs (uniform, Tschebyscheff, adaptive). Moreover,
the network throughput analysis was extended to impose guidelines on the beamforming
algorithm convergence rate. Finally, the performance of the adaptive algorithms, i.e., the DMI
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FIGURE 7.1: Planar-array configuration.

algorithm and the LMS algorithm, in Rayleigh-fading channels was examined. The material
of this chapter is primarily derived from [24, 59, 171–174].

7.2 ANTENNA DESIGN
The type of antenna element considered in this project is a microstrip antenna (also known as a
patch antenna), since it is intended to be conformally mounted on a smooth surface or a similar
device.

Given an array of identical elements, the total array pattern, neglecting coupling, is
represented by the product of the single element pattern of the electric field and the array factor
[59]. A planar array configuration was chosen because of its ability to scan in three-dimensional
(3D) space. For M × N identical elements with uniform spacing placed on the xy-plane, as
shown in Fig. 7.1, the array factor is given by [59]

[AF(θ, φ)]M×N =
M∑

m=1

N∑
n=1

wmne j[(m−1)ψx+(n−1)ψy]

ψx = βdx (sin θ cos φ − sin θ0 cos φ0)
ψy = βdy (sin θ sin φ − sin θ0 sin φ0)

(7.1)

where β is the phase constant, wmn represents the complex excitations of the individual elements,
and (θ0, φ0) represents the pair of elevation and azimuth angles, respectively, of maximum
radiation. It is the wmn ’s and ψx,y ’s that the adaptive beamforming algorithms needs to adjust
to place the maximum of the main beam toward the (SOI) and nulls toward the SNOIs.
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For narrow-beamwidth designs, the main beam can resolve the SOIs more accurately
and allow the smart antenna system to reject more SNOIs. Although this may seem attractive
for a smart antenna system, it has the disadvantage, because of the large number of elements
that may be needed, of increasing the cost and the complexity of the hardware implementation.
Moreover, larger arrays require more training bits and hence the overall throughput is also
affected. Therefore, this tradeoff is examined based on the needs of the network throughput,
and it has been found that a planar array of 8 × 8 antenna elements gives the necessary throughput
for the MANET of this project.

The microstrip array of this project was designed to operate at a frequency of 20 GHz
using a substrate material of silicon with a dielectric constant of 11.7 and a loss tangent of 0.04,
a thickness of 0.3 mm and an input impedance of 50 Ohms. Using Ensemble�, the physical
dimensions of the final design of the rectangular patch are listed in Fig. 7.1 and the magnitude
of the return loss (S11) versus frequency (return loss) is shown as a verification of the design in
Fig. 7.2. The E-plane and the H-plane far-field patterns of a single microstrip element, for the
design of Fig. 7.1, are shown in Fig. 7.3.

Using the dimensions of the single patch antenna, a planar array of 8 × 8 microstrip
patches, also shown in Fig. 7.1, with λ/2 (half-wavelength) interelement spacing (maximum
allowable spacing for a well-correlated antenna array) where λ = 1.5 cm was designed.
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FIGURE 7.2: Return loss (S11) of microstrip of Fig. 7.1.
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FIGURE 7.3: Single element microstrip patch radiation patterns; E-plane (φ = 0◦) and H-plane (φ =
90◦).

Once the antenna array design is finalized, the DOA algorithm computes the angle
of arrival of all signals based on the time delays. For an M × N planar array, as shown in
Fig. 7.1, these are computed by

τmn = mdx sin θ cos φ+ndy sin θ sin φ

υo

m = 0, 1, . . . , M − 1
n = 0, 1, . . . , N − 1

(7.2)

where υo is the speed of light in free space.

7.3 MUTUAL COUPLING
The impedance and radiation pattern of an antenna element changes when the element is
radiating in the vicinity of other elements causing the maximum and nulls of the radiation
pattern to shift. Such changes lead to less accurate estimates of the angles of arrival and
deterioration in the overall pattern. These detrimental effects intensify as the interelement
spacing is reduced [59, 108–113]. Consequently, if these effects are not taken into account by
the adaptive algorithms (beamformer or DOA), the overall system performance will degrade.
However, using a mutual coupling matrix (MCM), mutual coupling effects can be compensated
[108–113].

To compensate for mutual coupling, a mutual coupling matrix C is used to revise the
updated weight coefficients of the array either in the radiation or receiving mode [113]. The
expression for the mutual coupling matrix is given either by [108]

C = ZL(Z + ZLI)−1 (7.3)
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or by [110]

C′ = (ZA + ZL)(Z + ZLI)−1 (7.4)

The two are related by C′ = [(ZA + ZL)/ZL]C. In the above two equations, I is the
identity matrix, Z is the impedance matrix, and ZL is the load impedance (i.e., 50 �). These
expressions describe how the individual antenna elements are coupled with one another, which
is the information needed to compensate for the mutual effects by the adaptive beamforming
algorithm.

7.4 ADAPTIVE SIGNAL PROCESSING ALGORITHMS
The unitary ESPRIT algorithm [176] was chosen as the DOA algorithm for this study.
Following the DOA, the adaptive beamformer is introduced to generate the complex excitation
weights. The performance of the beamformer over AWGN channels and of the optimal
combiner for Rayleigh-fading channels is analyzed.

7.4.1 DOA
After the antenna array receives all the signals from all directions, the DOA algorithm de-
termines the directions of all impinging signals based on the time delays implicitly supplied
by the antenna array using (7.2). Then, the DOA algorithm supplies this information to the
beamformer to orient the maximum of the radiation pattern toward the SOI and to reject the
interferers by placing nulls toward their directions.

The most popular type of DOA algorithms for uniform planar arrays is the ESPRIT.
Some of the recent contributions in this area include [124, 176, 177]. In the original version
of the ESPRIT algorithm [122], mentioned earlier, only a single invariance is exploited, which
is sufficient for estimating DOAs in a single dimension (linear array) but not, in azimuth and
elevation angles simultaneously, as needed for planar arrays. Shortly after the development
of the first version of ESPRIT, a multiple invariance relation was developed in [178]. This
MI-ESPRIT exploits multiple invariances along a single spatial dimension and it is based
on the subspace fitting formulation of the DOA problem [179]. The disadvantage of MI-
ESPRIT is that it involves the minimization of a complex, nonlinear cost function using an
iterative Newton method. The MI-ESPRIT method was extended from the one-dimensional
(1D) DOA case to computation of both azimuth and elevation directions in [124] where
approximations were used to get a suboptimal solution of the subspace fitting problem. The
unitary ESPRIT, presented later in [176] for DOA estimation with uniform rectangular arrays,
eliminates the nonlinear optimization and provides a closed-form solution for the azimuth and
elevation angles. The algorithm in [124] and the two-dimensional (2D) unitary ESPRIT
algorithm focus on computing the azimuth and elevation angles while neglecting to provide a
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TABLE 7.1: Signals Used to Test the Smart Antenna System [69]

SOI SNOI

DOA θ0 φ0 θ1 φ1

Case 1 0◦ 0◦ 45◦ 0◦

Case 2 30◦ 45◦ 60◦ 45◦

good algorithm for computing a basis for the signal subspace. They simply suggest the use of an
unstructured eigendecomposition of the data matrix. In [180], Strobach first recognized that
the structure of the signal subspace could be exploited to provide more accurate estimates of the
signal subspace, which in turn resulted in more accurate DOA estimates. The algorithm that
uses this equirotational stack structure of the signal subspace to estimate the DOAs is known
as the ES-ESPRIT [181].

In the unitary ESPRIT algorithm for the planar array, the azimuth and elevation angles
are computed by stacking the received data vectors and computing a basis for the signal subspace.
Next, the least-squares solution of the following two equations of the form

Ku1 Es �u = Ku2 Es and Kυ1 Es �υ = Kυ2 Es (7.5)

is obtained. The columns of Es contain a basis for the signal subspace and the K matrices
are sparse matrices that depend on the symmetric geometry and size of the array. The d × d
matrices �u and �υ are the rotational operators of the rotational invariance relation and are
the solutions to (7.5). The azimuth angles �s are obtained from the eigenvalues of �u and
the elevation angles �s from the eigenvalues of �υ . Details of this algorithm can be found in
[176].

The unitary ESPRIT algorithm has been implemented as the DOA algorithm for this
project. Using the signals of Table 7.1 as input signals to the ESPRIT, it has been observed to
give accurate results in the presence of noise and mutual coupling as shown in Table 7.2 [70].

7.4.2 Adaptive Beamforming
Using the information supplied by the DOA, the adaptive algorithm computes the appropriate
complex weights to direct the maximum radiation of the antenna pattern toward the SOI
and places nulls toward the SNOIs. There are several general adaptive algorithms used for
smart antennas [144, 182] and they are typically characterized in terms of their convergence
properties and computational complexity. The simplest algorithm is the DMI algorithm where
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TABLE 7.2: Esprit Simulation Results [69]

DESCRIPTION
SOI SNOI

θ0 φ0 θ1 φ1

Case 1 Without noise 0.000◦ 45.000◦ 0.000◦

Case 2 Without noise 30.000◦ 45.000◦ 60.000◦ 45.000◦

Case 1 AWGN: µ = 0, σ 2 = 0.1 0.030◦ 44.945◦ 0.000◦

Case 2 AWGN: µ = 0, σ 2 = 0.1 30.004◦ 44.955◦ 60.060◦ 44.973◦

Case 1 Mutual coupling 0.0508◦ 44.509◦ 0.0133◦

Case 2 Mutual coupling 30.138◦ 45.719◦ 61.072◦ 45.460◦

the weights are computed from the estimate of the covariance matrix [157]. The accuracy of
the estimate of this matrix increases as the number of data samples received, allowing more
accurate weights to be computed.

The adaptive beamforming algorithm chosen in this project is the LMS for its low
complexity [157]. Based on the array geometry of Fig. 7.1, the signals received by the array are
given in a matrix form by

x = xd +
L∑

i=1

xi + xn (7.6)

where xd is the desired signal matrix, xi is the ith interfering signal matrix and xn is the additive
noise matrix with independent and identically distributed (i.i.d.) complex Gaussian entries
with zero mean and variance 0.5 per complex dimension are assumed and L is the number of
interferers. Let s d and s i denote the desired and the interfering signals, respectively, such that
their power is normalized to unity, i.e., E {s d }2 = 1 and E {s i}2 = 1. Hence, the received signal
vector can be written as

x =
√

ρd

64
s d ud +

L∑
i=1

√
ρi

64
s i ui + xn (7.7)

where ud and ui are the desired and ith interfering signal propagation matrices and ρd and ρi

are the received desired signal-to-noise ratio and ith interference to noise ratio. Note that the
received powers are normalized so that they represent the desired SNR.
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Arranging the input signals in a column vector xk , the LMS algorithm computes the
complex weights wk iteratively using [157]

wk+1 = wk + µxk
(
dk − xT

k wk
)

(7.8)

where dk is a sample of the desired signal (i.e., the SOI) at the kth iteration and µ denotes the
step size of the adaptive algorithm. In (7.8), µ denotes the step size, which is related to the rate
of convergence; in other words, how fast the LMS algorithm reaches steady state. The smaller
the step size, the longer it takes the LMS algorithm to converge; this would mean that a longer
training sequence would be needed, thus reducing the bandwidth. Therefore, µ plays a very
important role in the network throughput, as will be discussed later.

7.4.3 Beamforming and Diversity Combining for Rayleigh-Fading Channel
At this point, the performance of adaptive antenna arrays over fading channels is explored.
Here, the optimum combining scheme, resulted from the MMSE criterion, is considered in
which the signals received by multiple antennas are weighted and summed such that the desired
SINR at the output is maximized. The implementation of the optimum combining scheme
of [183, 184] has been used to combine the signals. The scheme has been implemented using
the LMS algorithm [185]. During the transmission of the actual data, the weights are updated
using the imperfect bit decisions as the reference signal, i.e., the LMS algorithm is used in the
tracking mode.

In order to simulate the fading channel, a filtered Gaussian model [68] was used with a
first-order low-pass filter. The length of the training sequence was again set to 60 symbols but
transmitted periodically every 940 actual data symbols (i.e., 6% overhead). The performance of
the LMS algorithm over a Rayleigh flat fading channel is presented in Fig. 7.4.

The BER results show that when the Doppler spread of the channel was 0.1 Hz, the
performance of the system degraded about 4 dB if one equal power interferer was present
compared to the case of no interferers. If the channel faded more rapidly, it was observed that
the LMS algorithm performs poorly. For example, the performance of the system over the
channel with 0.2 Hz Doppler spread degraded about 4 dB at a BER of 10−4 compared to the
case when the Doppler spread was 0.1 Hz. An error floor for the BER was observed for SNRs
larger than 18 dB. For a relatively faster fading in the presence of an equal power interferer, the
performance of the system degrades dramatically implying that the performance of the adaptive
algorithm depends highly on the fading rate. Furthermore, if the convergence rate of the LMS
algorithm is not sufficiently high to track the variations over rapidly fading channel, adaptive
algorithms with faster convergence should be employed.
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FIGURE 7.4: BER over Rayleigh-fading channel with Doppler spreads of 0.1 Hz and 0.2 Hz for the
signals of Table 7.1. The length of the training symbol is 60 symbols and is transmitted every data
sequence of length 940 symbols [24].

7.5 TRELLIS-CODED MODULATION (TCM) FOR ADAPTIVE
ARRAYS

To further improve the performance of the system, TCM [186] schemes are used together with
the adaptive arrays [187–189]. In this scheme, the source bits are mapped to channel symbols
using a TCM scheme and the symbols are interleaved using a pseudo-random interleaver in
order to uncorrelate the consecutive symbols to prevent bursty errors. The actual transmitted
signal is formed by inserting a training symbol sequence to the data sequence periodically. The
signal received by the adaptive antenna array consists of a faded version of the desired signal
and a number of interfering signals plus AWGN. The receiver combines the signals from each
antenna element using the LMS algorithm. During the transmission of the data sequence,
a decision directed feedback is used, as it was done in the previous section. The combined
receiver output at time k is given by: rk = wH

k xk where wk and xk are the weight vector and
received signal vector at time k, respectively. After deinterleaving, the sequence of the combiner
outputs {rk} is used to compute the Euclidean metric m (rk, ŝ k) = Re

(
rk, ŝ ∗

k

)
for all possible

transmitted symbols ŝ k . The set of branch metrics m (rk, ŝ k) : ŝ k ∈ Xq is then fed into the Viterbi
decoder.
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FIGURE 7.5: BER for uncoded BPSK and trellis-coded QPSK modulation based on eight-state trellis
encoder over AWGN channel for Case 1 of Table 7.1 [24].

A trellis coded QPSK modulation scheme based on an eight-state trellis encoder was
considered [70]. In Fig. 7.5, the performance of TCM QPSK systems over a Rayleigh-fading
and uncoded BPSK over an AWGN channel are compared for both cases of Table 7.1. The
desired and the interfering signals are assumed to be perfectly synchronized, which can be
considered as a worst case assumption. It is also assumed that the interfering signals and desired
signal have equal power. For the simulation process, the length of the training sequence is
also 60 symbols followed by a sequence of 940 symbols at each data frame. It is observed that
the adaptive antenna array using the LMS algorithm can suppress one interferer without any
performance loss over both an AWGN channel and a Rayleigh-fading channel. However, the
impressive feature is that the performance of the TCM system over a Rayleigh-fading channel
is even better than that of the uncoded BPSK system over an AWGN channel by about 1.5 dB
at a BER of 10−5.

The same system was then analyzed over a Rayleigh-fading channel, and the BER
results for Doppler spreads of 0.1 and 0.2 Hz are shown in Fig. 7.6 for both cases of
Table 7.1. A training sequence of length 60 symbols, which was periodically sent every 940
symbols of the actual data, with a symbol rate of 100 Hz and interleaver size of 2000 sym-
bols were used. This scheme is comparable with the uncoded BPSK modulation that has
the same spectral efficiency. The BER results for the uncoded BPSK scheme over the same
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FIGURE 7.6: BER for trellis-coded QPSK modulation over Rayleigh-fading channel with Doppler
spreads of 0.1 and 0.2 Hz for both cases of Table 7.1. The length of the training symbol is 60 symbols
and is transmitted every data sequence of length 940 symbols [24].

channel are shown in Fig. 7.4. It was observed that when the Doppler spread is 0.2 Hz and
there is one interferer, there is still an irreducible error floor on the BER; however, the error
floor is reduced compared to the uncoded BPSK case. It can be concluded that the TCM
scheme provides some coding advantage in addition to diversity advantage provided by spatial
diversity.

7.6 SMART ANTENNA SYSTEMS FOR MOBILE AD HOC
NETWORKS (MANETS)

In MANETs there does not exist a fixed network infrastructure and nodes move randomly as
shown in Fig. 7.7. Future wireless networks may not be planned and may evolve in an ad hoc
fashion. In MANETs, data packets are transferred in single hops and the use of directional
beams for communication results in reduced interference and hence improved capacity. To
facilitate the use of smart antennas in a MANET, nodes must be capable of estimating the
direction of the desired node. A few approaches to this problem are suggested in [190] and
[191] that use a GPS or the direction of maximum received power. However, with smart
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FIGURE 7.7: A typical MANET topology [24].

antennas it is possible to detect the incoming signals using DOA estimation techniques such
as MUSIC and ESPRIT algorithms [122, 123] or using LMS-type beamforming algorithms.

The MAC protocol proposed in this work allows nodes to exchange training packets
before the data transfer. Nodes start with the isotropic mode of antennas and switch to the
directional mode by the end of the training period. Data transfer takes place in the directional
mode of antennas. To accomplish this, antennas should be able to operate in both isotropic and
directional modes.

7.6.1 The Protocol
The proposed channel access protocol exploits the fact that the interference from a node using
directional antennas is low and allows its neighbors to access the channel if the sensed signal
power is below a certain threshold. The protocol is based on IEEE 802.11 MAC [192] for
TDMA environment, whose details can be found in [193], and is exhibited in Fig. 7.8. It
should be emphasized that the introduction of training packets incurs an overhead in the data
traffic. If the beamforming algorithms are slow to converge, the required training packet length
will be longer, leading to a lower network capacity. Similarly, the antenna parameters, such
as the array size and the excitation distribution, influence the capacity. The following section
presents some simulation results that show how the capacity of MANETs depends on these
parameters.

7.6.2 Simulations
The main objective of the simulations is to qualitatively analyze the capacity improvement in
MANETs when smart antennas are used for communication. The simulations also examine
the dependence of capacity on various antenna patterns and the length of the training packets.
Following are the definitions of the estimated parameters in the simulations:
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FIGURE 7.8: The proposed channel access protocol [24].

� Average network throughput (Gavg) is defined as the average number of successfully
transmitted packets in the network during a packet time.

� Average load (Lavg) is defined as the average number of packets generated in the
network during a packet time.

� Average packet delay (Tavg) is the average delay experienced by a packet before it is
received by the destination.

An ad hoc network of 55 uniformly distributed nodes was chosen, as shown in Fig. 7.9.
OPNET Modeler/Radio tool (a simulation software package by OPNET Technologies,

Inc., used to study, design, and develop communication networks, devices, and protocols) is
used to simulate the network. The load at each node is assumed to be Poisson distributed
and the mobility is modeled by changing position at random every two packets. The table in
Fig. 7.10 shows the values used in simulations for various packet lengths and time intervals
specified in the protocol. All packet lengths are normalized to the payload or DATA packet
length. Packet lengths of TXTRN and RXTRN are made variable to analyze the performance
of the protocol for different training periods.

Network capacity for various antenna patterns is evaluated in order to guide the antenna
design for high network capacity. The training packet length is chosen to be 10% of the
payload (DATA) length. Average network throughput (Gavg) is measured for planar arrays of
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FIGURE 7.9: Network model used for the simulation [24].
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FIGURE 7.10: Packet lengths and time intervals used in the protocol simulations [24].

size 8 × 8 and 4 × 4 with Tschebyscheff and Uniform excitation distributions. Fig. 7.11 shows
Gavg versus Lavg for various antenna patterns. The Tschebyscheff arrays were designed for
a −26 dB sidelobe level [59]. Neither the uniform nor the Tschebyscheff pattern has been
adopted to place a null toward the SNOI. It can be seen that the throughput for the case of
the 8 × 8 array size is greater compared to the 4 × 4 array size and also the Tschebyscheff
arrays provide slightly greater throughput than their respective uniform arrays. These can be
attributed, respectively, to smaller beamwidths of the 8 × 8 arrays (compared to the 4 × 4
arrays) and lower sidelobes of the Tschebyscheff arrays (compared to the uniform arrays)
[59]. In both cases, the smaller beamwidths and lower sidelobes lead to lower cochannel
interference.
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Network capacity for various training packet lengths is evaluated in order to guide the
design of beamforming algorithms for high network capacity. Each node is assumed to be
equipped with an 8 × 8 planar array of microstrip patch antennas with Tschebyscheff (−26 dB
sidelobes) excitation distribution. Figs. 7.12 and 7.13 show Gavg versus Lavg and Tavg versus Lavg,
respectively, for the cases when training packet length is 6%, 10%, and 20% of payload using a
Tschebyscheff design (−26 dB sidelobes). As can be seen, the network throughput is reduced
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FIGURE 7.14: Throughput comparison of a fixed Tschebyscheff pattern with −26 sidelobe level and
the pattern for Case 1 of Table 7.1 [24].

and the packet delays increase rapidly with increasing training packet size. Also, from these
figures, it can be observed that the throughput of the network is higher when smart antennas
are used instead of isotropic antennas.

The network throughput is further analyzed using an LMS algorithm generated pat-
tern. This throughput is compared in Fig. 7.14 to the throughput of a standard Tschebyscheff
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antenna pattern (−26 dB sidelobes), which does not have an adaptive null toward the SNOI.
From this figure, it can be concluded that the adaptive LMS beamforming algorithm leads to
higher throughput by suppressing the interference (placing a null toward the SNOI) while the
Tschebyscheff pattern does not have a null toward the SNOI.

7.7 DISCUSSION
From the results obtained, it is possible to provide certain guidelines for the design of smart
antenna systems for optimum capacity in MANETs. Antenna parameters, such as array size
and excitation distribution, can be chosen to meet the capacity requirements for a network,
based on the simulation results. From these simulation results, it can be concluded that:

(1) radiation patterns with smaller beamwidths result in higher network capacity,

(2) radiation patterns with lower sidelobes can further improve network capacity, and

(3) adaptive radiation patterns (i.e., capable of placing nulls toward the SNOIs) usually
produce higher network capacity compared to patterns with lower sidelobes but no
nulls toward the SNOIs.

Also, since there is a tradeoff between the network capacity and the training packet length,
these simulations assist in choosing a suitable value for the training packet length without
compromising on the network capacity. The training period places an upper bound on the
convergence speed of the beamforming and DOA estimation algorithms, serving as a guideline
for the algorithm design. The results show that training periods greater than 20% reduce the
throughput considerably; therefore, it can be inferred that fast beamforming algorithms are
critical for high-network capacity.

Employment of smart antenna systems in MANETs creates a wide scope for enhancing
the network capacity. Through the design of efficient channel access protocols, spatial diversity
of smart antennas can be exploited to increase the capacity of an ad hoc network. However,
the design of such protocols requires a careful consideration of the system aspects of the
smart antenna technology. In this work, a channel access protocol is suggested for MANETs
employing smart antennas to communicate. This protocol is built based on the MAC protocol
of IEEE 802.11 WLANs [175, 192] for TDMA environment. The protocol facilitates the use
of smart antennas and decreases cochannel interference, thereby increasing the capacity of the
network.

Finally, it has been shown that in slow fading channels, the performance of the DMI
and LMS algorithms is similar. However, in fast fading channels the LMS algorithm is not
as effective. Therefore, in such cases, it is suggested to initially use the DMI algorithm in
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acquisition and then use the LMS algorithm in the tracking mode. Furthermore, the system
performance is improved when TCM is combined with antenna diversity.
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C H A P T E R 8

Space–Time Processing

Space–time processing (STP) has become one of the most investigated technologies in wireless
communications as it provides solutions to wireless environment problems such as interference,
bandwidth, and range [25]. In this chapter we present the general principles of STP and
demonstrate the major benefits from its applications.

8.1 INTRODUCTION
STP signifies the signal processing performed on a system consisting of several antenna el-
ements, whose signals are processed adaptively in order to exploit the rich structure of the
radio channel in both the spatial (space) and temporal (time) dimensions. STP techniques
can be applied either to the transmitter or the receiver, or both. Fig. 8.1 illustrates different
link structures depending on the number of antennas used in receiving or transmitting modes.
These options can be associated with both uplink and downlink. Depending on the number of
antennas, the channel is classified as single input (SI) or multiple input (MI) for transmit and
single output (SO) or multiple output (MO).

When STP is applied at only one end of the link, it is usually referred to as a smart antenna
technique. When STP is applied at both the transmitter and the receiver, MIMO (multiple
input, multiple output) techniques are used. Smart antenna and MIMO technologies have
emerged as the most promising area of research and development in wireless communications,
and they are capable of resolving the capacity limitations due to traffic congestions in future
high-speed broadband wireless access networks [25].

It has been recently shown that, under Rayleigh fading, the capacity of a multiple-antenna
link increases almost linearly with the number of transmitting antennas provided that there are
at least as many receiving antennas as transmitting antennas and the channel gain between each
transmitting/receiving antenna pair is known to the receiver [195, 196]. To achieve this intended
increase in capacity, various space–time coding schemes have been developed [197, 198].
Fig. 8.2 is an intuitive illustration of this advancement MIMO systems provide. In Fig. 8.2(a)
an uplink system is illustrated with multiple antennas at the BS and a single antenna at the
MS. The MS radiates omnidirectionally, while the BS is able to adapt its antenna pattern
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FIGURE 8.1: Link structure [194].
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FIGURE 8.2: Uplink antenna systems (a) BS with multiple antennas and MS with single antenna and
(b) MIMO system with multiple antennas at both the BS and MS [1].

and focus it into the MS while also rejecting interference through pattern nulls. In a practical
scenario, the desired and interfering signals are likely to arrive from many different directions,
and therefore the actual beam pattern may appear completely different and not reflect a focusing
spatial filtering process [1]. In Fig. 8.2(b), a MIMO system is depicted where both the BS and
MS are equipped with multiple antennas and several data streams are sent simultaneously over
the wireless channel. Each antenna at the MS transmits a different data stream and radiates
them omnidirectionally. At the BS, the antenna is capable of forming several beams that can
select each of the data streams and correctly receive them. It is clear from this example that the
capacity of the system has been significantly increased compared to a conventional system, and
it justifies the excitement MIMO systems are generating [28].
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Due to the computationally intensive STP algorithms and the limited battery and process-
ing capabilities of handheld mobile devices, until now almost all STP technology development
has been related only to base stations and access points. However, with current advancements
in low-power mobile device technology and ground-breaking innovation in STP techniques,
this technology can also be applied to mobile devices.

Smart antenna technology is an attractive technique that increases spectrum efficiency,
range and reliability of wireless networks. Systems that incorporate smart antennas usually
have an array of multiple antennas only at one end of the communications link, for example,
at the transmit side, such as MISO (multiple input, single output) systems; or at the receive
side, such as SIMO (single input, multiple output) systems. Most conventional smart antenna
systems employ the beamforming concept where the signal energy is focused in a particular
direction (usually toward the receiver) to increase the received signal-to-noise ratio (SNR).
Narrow antenna beams also reduce interference, improving signal to interference noise ratio
(SINR) and thereby increasing the efficiency in spectrum management. Other smart antenna
schemes improve the link quality by taking advantage of the diversity gain offered by multiple
transmitting antennas.

When multiple antenna elements are used, the probability of losing a transmitted signal
decreases exponentially with the number of decorrelated signals (or antennas). The diversity
scheme used in current SIMO (or MISO) wireless LAN (WLAN) systems incorporates a
simple switching network to select, out of an array of two antennas, the antenna that yields
the highest SNR. MIMO systems can turn multipath propagation, usually harmful in wireless
transmission, into an advantage for increasing the user’s data rate.

Diversity-based and smart antenna schemes do not increase the maximum data rate
or significantly extend the range of operation; they simply improve the link quality and the
efficient use of the spectrum. In contrast, the capacity of MIMO systems, in which antenna
arrays are deployed at both the transmitter and the receiver, far exceeds that of conventional
smart antennas [25].

In a multipath fading environment, the transmitted signal is reflected by various objects
such as walls, buildings, trees and mountains before reaching the receiver. MIMO antenna
techniques, accompanied with space–time processing, exploit rich scattering environments by
sending independent data streams out of all the transmitting antennas simultaneously and in
the same frequency band.

For example, a MIMO-based WLAN 802.11 system with four transmitting and four
receiving antennas leads to a fourfold capacity gain up to 216 Mbits/s (4 × 54 Mbits/s), which
can be shared by multiple hotspot users [25]. This type of MIMO technique is referred
to as spatial multiplexing (SM). Depending on the environmental conditions experienced by
the mobile device, the performance improvement of MIMO systems can be applied in two
ways.
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When the channel conditions and SNR are favorable, the SM technique is used to
increase the data rate [25]. In this case, the receiver expends some (if not all, depending
on the STP algorithm used) of its degrees of freedom on retrieving the multiple signals rather
than providing diversity against fading. However, at longer distances, multiple transmitting and
receiving antennas are used to provide diversity and array gain for increased range. Depending on
the channel conditions, a link adaptation algorithm, usually residing in the media-access controller
(MAC) processor, provides the switching between diversity and SM modes of operation. Robust
implementation necessitates the ability to adapt to the surrounding environment.

Depending on the propagation channel conditions and STP technique implemented, an
N-fold, where N is the number of antennas on the transmitting and receiving ends, MIMO
system can yield up to an N-fold capacity increase over that of a single-input, single-output
(SISO) system.

When signals are coherently combined at the receiver using techniques such as maximal
ratio combining (MRC), the average received SNR increases by 10 · log10(N), where N is the
number of receive antennas [25]. Obviously, there is a 6 dB improvement with a four-antenna
solution. Fig. 8.3 illustrates the applications and benefits of STP.

In interference-cancelling MIMO systems, it is better to have more receiving antennas
than transmitting. For example, if the number of transmitting antennas in a MIMO system
is N, in order to cancel one interfering spatial multiplexing user with N independent data
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FIGURE 8.3: Space–time processing; applications and benefits [25].
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streams, the preferred number of receiving antennas is 2N. Each interfering multiplexing data
stream is seen at the interference-cancelling MIMO receiver as a separate interferer. Therefore,
N antennas are used to cancel the interference, and the remaining N antennas are used to
demultiplex the desired data streams and achieve diversity gains.

The technique of joint spatial and temporal processing (an overview may be found in
[27, 194]) was originally developed for multiuser wireless communications to provide co-
channel interference mitigation. Later it was found that space–time processing can also be used
to improve SNR, reduce the effect of multipath, provide diversity and increase array gain. In
particular, the problem of blind space–time signal processing [199, 200] has gained significant
attention in the recent years with the pioneering work on blind equalization using second-order
statistics by Tong et al. [201] in 1994 and work on blind signal subspace based methods by
Moulines et al. [202] in 1995 (the reader is also referred to [203, 204]). An elegant projection
based solution to the multiuser blind equalization problem was proposed by Talwar [205, 206]
for the ISI-free channel and Van der Veen [200] for the delay spread channel. The exploitation
of the coding dimension in multichannel blind equalization still remains a promising and fertile
area of research.

The first evidence of commercially successful small-form-factor multiple antenna tech-
nologies can be found in Japan with NTT Docomo’s personal digital cellular (PDC) and 3G
Foma handsets, as well as in current 802.11 WLAN systems that use two diversity antennas at
the receiving end. As described earlier, this technique does not increase the maximum data rate
neither significantly extends the range of operation. However, it is a clear proof that multiple
antenna technology is steadily penetrating the consumer product market. The biggest chal-
lenge to make STP technology commercially feasible is to make it affordable. To do this, both
the signal processing algorithms and radio hardware must be implemented in a cost-effective
manner. Solutions that can simultaneously integrate these aspects into next-generation silicon
will become the key enabling technology for current and future generations of wireless systems.
In what follows, an analysis of the space–time signal and channel models is reviewed that pro-
vides the necessary tools to examine the basic principles and unique advantages of space–time
processing and beamforming afterwards. Finally, in this chapter results from several studies are
incorporated which demonstrate the great benefits the wide employment of MIMO systems
can yield.

8.2 DISCRETE SPACE–TIME CHANNEL AND SIGNAL MODELS
To proceed with space-time processing, a discrete channel model is considered. This is derived
by sampling the received signal in both space and time. The focus is initially drawn on the case
of a single user transmitting a modulated signal in a specular multipath environment. At the
transmitter, digital modulation is performed, a process by which a baseband signal is converted
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into an RF signal for transmission. Usually, the digital sequence {Ik} is linearly modulated by a
pulse shaping function g (t) such that the baseband transmitted signal s (t) is represented in the
general form

s (t) =
∞∑

k=−∞
Ik g (t − kT) (8.1)

where T is the symbol period. The data points Ik may come from any signal constellation (a
set of vectors). For example, with BPSK the possible data symbols are two {±1}. In other
modulations, such as QPSK or QAM, the sequence Ik is complex-valued, since the signal
points have a two-dimensional representation. For the reader’s interest, the GSM system uses
binary signals with GMSK (Gaussian Minimum Shift Keying) modulation for transmission
over the air [207] (Ch. 6).

The fundamental function of a channel in signal processing and communications is to
relate the transmitted signal to the received version of it [133]. For a baseband transmitted
signal s (t), the received signal x(t) can be expressed as the convolution of the channel impulse
response h(t, τ ) and s (t) as

x(t) =
∫ ∞

−∞
h(τ, t)s (t − τ )dτ + n(t). (8.2)

The impulse response h(τ, t) is a function of both the time delay τ introduced by the channel
due to multipath propagation and the time t that accounts for the time evolution. Furthermore,
additive noise n(t) is incorporated in (8.2). This is by far the most common assumption regarding
noise, although other assumptions can be made as in [71, 72, 208].

The previous expression for a single transmit and receive antenna is straightforwardly
extended to the case of multiple antennas. For a communication link with N receive and M
transmit antennas, the channel can be described by an N × M matrix H(τ, t) of complex base-
band impulse responses. The element Hi j (τ, t) of the matrix denotes the impulse response from
transmit antenna j to receive antenna i . That is, each receive antenna observes a noisy super-
position of the M transmitted signals corrupted by the multipath fading channel. Hence, NM
impulse responses are required to characterize this type of of Multi-Element Antenna (MEA)
or MIMO channel. At each time instance, each row of H [Hi1, Hi2, . . . , Hi M] represents the
channel’s response from the M transmitting to a single receiving element, whereas each column
of H

[
H1 j , H2 j , . . . , HNj

]
represents the channel’s response from a single transmitting element

to the N receiving antenna. The latter is also referred to as the spatio-temporal signature induced
by the j th transmit antenna across the receive antenna array [209]. In principle, any channel
model that accurately includes the spatial dimension can be used to investigate the correlation
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FIGURE 8.4: A wireless link comprising of M transmitting and N receiving antennas [70].

properties of two spatially separated antennas and derive the channel coefficients Hi j [133]. An
excellent review is found in [210].

In the MEA case, and assuming that the channels between antenna pairs are independent
and uncorrelated, the N × 1 vector of received signals x(t) becomes

x(t) =
∫ ∞

−∞
H(τ, t)s(t − τ )dτ + n(t) (8.3)

where s(t) denotes the M × 1 vector of transmitted signals and n(t) is the noise vector of the
same length. A representation of the MEA channel is depicted in Fig. 8.4.

Here, it should be stressed that a continuous representation of the signals and impulse
responses has been used which naturally arises when deriving the channel model from its
physics and electromagnetics prospective [133]. However, most of the recent, and most likely
future wireless communication systems employ digital signal processing to a large extent. When
devising receiver structures and detector algorithms for these systems, it is more convenient to
use a discrete time representation. With the received signal sampled with period T, the notation
x(n) = x(nT) and

x(n) =
∞∑

k=−∞
H(k, n)s(n − k) + n(n) (8.4)

can be used. Note that H in (8.4) is the discrete time version of H in (8.3), as the sampled
versions of the transmitted signal and the noise, denoted by s(n) and n(n), respectively, are
further considered. This is the normal notation used in most of the literature, although the
formulation results in some abuse of the notation. For narrowband systems, where the channel
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is considered to be frequency-flat, the main part of the received energy arrives at essentially the
same time and the model may be further simplified to

x(n) = H(n)s(n) + n(n). (8.5)

Here the channel model reduces to complex matrices comprising complex scalars that relate
the received signals of each element to the corresponding transmitted signal from each antenna
through a simple multiplying transfer matrix which encompasses the entire channel behavior.
Further, if the channel is assumed to be time-invariant, the time dependency of the channel
may be dropped, i.e. H. For this narrowband MIMO channel matrix, different normalizations

have been used in the literature, where the Euclidean or Frobenius norm ‖H‖2 =
√

N∑
i=1

M∑
j=1

∣∣Hi j
∣∣2

appears to be the most common one [211].
For the case of Rayleigh flat fading, a simple channel model assumes a circular disc of

uniformly distributed scatterers placed around the mobile. In Fig. 8.5 a simple illustration of the
scatter disc and the orientation of the mobile and base station are shown. Based on this model,
the entries of the channel matrix in (8.5) are generated as follows. Assuming P scatterers Sp ,
p = 1, 2, . . . , P , are uniformly distributed on a disc of radius R centered around the mobile,
the channel coefficient Hi j connecting the j th transmit to the ith receive antenna is given by

Hi j =
P∑

p=1

a pexp
[
− j

2π

λ

(
DB j →Sp + DSp→Mi

)]
(8.6)

where DB j →Sp and DSp→Mi are the distances from the j antenna of the base station to scatterer
p, and scatterer p to the i antenna of the mobile unit, respectively. Also, a p is the scattering

dB
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dM
DBj→Sp
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FIGURE 8.5: Geometry of a channel [133].
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coefficient from scatterer p and is modeled as a normal complex random variable, with zero
mean and unit variance.

For wideband signals (with bandwidth greater than the coherence bandwidth) a different
approach must be followed. In essence, an accurate model must account for the replicas of the
same signal that arrive at the receiver at different time instances. Equivalently, assuming zero
propagation time, each received signal depends on the consecutive signals transmitted in a time
window from L − 1 previous sampling periods until the current period. We want to express
this model as

x(n) = H̃(n)s̃(n) + n(n) (8.7)

where the matrix H̃ is N × ML and the vector s̃ is ML × 1. The parameter L introduced is
responsible to capture almost all the signal energy as it arrives at different delays and is given,
as already stated, by the ratio of the delay spread (dispersion of the channel in the time domain)
to the symbol duration (L = ⌈Tm

T

⌉
). Matrix H̃ can be written as

H̃ =




h̃11 h̃12 . . . h̃1M

h̃21 h̃22 . . . h̃2M
...

...
. . .

...
h̃N1 h̃N2 . . . h̃NM


 (8.8)

where each element h̃i j is a row vector of length L containing the channel impulse responses
from the transmit antenna j to receive antenna i from the present to L − 1 previous instances
and expressed as

h̃i j = [
hi j,n, hi j,n−1, . . . , hi j,n−(L−1)

]
.

Similarly, vector s̃ can be written in block form as

s̃ = [s1, s2, . . . , sM]T (8.9)

where s j is a column vector of length L containing the transmitted symbols by the j antenna
from the present to L − 1 previous instances and written as

s j = [
s j,n, s j,n−1, . . . , s j,n−(L−1)

]T
.

Another useful representation of the received signal x(n) in (8.7) is

x(n) =
M∑

j=1

Ĥ j s j (n) + n(n) (8.10)
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where the N × L matrix Ĥ j denotes the channel response from the j th transmit antenna to
the N receive antennas for the L ISI symbols, expressed as

Ĥ j =
[

h̃
T
1 j , h̃

T
2 j , . . . , h̃

T
Nj

]T
, j = 1, 2, . . . , M. (8.11)

8.3 SPACE–TIME BEAMFORMING
In previous chapters, we examined only space combining where the N × 1 space-only vector
w is applied to the N × 1 vector of signals at the receive antenna elements (a single complex
weight assigned to each antenna) resulting in the usual output

y(n) = wHx(n). (8.12)

Space-only processing works best if each antenna element is provided a signal with the
same time dispersion, e.g. the same shape of the impulse response [212]. However, this is not
true in general. In a multipath environment, which is usually the case, the received power level
is a random function of the user’s location and time’s evolution depending on the occurred
fading. On the other hand, a separate equalization for each antenna was performed to combat
multipath propagation, before spatially combining the signals, would be optimal only for the
case that at each delay the multipath components arrive from the same direction [212]. In
general, this is not true either.

A reasonable solution is to apply a joint space-time filter or equalizer in order to take
advantage of processing in two dimensions rather than one. The space-time combining is a
direct generalization of the space-only combining. The combiner is assumed to have K time
taps. Each tap denoted by w(i), i = 0, 1, . . . , K − 1, is an N × 1 weight vector defined as
above. The output of the space-time beamformer is expressed as [26]

y(n) =
K−1∑
i=0

wH(i)x(n − i) (8.13)

or in matrix form [26]

y(n) = WHX(n) (8.14)

where W and X(n) are K N × 1 vectors with

W = [
wH(0), wH(1), . . . , wH(K − 1)

]H
and (8.15a)

X(n) = [
xT(n), xT(n − 1), . . . , xT(n − K + 1)

]T
. (8.15b)

Fig. 8.6 depicts the structure of the space-time beamformer.
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FIGURE 8.6: Structure of the space-time beamformer [20].

8.4 INTERSYMBOL AND CO-CHANNEL SUPPRESSION
The data models developed provide the necessary tools to demonstrate this powerful ability
of space-time processing, the simultaneous ISI and CCI suppression. To simplify our present
analysis, we introduce a similar in concept system in which Q co-channel users, each one
equipped with a single antenna, are present, rather than a single user with M transmit antennas,
while the antenna array at the base-station still consists of N elements. According to the assumed
model, the received signals at the N elements for an interval of K time taps due to the j th
signal transmitting source can be written as a K N × 1 space-time vector [26]

X j (n) = H j S j (n) + N j (n) (8.16)

where S j (n) = [
s j (n), s j (n − 1), . . . , s j (n − K − L + 2)

]T and H j is a K N × (K + L − 1)
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channel matrix given by [26]

H j =




Ĥ j,n 0 . . . 0

0 Ĥ j,n−1
. . .

...
...

. . . . . . 0
0 . . . 0 Ĥ j,n−K+1


 (8.17)

where 0 is an N × 1 column vector of zeros.
The H j matrix has a block Toeplitz structure (has the same elements along diagonals)

which stems from the linear time-invariant convolution operation with the symbol sequence
[26]. Assuming temporarily a noise-free scenario the output of the linear space-time combiner
due to the j th source is given by [26]

y j (n) = WH
j H j S j (n). (8.18)

With Q users present transmitting towards the N-element base station, the output of the
space-time receiver is generalized to

y(n) =
Q∑

j=1

WH
j H j S j (n). (8.19)

8.4.1 ISI Suppression
In general, the purpose of the linear filter W j is to perform channel equalization to compensate
the effects of ISI for the j th user in the absence of CCI [26]. Tutorial information on channel
equalization can be found in [71, 213]. To suppress ISI for the j th user, the convolution
product between W j and the channel responses must satisfy the following so-called zero-
forcing condition

WH
j H j = [0, 0, . . . , 0, 1, 0, . . . , 0, 0] . (8.20)

The location of the entry “1” above represents the delay of the combined channel-equalizer
impulse response. From an algebraic point of view, H j should have more rows than columns,
or K N ≥ (K + L − 1), for such solutions to exist [26]. Therefore, it is of great importance
that the space-time filter to have large number of time taps K (degrees of freedom) to allow
for ISI suppression. An obvious selection is to keep the number of time taps K at least equal to
the number of distinct multipaths L.
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8.4.2 CCI Suppression
The purpose of CCI suppression in a cellular communications systems is to identify and enhance
the contributing of a singledesired j th user while ideally suppressing all others. This can be
achieved by enforcing orthogonality between the response of the space-time combiner and the
response of the channel of the users to be rejected [26]. In mathematical form this is expressed
as [26]

WH
j H f = 0T, for all f �= j ∈ [1, 2, . . . , Q] (8.21)

where 0 is a (K + L − 1) × 1 column vector of zeros. In (8.21), there are (Q − 1)(K + L − 1)
scalar equations to be solved. Once more, the number of unknowns is K N (the size of W j ).
Simultaneously, the receiver must capture the energy transmitted by the desired user and
thus, WH

j H j �= 0T. This condition requires that H j and
{
H f

}
f �= j should not span the same

column subspace which is satisfied by the meaningful assumption that the desired signal and
interference do not arrive from the same direction [27].

8.4.3 Joint ISI and CCI Suppression
To completely recover the signal transmitted by one desired user in the presence of ISI and CCI,
both channel equalization and separation is required. The output of the space-time combiner
which satisfies both (8.20) and (8.21) is written as [26]

WH
j H̃ = [0, 0, . . . , 0, 1, 0, . . . , 0, 0] (8.22)

where H̃ �
[
H1, . . . , H j−1, H j , H j+1, . . . , HQ

]
is K N × Q(N + L − 1) matrix. For exis-

tence of the solution for the joint ISI and CCI suppression problem, the multiuser channel
matrix H̃ needs to have more columns than rows, or K N ≥ Q(N + L − 1). It is again critical
that smart antennas provide a sufficient number of degrees of freedom [26]. Ideally, if the global
channel matrix H̃ is full-column rank, then recovery of any particular user is feasible through
space-time beamforming.

In practice, however, such ideal joint ISI-CCI reduction is limited by the presence of
noise and the lack of perfect synchronization. In the literature, space-time algorithms have
been proposed for CCI and ISI rejection for time varying channels. In [214], for example, a
space-time algorithm for CCI and ISI reduction in GSM/DCS systems is proposed. Through
optimization of a suitable cost function for separable space-time channels, the temporal channel
for the Viterbi receiver and the beamformer weights are estimated jointly.

8.5 SPACE–TIME PROCESSING FOR DS-CDMA
Direct-sequence CDMA (DS-CDMA) systems have already a significant penetration into the
cellular market with great promising potentials in the future due to their intrinsic advantages
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over earlier access techniques such as time-division multiple access (TDMA) and frequency-
division multiple access (FDMA) [215]. However, it has fundamental difficulties in a scenario
whereby the received signal energies are dissimilar (near-far environments); the conventional
detector is unable to demodulate reliably the weak signals since the transmission power from
one user overwhelms signals of the others [216, 217].

Adaptive antenna arrays provide an alternative means to cope with the near-far problem.
By steering beams toward the desired user and decreasing the total power level of multiuser
access interference (MUAI), system near-far resistance, i.e. immunity of the desired user’s per-
formance to power variations of the others, can be considerably strengthened [217]. Besides
alleviating the near-far problem, antenna arrays also increase the capacity of CDMA systems
through interference suppression. This is because the system capacity is limited by interfer-
ences, instead of the bandwidth as in TDMA [218, 219], and the reduction in system noise
floor due to spatially selective transmission and reception leads to a direct increase in capacity
[220].

Recently, there has been an increasing interest in the use of 2D RAKE receivers to
simultaneously exploit space and time diversities by combining adaptive antennas with RAKE
receivers. In principle, a 2D RAKE receiver allows constructive combination of multipath
signals received by an array of antennas while minimizing the MUAI’s contribution [217].
This powerful combination provides an optimum output signal-to-interference-plus-noise ratio
(SINR) for the desired user. The potential of the 2D RAKE has been evaluated and proved by
various studies [220–222].

For L resolvable paths and N-element antenna array, the space–time RAKE consists of a
beamformer for each path with weights wln followed by a standard RAKE. The beamformer is
an MMSE type and is followed by a RAKE combiner which does not represent an MMSE time
receiver. Fig. 8.7 illustrates a space–time RAKE. Such a receiver leads to an improved figure-
of-merit that can be traded for improved coverage or capacity. This improvement results from
reducing the intercell CCI through beamforming and ISI by coherently combining resolvable
paths.

8.6 CAPACITY AND DATA RATES IN MIMO SYSTEMS
MIMO systems, enabled by the employment of advanced space–time processing techniques,
offer a significant increase in spectral efficiency based on the utilization of space diversity both
at the transmitter and the receiver. Before finishing this chapter it is considered useful to review
and compare the capacity expressions and data rates for SISO/MIMO channels.

With a MIMO system, a high-rate bit stream at the transmitter is decomposed into
independent bit sequences, which are then transmitted simultaneously using multiple antennas.
Each substream is then encoded into channel symbols. Commonly, the same data rate is imposed
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FIGURE 8.7: The space–time RAKE receiver model for CDMA uses a beamformer to spatially separate
the signals, followed by a conventional RAKE [20].

on all transmitters, but adaptive modulation rate can also be utilized on each of the substreams
[20]. The signals are launched and naturally mixed together in the wireless channel as they use
the same frequency spectrum. Receive and transmit antennas must be sufficiently separated in
space and/or polarization to create independent propagation paths. At the receiver, after having
identified the mixing channel matrix through training symbols, the individual bit streams are
recombined to provide the enhanced data rate signal. This transmission scheme results in a
linear increase in spectral efficiency compared to a logarithmic increase in more traditional
systems utilizing receive-diversity or no diversity. An explanation for this great improvement is
the fact that the data stream from each transmitter appears highly uncorrelated to each receiver
due to the the rich scattering environment. The general functionality of a MIMO system is
shown in Fig. 8.8.

8.6.1 Single-User Data Ratec Limits
The channel capacity is a measure of the maximum information that can be transmitted through
the channel and received with negligible error probability. With a single transmit antenna and
a single receive antenna, the single user data rate bound can be expressed using Shannon’s
universal equation

C = B log2

(
1 + PT

σ 2
|h|2

)
[bits/s] (8.23)

where PT is the total radiated power and σ 2 is the white Gaussian noise power within the
channel bandwidth B and |h|2 is the (instantaneous) channel power gain. This expression
simply provides an upper bound on channel capacity and only a fraction of which is attainable
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FIGURE 8.8: A basic MIMO scheme with three transmit and three receive antennas yielding threefold
improvement in system capacity [223].

since unrealistic conditions are assumed, where the entire system bandwidth is allocated to a
single user, no other users are activated and any interference is totally suppressed [28].

In transmit diversity, antenna arrays are only deployed at the transmitter. In this case,
base-station antennas must be placed sufficiently appart1 so that the signals are basically un-
correlated. The upper data-rate bound is given by

C = B log2

(
1 + PT

Mσ 2

M∑
m=1

|hm|2
)

[bits/s] (8.24)

with hm being the channel response from each uncorrelated base-station antenna to the single
terminal antenna.

8.6.2 Multiple-Users Data Rate Limits
When multiple antennas are used at the transmitter and/or receiver, Shannon’s equation, with
no instantaneous channel information at the transmitter, can be generalized by [133, 196]

1The necessary spacing depends on the angle spread, but for typical values is of the order of 5–10 wavelengths.
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C = B log2

[
det
(

IN + PT

Mσ 2
HHH

)]

=
n∑

k=1

log2

(
1 + ρ

M
λk

n

)
[bits/s]

(8.25)

where IN is the identity matrix, |h|2 is replaced by HHH and PT
σ 2 by ρ (for convenience),

n = min (M, N), and λk are the eigenvalues of HHH . The entries of the matrix H represent
hnm independent channel coefficients between the M transmit and N receive antennas. Note
that this expression assumes that the available transmit power PT is uniformly allocated to the
M transmit antennas, which is the practical approach when no knowledge of the channel is
available at the transmitter. For a wideband MIMO channel the overall channel capacity is
given by

C = B
L

L−1∑
l=0

log2

[
det
(

IN + ρ

MS
Hl HH

l

)]
[bits/s] (8.26)

with L frequency-flat channels in parallel. The attractiveness and capabilities of MIMO systems
are well demonstrated through (8.25) by considering, as an example, the ideal case of H = IN

(i.e. equal number of transmitting and receiving antennas with ideal, parallel link between them;
no criss-crossing). From (8.25) we get [196]

C = B N log2

(
1 + ρ

N

)
→ B

ln 2
ρ as N → ∞. (8.27)

Unlike in (8.23), capacity scales linearly, rather than logarithmically, with increasing of SNR
which demonstrates the significant advantage in using parallel transmission. However, any
possible advantage through parallelism, offered with deployment of MEAs, must be care-
fully assessed since the signal component traversing different paths can strongly interfere
[196].

To demonstrate the unprecedented levels of performance unleashed by the simultaneous
deployment of base station and terminal arrays, parts of the results in [28] are incorporated
with the kind courtesy and permission of the authors. In [28], the figure-of-merit is the idea
of outage rate, which is the value of C supported with certain (high) probability. The authors
[28] choose 90% as the probability of support for their results which implies that 10% of the
burst or coding blocks may contain errors. This appears to be reasonable operating point for
many applications, although other operating points are certainly possible. For their system, the
authors concentrate on the downlink only in a cellular system comprising fairly large cells with
every cell partitioned into 120◦ sectors. They also consider a propagation scenario based on the
existence of an area of local scattering around each terminal but with little or no local scattering
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FIGURE 8.9: Single-user data rate supported in 90% of locations vs. range with a directive array at the
base-station and a single omnidirectional antenna at the terminal. M is the number of 15 dBi antennas
at the base-station; transmit power PT = 10W and bandwidth B = 5 MHz [28].

presumed around the base station. The analysis was conducted in the 2 GHz frequency range
and with available bandwidth B = 5 MHz. The total transmit power was set to PT = 10 W.
Each individual base-station antenna has a gain of 15 dBi whereas the terminal is equipped
with a single omnidirectional antenna. Finally, the well-established C O ST231 model, based on
Okumura-Hata model [50], is chosen to account for the range-dependent component. Fig. 8.9
shows the single antenna results when M antennas are employed at the base-station. Although
there is no fundamental bound in the size of the array, there is little advantage in increasing
it beyond M ≈ 3, 4 because of the diminishing returns associated with adding additionally
diversity branches to an already diverse link.

The attention then is turned to systems with both transmit and receive arrays. Based
on this model, a class of layered space–time architectures has been proposed and labeled
BLAST [224]. In BLAST, multiple data streams are simultaneously radiated using different
antennas with a transmit array. With sufficient multipath, a receiver also equipped with an
array can separate and successfully decode all the data streams using advanced signal processing
techniques that bridge the gap between array processing and multiuser detection. A critical
feature of BLAST is that the total radiated power is held constant irrespective of the number
of transmit antennas.

As in the transmit diversity case, base-station antennas must be sufficiently spaced apart
for proper decorrelation [225]. The receiver is equipped with its own array, set to have equal
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FIGURE 8.10: Single-user data rate supported in 90% of locations vs. range with a directive array at the
base-station and a single omnidirectional antenna at the terminal. M is the number of 15 dBi antennas
at the base-station as well as the number of omnidirectional antennas at the terminal (M = N); transmit
power PT = 10 W and bandwidth B = 5 MHz [28].

number of elements to that of the base-station array (M = N). The capacities, directly derived
from (8.25), are depicted in Fig. 8.10.

8.6.3 Data Rate Limits Within a Cellular System
The analysis in [28] is further extended to evaluate the user data rate limits in more realistic
conditions examining an entire cellular system. A time-multiplexed system with a 19-cell
hexagonal grid is assumed for conduction of Monte-Carlo simulations: a central cell wherein
the statistics are collected surrounded by two tiers of interfering cells. Within the same cell, users
are uniformly distributed and ensured to be mutual orthogonal such that interference arises
exclusively from other cell. For each cell, 120◦ perfect sectorization is assumed and the user is
connected to the sector from which it receives the strongest signal. Finally, rate adaptation and
no power control is assumed to resemble actually 3G data systems. The simulation parameters
are summarized in Table 8.1.

Fig. 8.11 displays cumulative distributions of system capacity (in megabits per second
per sector) over all locations with transmit arrays only and with transmit and receive arrays,
as well. The results can be also interpreted as user peak rates (in megabits per second) when
the entire capacity is allocated to an individual user. With transmit arrays only, there is a small
benefit only in the lower tail of the distribution corresponding to users in harmful locations.
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TABLE 8.1: System parameters [28]

MULTIPLEXING TIME-DIVISION

Sectors per cell 3

Base station antennas 120◦ perfect sectorization

Terminal antennas Omnidirectional

Frequency reuse Universal

Propagation exponent 3.5

Log-normal shadowing 8 dB

Fading Rayleigh (independent per antenna)

Power control No

Rate adaptation Yes

SNR in 90% of locations ≥ 25 dB
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FIGURE 8.11: Cumulative distributions of system capacity with transmit arrays as well as with transmit
and receive arrays [28].

The benefits in average and peak system capacity are negligible with increase in the number
of transmit arrays. However, the use of additional receive antennas improves dramatically the
capacity and data rates of the individual user.
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8.6.4 MIMO in Wireless Local Area Networks
The vast spread of Wireless Local Area Networks (WLANs) in our days attracts the use
of multiple antennas at both transmitter and receiver ends to establish links with improved
quality and even higher data rates. The terminal in such WLANs could be a laptop computer
or handheld computers giving opportunity to carry multiple antennas. Examples of WLAN
systems are the IEEE 802.11 standard and HiperLAN/2 where standardization is ongoing.
Versions of both systems today offer rates of more than 50 Mbits/s with a single terminal
antenna. Nevertheless, extremely good Signal-to-Noise-ratios are required to achieve this goal.
Multiple antennas on the terminal side are believed to increase the rate further [226] and to
relax the SNR requirements. Furthermore the instantaneous link rate may be very high to
support large file downloads.

The mentioned WLAN systems both have versions for operation in the 5 GHz band.
The propagation characteristics at this frequency are very appropriate for Radio LANs, and
it is possible to cover many users at a low cost. It is also possible to use such systems in
both indoor and outdoor environments and thus, provide coverage of a hot-spot area such as
a campus or an airport. The results shown here are focused on the measured and simulated
link capacity at 5.8 GHz (WLAN) and reproduced from [29] with the kind courtesy and
permission of its authors. The measurements were carried out in a typical office environment at
Telia Research in Malmö, Sweden. The purpose of this investigation was to examine how “rich
scattering” in a normal office environment may be, and thus what rate improvement may be
possible.

The general planning of the floor consists of office rooms, open spaces and corridors.
Most spaces are separated by walls, while glass is used in some of them. The transmitter was
positioned in one of the offices, while the receiver was in an open area. The measured channel
analyzed was a typical non-line-of-sight (NLOS) situation and the distance from transmitter
to receiver was 10–15 m. The measurements were made at 5.8 GHz carrier frequency and the
transmitter and receiver bandwidth was 400 MHz. By sending a pseudo-noise sequence at the
transmitter and correlating with the same synchronous pseudo-noise sequence at the receiver,
complex impulse responses were measured. The data was measured with a synthetic antenna
array, using one receive and one transmit antenna, both of monopole type. The transmit antenna
was moved between seven different positions separated by 300 mm; that is about 6λ (of these
seven positions, three were used herein). For each of the seven transmitter positions, the receive
antenna was moved between 21 different positions, using a step motor on a track (distance
between two adjacent positions was about 13 mm, i.e. about λ/4). This corresponds to spatial
measurements over about 5λ. At each combination of transmit and receive positions 20 samples
were taken. All measurements were performed during stationary conditions at night, and the
measurement noise was assumed to be very low [29].
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FIGURE 8.12: Capacity for different SNR, with 3 receive elements and one two and three transmit
elements, respectively [29].

The capacity for different signal-to-noise ratios, with three receive elements and one, two
and three transmit elements is shown in Fig. 8.12. The increase in capacity as the number of
transmit elements increases from one to three is indeed substantial. As a reference, the simulated
curve for the IID (independently and identically distributed) Gaussian Channel is plotted as well,
indicating low correlation among the elements of the channel matrix H under these conditions.
The following results are given for the SNR fixed at 20 dB.

Increasing the number of receive and transmit antennas would also increase the capacity.
This increase is shown in Fig. 8.13. The capacity increase is large when going from one
to the number of elements in the transmit array M = 3, while the increase is less when
further increasing the number of elements on the receive side. As expected, the increase
for M > N follows a logarithmic curve due to SNR increase from noise averaging over the
channels.

A final consideration in [29] was that of inter-element spacing at the receive array. The
transmit antennas were set to three and experiments were conducted for different number of
elements as their inter-element distance is increasing. The resulted capacity is shown in Fig.
8.14. In Fig. 8.15 the capacity dependence of the inter-element distances is shown for two
and three receive elements and three transmit elements. Experimental results show that the
capacity increase is small when increasing the distance between the elements beyond � = λ.
After comparing the increase to simulations with random IID channels, which provides a
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FIGURE 8.13: Capacity as a function of number of receive elements for one, two and three transmit
elements, respectively, at an SNR of 20 dB [29].

1 2 3 4 5 6 7 8 9 10
6

8

10

12

14

16

18

20

22

24

Number of receive elements

C
ap

ac
ity

 [b
its

/s
/H

z]

Measured channel ∆ = λ/4
Measured channel ∆ = λ/2
Measured channel ∆ = λ  
IID−channel unknown                

FIGURE 8.14: Capacity dependence on the number of elements in the receive array for different
element distances. The SNR is 20 dB and three elements are used in the transmit array [29].

statistical upper bound for the channel capacity, it was concluded that for this experimental
setup the subchannels are close to being uncorrelated when the interelement distance was
about 2λ.
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8.7 DISCUSSION
In this chapter an attempt was made to illustrate the vast improvements in the capacity and
data rates space–time processing techniques provide to meet the increasing demands of future
communication systems. The primary focus was on the employment of MIMO systems in-
cluding related experimental results from [28, 29]. While the use of antenna arrays is becoming
universal, it is indeed the simultaneous utility of arrays at both base station and mobile termi-
nals which can take advantage of multiple signal dimensions and ultimately lead to immense
increases in capacity and data rates [28]. To exhibit this argument, simulation results performed
for cellular systems and WLANs have been included. These results show the great potentials
of building very high speed wireless links.

However, a number of hurdles must be overcome to reap the benefits using MIMO
systems. First of all, the proper assessment of the antenna arrangement and spacings and the
scattering richness must be guaranteed for the success of these new concepts before they can
be widely implemented. For example, the current trend of miniaturizing the size of the cellular
phone diminishes the available space necessary for multiple closely spaced antennas.
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C H A P T E R 9

Commercial Availability of Smart
Antennas

Smart antenna systems are designed to relieve capacity strain in cell sites experiencing heavy
and imbalanced traffic distribution. Since traffic tends to vary considerably within a network,
at an individual cell site and over time, it is critical for wireless service providers to allocate
efficiently infrastructure and spectrum resources to meet network capacity and performance
demands.

Although smart antennas date back since the late 1950s, it is only because of today’s
advancement in powerful low-cost digital signal processors, general-purpose processors (and
ASICs – Application Specific Integrated Circuits), as well as innovative software-based sig-
nal processing techniques (algorithms), that smart antenna systems are gradually becoming
commercially available.

Several papers and studies in the area have been published in the recent years and a
growing number of companies are studying MIMO systems for future use. Several companies
have been created recently that are trying to commercialize MIMO systems and a number of
larger companies are also studying this area. In [94] the author well clarifies the main reasons
which explain why smart antenna-enabled systems have not yet been deployed more widely.
These are repeated here, verbatim, as stated in [94]:

� “DSP and CPU speeds need to be fast enough to handle the increased computations
needed for smart antenna algorithms to be able to be implemented in realtime. This was
a big problem until 1999 or so, particularly for low-cost solutions. However, computing
power has now progressed to the point where smart antenna systems can feasibly be
installed using inexpensive processors.”

� “The value proposition provided by smart antenna systems needs to outweigh the
additional cost of a smart antenna system. In the early days of advanced mobile phone
systems, one base station could cover a large area and there was no need for multiplying
the capacity of a base station. Today, when microcells and picocells need to be used at
times and spectrum is a precious commodity, the differentiation that smart antennas
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provide justifies the additional cost in a variety of scenarios. As the value of the
capacity/range of a system grows to clients and the cost of implementing such systems
drops due to continual advances in the field, it is expected that the usage of smart
antennas will continue to grow.”

� “The number of people that truly understand how smart antennas work is limited.
Each year the number of people in this group grows, especially due to funding research
in universities and commercial projects, but the supply of experts is limited. A serious
problem is the lack of universities offering classes in smart antennas.”

� “Decision-makers in the wireless industry have experienced a high level of scepticism
about implementing smart antennas, partly due to a lack of understanding on the subject
and partly because the systems were not proven to work in commercial environments.
The successes have helped to pacify those worries, as have the various test-beds created
by academia.”

A company that has been able to successfully commercialize smart antenna systems for
cellular base stations worldwide is ArrayComm (an innovative wireless technology company
located in San Jose, California whose chairman, CEO and co-founder is the inventor of the
cellular phone, Martin Cooper). The company has patented the smart antenna system under
the name of IntelliCell�, and as of today, it has deployed over 275,000 IntelliCell� base
stations in USA, Japan, China, Taiwan, Australia, South Africa, Thailand, Middle East, and
Philippines. It is considered a fully adaptive smart antenna technology which dynamically adjusts
signal patterns to and from the desired subscriber, creating a concentration of energy focused
exclusively on the subscriber for efficient delivery of voice or data services. The technology can
concentrate energy on people even as they move, reducing radio interference and giving users
the best signal quality possible [45].

ArrayComm’s IntelliCell solution uses an array of ordinary antennas to continually map
the RF environment. Mapping allows the system to focus on the subscriber, using the environ-
ment to coherently combine the signals on the subscriber’s device. Less power is transmitted,
and less interference is generated, resulting in superior quality of service for the user. A base
station utilizing IntelliCell employs a small collection (array) of simple, off-the-shelf antennas
(typically 4 to 12) coupled with sophisticated signal processing to manage the energy radiated
and received by the base station. This improves coverage and signal quality and mitigates
interference in the network on both the uplink and the downlink.

ArrayComm has shown that its IntelliCell� technology has significantly improved ca-
pacity and coverage; in fact, on the average, an IntelliCell-enabled network can deliver three
times the capacity of a conventional system or up to twice the coverage area, depending on the
air interface being deployed.
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(a) (b)

FIGURE 9.1: (a) Smart antenna array with 12 elements developed by ArrayComm Inc. and (b) Joint
TD-SD Multiple Access scheme by ArrayComm [45].

Moreover, commercialized GSM base stations incorporating ArrayComm technology
have proven up to 600% greater capacity than standard GSM networks and frequency reuse
of 1 across cells without frequency hopping. The expanded range of IntelliCell-enhanced base
stations means fewer cell sites are required resulting in lower costs. It uses low power amplifiers
resulting in higher reliability and lower costs.

This enhancement provides enormous potential revenue gains for GSM network opera-
tors wanting to maximize their infrastructure and spectrum investments. Company’s executives
claim that their equipment cost is just 15% higher than conventional equipment for up to three
to seven times capacity improvement. Fig. 9.1(a) shows the smart antenna manufactured by
ArrayComm Inc.

As previously stated, SDMA is an enhancement to the more common TDMA, FDMA,
and CDMA methodologies. Adding a spatial dimension to these accessing schemes creates
an additional method of identifying each individual user. This means that instead of a single
user being served by one unit of time, frequency or code, that same single-unit can now serve
multiple users, identifying each by their unique spatial signature [45]. Fig. 9.1(b) illustrates the
joint Time Division and Spatial Division Multiple Access scheme realized by the IntelliCell-
enabled network. For further details on ArrayComm and its products refer to [45, 227].

Another company that has made smart antenna commercially available is Metawave
Communications located in Redmond, Washington. The company’s smart antenna offerings
provide wireless operators, tower providers and infrastructure manufacturers with cost-effective
solutions that maximize capacity and performance, improve quality and increase efficiency
of CDMA, GSM and third generation (3G) wireless networks. Metawave’s smart antenna
solutions have been deployed in 14 of the top 20 markets in the US and five of the nine regions
in Mexico.
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The company’s smart antenna system is patented under the name of Spotlight� and it
has installed, as of October 2002, 420 Spotlight� base stations in USA, Central and South
America, and Russia. Spotlight� customizes sectors to balance traffic loading. In other words,
it is not a fully adaptive smart antenna but a Switched-Beam smart antenna which allows traffic
load balance at cell sites and reduction of handoff overhead. Spotlight� provides cellular base
stations retro-fitting at a lower cost since it requires less digital signal processing than fully
adaptive systems.

Systems with Spotlight� deployment have delivered capacity gains of up to 50% in
three-sector sites and over 90% in six-sector sites for CDMA. For further detail on Metawave
and its products refer to [227, 228]. Reports from Metawave claim up to a three times capacity
increase with adaptive beam-forming. Fig. 9.2 illustrates the functional diagram of Spotlight�.

Another product by the same company is the SmartCell�. It is a targeted, sector-by-
sector smart antenna solution for cellular and PCS networks that enables wireless operators to
sculpt or shape a cell site’s coverage pattern in a way that delivers greater performance, capacity
and coverage benefits. The SmartCell system comprises a set of phased-array antenna panels
with a customizable “personality module” that establishes an optimally sculpted antenna pattern
for a particular sector. A software tool is used to determine the optimal sector antenna that
is captured in the personality module and installed into the back of each antenna panel. By

Spotlight
2200

        Antenna arrays

         Base
         Station

        Remote System
        Configuration

FIGURE 9.2: The functional diagram of Spotlight� [228].
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FIGURE 9.3: The use of standard or custom patterns to fit the topology of sector coverage [228].

swapping out the personality module, the embedded Cell sculpting technology in the systems
provides flexibility to change antenna patterns for determination of the optimal in response
to the changing RF environment [228]. This technology is the key to enabling operators to
shape a cell’s coverage pattern in a way that delivers greater performance, capacity and quality
benefits than those of off-the-shelf antennas. Cell sculpting technology takes drive test data
and network information to estimate the optimal antenna pattern. The optimal pattern is then
transferred to the personality module that is inserted into the back of each antenna panel.
Fig. 9.3 illustrates the SmartCell concept.

In complex RF environments without the presence of a dominant server, cell sculpting
technology helps increase server dominance in the network to reduce pilot pollution, reduce
average transmit power on the forward and reverse link, and reduce variance of transmit
power. SmartCell is ideal for complex RF environments where network topology and traffic
distributions create difficult radio management challenges. As this changes, operators can make
a corresponding change to their antenna patterns. SmartCell technology supports all major air
interfaces including CDMA, GSM, TDMA, CDMA2000, and W-CDMA.

Not only smart antennas for cellular systems have come a long way, but also smart antennas
for PEDs have made progress. Although their commercial availability has been hindered due
to its high costs, research and experiments have shown promising results. A company in Berne,
Switzerland, called ASCOM AR&T, has developed a 3-element low power smart antenna for
5–6 GHz W-LAN which is small enough for mobile terminals. The antennas are attached to a
PCMCIA card. Each single element is a bent stacked slot antenna which experiences effectively
independent fading. Finally, the beamforming is performed at RF frequencies to keep the
production costs low. Tests carried out with this product showed a superior performance over
an omnidirectional antenna like BluetoothTM [229]. Other experimental projects in the field
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(a) (b)

(c)

FIGURE 9.4: Smart antenna developed by ASCOM AR&T (a) Single antenna element, (b) PCMCIA
card with antenna array, and (c) Smart antenna connected to a Notebook [229].

of smart antennas for W-LANs have also reported similar findings [230, 231]. Fig. 9.4 shows
the company’s development.

Finally, it should be stated that as the client’s demand for higher capacity/range in a
system grow and the cost of implementing such systems drops due to continual advances in the
field, it is expected that the usage of smart antennas will continue to grow.
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C H A P T E R 10

Summary

This book examined and analyzed various system aspects of a modern communication system
based on smart antenna technology. The analysis began with a presentation of the current
communication systems with emphasis on their limitations and challenges that need to be
resolved in order to meet the continuous increasing demands of high data rates and capacity of
the wireless era.

To better understand the smart antenna technology, an entire chapter was devoted to the
properties of antenna elements and arrays, and the classification of antennas according to their
radiation characteristics. The major analysis of smart antennas was carried out in the chapters
that followed where the functional principles of smart antennas were considered, different
smart antenna configurations were suggested and the benefits and drawbacks concerning their
commercial introduction were stressed. Smart antenna was then examined from the signal
processing point of view. In particular, the fundamental properties of the direction of arrival
were detailed and this information was exploited in a way to design the array to appropriately
shape its radiation pattern. The subsequent chapter presented the results of an effort to integrate
various aspects of smart antenna systems, a project that examined antenna design, adaptive
beamforming algorithms and their impact on the communication channel BER and network
throughput.

Afterward, the unique advantages of joint space–time processing techniques were re-
viewed and its origins and applications were demonstrated. The chapter was also concerned
with the attractive characteristics of MIMO systems, including experimental results, a modern
technique that exhibits great promise for large data rates and capacities. Lastly, commercial
efforts on smart antennas were briefly summarized. Temporal processing has reached very high
levels and has become mature, but by itself is not sufficient. However, when combined with
space processing, it may be in a position to meet the ever expanding demands of high speed
and reliable communication enjoyed by a constantly increasing population. There is no better
verification of this argument than the words of Andrew Viterbi, a pioneer in the global spread of
wireless communications, “Spatial processing remains as the most promising, if not the last frontier,
in the evolution of multiple access systems” [232].
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