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Abstract—In recent years, the increasing popularity of 
smartphones has promoted the development of location-aware 
applications. However, highly accurate indoor localization by 
smartphones remains an open problem. In this paper, we present 
WiFi iLocate – a system that can help track the location and 
movement of a smartphone user in indoor environments. The 
system applies Gaussian process regression to train the collected 
WiFi received signal strength (RSS) dataset, and particle filter 
for the estimation of the smartphone user’s location and 
movement. Simulations were conducted in MATLAB to test the 
performance and provide more insights of the proposed 
approach. The experiments carried with an iOS device in typical 
library environment illustrate that our system is an accurate, 
real-time, press-to-go system. 

Keywords—WiFi RSS, indoor localization, Gaussian process 
regression, particle filter, smartphone 

I.  INTRODUCTION   
Nowadays, WiFi access points (APs) have become 

ubiquitous, whether in the offices, museums, shopping malls or 
airports. In the mean time, smartphones are playing more and 
more important roles in people’s daily life. We often see people 
with smartphones walking around in the public areas. An 
accurate indoor localization system can help people easily 
accessing navigation in a museum or airport terminal, finding 
specific merchandise or promotion information in a shopping 
mall, or locating themselves whenever they get lost. Global 
Positioning System (GPS) is commonly used for navigation 
outdoors. But it lacks enough accuracy when functioning in 
indoor environment. People are trying to develop WiFi based 
Positioning System (WPS) to fulfill the indoor localization 
task.  

      A WiFi based localization system has several advantages: 
First, WiFi APs are becoming ubiquitous in many of the indoor 
environments. Second, WPS only rely on the existing 
infrastructure, so no modification to the environment is 
required. Third, the WiFi information needed for doing 
localization include only the received signal strength (RSS) and 
the Basic Service Set Identifier (BSSID). The information is 
easy to collect, simply by sniffing the wireless traffic in the air. 
Fourth, WiFi signals do not require line-of-sight (LOS). It is 
extremely suitable for the use in indoor environment where 
there are a lot of walls and obstructions. 

      Generally speaking, WiFi based indoor localization 
techniques can be categorized into two types, propagation 

based and location fingerprinting based. Propagation based 
algorithms usually apply mathematical models to a set of 
triangulation algorithms to determine the location of the device. 
The triangulation approach uses the geometric properties of 
triangles to estimate the target location. Specific techniques use 
information include angle of arrival (AOA), phase of arrival 
(POA), time of arrival (TOA) and roundtrip time of flight 
(RTOF) to localize the device [1]. The main drawback of the 
propagation based algorithms is the difficulty in getting an 
accurate propagation model for the complicated indoor 
environment. Due to this difficulty, propagation based 
techniques can only achieve limited accuracy. 

      Instead of modeling the propagation of the WiFi signal, 
location fingerprinting based algorithms assumes that a WiFi 
enabled device always receives similar signal strength at a 
certain location, such RSS and coordinates would serve as a 
unique “fingerprint” of this location. We can collect a 
“fingerprint” in each location and store them in a dataset. Every 
time we come to a new location, the Wi-Fi signal strength is 
detected and the location is estimated by measuring the 
similarity between current and stored fingerprints. 

      There are many location fingerprinting based methods, such 
as the K-Nearest Neighbor (K-NN), neural networks, support 
vector machine (SVM) and the probabilistic method [1]. The 
K-NN algorithm compares the online scanned WiFi RSS with 
the offline built WiFi RSS dataset, searches for K closest 
matches RSS values in signal space, and uses these K known 
locations to estimate the current location. K-NN is easy to 
implement but it suffers greatly from signal fluctuations as the 
RSS detected at the same location may vary from time to time. 
Neural Network and SVM both are machine learning methods 
used for classification and regressions. They require huge 
amount of training data and complex training process to 
achieve high accuracy result, which are not applicable in 
smartphone. By introducing Gaussian process, we are able to 
build an accurate WiFi RSS model without the need of 
intensive survey data collection and sophisticated training 
process. 

      Probabilistic method finds the most probable location out of 
the pre-recorded location fingerprinting dataset [1]. During the 
online localization phase, the likelihood of different location 
candidates can be obtained from the observation of scanned 
WiFi RSS, and the location estimation is calculated using 
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Bayesian filtering technique. By implementing Bayesian 
filtering through a particle filter, we build a localizer makes use 
of current observation and previous location information to 
estimates the posterior location. It is most suitable for real time 
localization and tracking of a smartphone, we will discuss this 
method in detail in Section II.  

      Next, we would like to mention about the implementation 
issue. Extensive research has been done in developing the 
indoor localization systems, such as RADAR [2], Horus [3], 
Compass [4]. However, most of them are developed on laptop 
platforms equipped with better antennas than on the 
smartphone. Moreover, recent work on developing smartphone 
indoor localization app achieves only room level accuracies, 
like Shopkick[5]. 

      Therefore, accurate indoor localization on smartphone still 
remains an open problem. Liu et al [6] tried to solve this 
problem by introducing peer assisted localization approach. But 
this approach only works in public areas with high densities of 
smartphones present at the same time. Lokesh et al [7] 
described an accurate smartphone based indoor pedestrian 
localization system using WiFi and camera on the phone. But 
they only demonstrated their results in simulation instead of an 
actual implementation on smartphone. 

      Several RSS based localization systems that utilize 
Gaussian process regression have already been developed, and 
this approach has proved to be well-suited in modeling the RSS 
dataset [8] [9] [10]. But none of them is adapted to the 
smartphone platform. Our approach is inspired by their work 
and tailored for the purpose of smartphone application. The two 
main components of our WiFi based localization algorithm are 
a WiFi RSS dataset trained by Gaussian process regression and 
a localizer based on particle filter.  

      Specifically, we make the following contributions: We built 
a WiFi based indoor localization and tracking system on an 
iOS platform. It does not require any dedicated infrastructure in 
the indoor area or specialized hardware equipped on the 
smartphone. Moreover, our system does not require any user-
specific information, such as user’s initial location or AP’s 
location. It is press-to-go localization. To the best of our 
knowledge, our iOS application WiFi iLocate is the first one to 
achieve real time, highly accurate indoor localization by 
leveraging Gaussian process WiFi RSS fingerprinting 
modeling along with particle filter based localizer in 
smartphones.  

The remainder of this paper is organized as follows: In 
Section II, we give an overview of Gaussian process regression 
and show how it can be used in modeling WiFi RSS 
fingerprinting. Then we describe a localizer using particle filter 
to do the location estimation based on this model. In Section 
III, simulation is conducted to prove the feasibility of the 
proposed localization algorithm, and provide us with more 
insights of the algorithm. The iOS implementation, named 
WiFi iLocate, and its performance in real situation, are 
presented in Section IV. Finally we conclude the paper in 
Section V with a discussion of future research direction. 

II. SYSTEM SETUP 
The probabilistic location fingerprinting method uses 

Bayesian filtering to determine the location under estimation 
[12]. Let )|( zxp i  denotes the probability that the WiFi 

enabled device is in location ix  given the received signal 

vector is z . We select a location ix  if )|( zxp i  > 

( | )jp x z , for i , j  = 1, 2, 3, ... n, i j≠ .  

      Also let’s assume that ( )ip x  is the probability that the 

smartphone is in location ix , ( | )ip z x  is the probability that 
the signal vector z  is received, given that the device is located 
in location ix . The given decision rule is based on posterior 
probability 
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      Here we can assume that ( )p z  is a constant for all x , so 
that the formula can be rewritten as 

)()|()|( iii xpxzpzxp ∝                       (2) 

      The estimated location x  is the one obtains the maximum 
value of the probability 
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      Traditionally, we collect the location fingerprints on the 
offline training phase and create a dataset to store them. During 
the online localization phase, we calculate the likelihood 
( | )ip z x  of each location candidate based on the observed 

signal strength, and the estimated location can be decided by 
the Bayesian decision rule discussed above.  

      However, we can only collect fingerprints in discrete 
location, which makes this technique only applicable for 
discrete location estimation. On the other hand, smartphone 
user can be at any location, and move in a continuous manner. 
Therefore, we need to interpolate through the collected 
fingerprints. Gaussian process provides us such an advanced 
interpolation method. 

A. Gaussian process regression for WiFi signal strength 
modeling 

Gaussian processes (GPs) offer many advantages that make 
them suited for a localization system that utilizes WiFi signal 
strength [8]: 

Firstly, GPs are non-parametric, a mathematic model that 
can correctly fit the data is not required. Because GPs place a 
prior over the distribution of functions, many highly non-linear 
models can emerge from GP regression. Here we use GPs to 
approximately fit the non-linear WiFi signal propagation 
model. 



Secondly, GPs do not require a discretized representation of 
an environment, or the collection of calibration data at pre-
specified locations. They can predict signal strength 
measurements at arbitrary locations. 

Thirdly, GPs provide uncertainty estimation for predictions 
at any given locations. This uncertainty is measured in 
variance, which takes into account the training data density and 
the noise of the data. 

      A Gaussian processes essentially estimates a posterior 
probability distribution over functions from training data. The 
details on GPs can be found in [11]. We will give a brief 
introduction here. 

      Let’s first define a function *( )f x  be the posterior 

distribution that makes prediction for all possible input *x . 

And we have {( , ) | 1,..., }i iD x y i n= = , which is a set of 
training samples consists of n  observations drawing from a 
noisy process ( )i iy f x ε= + , where each ix  is an input 

sample in dℜ  and each iy  is a target value in ℜ , ε  is 

additive Gaussian noise with zero mean and variance 2
nσ . For 

notational convenience, the inputs of the training set are 
grouped into a d × n  matrix X , and the observations iy  are 
grouped into a vector y . 

      To estimate the posterior distribution over function *( )f x  

from training dataset D , GPs depend on a covariance function 
kernel ( , )p qk x x , which specifies how the values at different 
points are correlated to each other. This kernel can be specified 
as any arbitrary covariance function, and we have chosen the 
widely used squared exponential kernel 
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      Here, The hyperparameters 2
fσ  and l  are the signal 

variance and the length scale which determines the strength of 
the correlation between different points. 

      Since we only have access to the noisy observations y  
instead of the true function value ( )f x , we must add a term to 
account for observation noise in the covariance function: 

pqnqpqp xxkyy δσ 2),(),cov( +=                 (5) 

      Here 2
nσ  is the Gaussian observation noise and pqδ  is one 

if p q=  and zero otherwise. For an entire set of input values 
X , the covariance over the corresponding observations y  can 

be written as 

IKy n
2)cov( σ+= ,                            (6) 

where K  is the n n×  covariance matrix of the input values, 
defined as [ , ] ( , )p qK p q k x x= . 

      Note that the covariance between the observations is 
written as a function of the inputs, emphasizing the non-
parametric nature of Gaussian process regression. 

      Now we can generate the posterior distribution over 
functions ),(~),,|)(( 2

** ** xxNyXxxfp σµ  to predict the 
function value for any arbitrary points x*, given the training 
data X  and y : 

      The prediction’s mean and variance are: 
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      The hyperparameters 2
fσ , 2

nσ and l  control the 
smoothness of the functions estimated by a GP and can be 
learned from training data, by maximizing the log marginal 
likelihood of the observations conditioned on the 
hyperparameters. This learning process is completed offline 
right after the training dataset is built.  

To apply GP in WiFi signal strength modeling, the input 
values X  correspond to locations, and the observations y  
correspond to signal strength measurements gathered at these 
locations. The GP posterior is estimated from a collection of 
signal strength measurements corresponded with their 
locations. Assuming independence between different APs, we 
estimate a GP for each AP separately. After the generation of 
WiFi signal strength model, we can move to discuss the online 
particle filter based location tracking. 

B. Location Estimation Based on Particle Filter 
After the offline training phase to generate the GP based 

WiFi signal strength model, we are ready to use it in online 
localization.  

      During the online localization phase, we are going to 
determine the smartphone location using Bayesian filtering 
technique, implemented through a particle filter. Particle filter 
is able to handle any arbitrary probability density function. It 
has been adopted by several researchers in location estimation 
problem and has showed its advantages [8] [9].  

      As discussed before, the Bayesian filtering is based on 
formula (2). 

      Here ( | )ip z x  and ( )ip x  represent a measurement 
likelihood model and a motion model, respectively. 

      The measurement likelihood model can be calculated using 
the posterior distribution of the signal strength at each location 
determined by the GP 
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where 
*x

µ  and 
*

2
xσ  are the posterior mean and variance at an 

arbitrary location *x . 

      Location estimation algorithm using particle filter is 
performed according to the following steps: 

      (1) Particle Initialization 

      In order to realize location estimation in real-time using a 
smartphone, the computational complexity needs to be 
restrained. For particle filter, the computational complexity 
depends on the number of particles, N particles takes ( )O N  
time. We have tested different number of particles in our 
simulation to see how this number will affect the performance. 

The initial location is calculated through weighted K 
nearest neighbor (W-KNN) method. It searches for K closest 
matches of known locations in signal space from the offline-
built dataset. By averaging these K location candidates with 
adopting the distances in signal space as weights, the initial 
estimated location is acquired. This initial location estimation 
is used as the starting point for particles. We assume that the 
accuracy of the initial guess will not affect the localization 
performance. Larger initial error will only cause longer time for 
particles to converge to the actual location of the smartphone. 

      (2) Particle Movement 

      Next, the particles’ coordinates are updated as each particle 
move. We choose not to use motion information under the 
assumption that for our WiFi localization system, this 
information may not be available or too noisy to be used. 
Therefore, in order to keep our location estimation only based 
on WiFi signals, the motion model is replaced with random 
particle movement. That is, in every time step, the particle 
cloud is spreading in all directions and can reach random 
distance within a reasonable range.  

      (3) Weight updating 

      When the particles start moving, the collected WiFi 
received signal strength (RSS) continually changes the 
likelihood of all particles. For each particle, the predicted signal 
strength mean and variance are calculated from the GP model. 
They are used to calculate the corresponding particle’s 
likelihood ( | )ip z x . 

      In every update, the likelihoods are calculated for each AP. 
Here we assume that the APs are independent of each other, so 
that we compute the likelihood of a complete set of readings 
from all the APs by multiplying the individual reading 
likelihoods together. This combined likelihood is then treated 
as the weight for particle. When all the particles’ weights have 
been calculated, normalization is performed so that the sum of 
all the particle weights equals one. 

      (4) Resampling and location estimation 

      After particle weights are updated, we perform importance 
resampling to update the particles’ location. In resampling, the 
weight of each particle is treated as a probability where this 
particular particle is chosen to be the estimated location. Those 
particles with higher weights will be picked more frequently 
than others. This is how the resampling is able to eliminate 
those wrongly moved particles and correctly track the 
smartphone’s location. After the resampling process, the 
estimated location is calculated as the mean of all the 
resampled particles’ location. 

III. SIMULATION AND RESULT ANALYSIS   
We have validated the proposed WiFi based localization 

algorithm through simulation. The simulation and result 
analysis is performed in MATLAB.  

      Wireless InSite, an EM solver by REMCOM, has been used 
to simulate a 40m by 40 m empty room with 4 APs, as shown 
in Figure 1. Mesh grid with grid size of 0.2 m is used to sample 
the WiFi RSS. A total of 40000 RSS data points are collected 
for each AP. We pick 400 equally spaced points out of the total 
as survey points to train the GP model. After the offline 
training process, a random path is generated in the room to see 
if the online localization algorithm could catch the actual path, 
and estimate the error between the true path and the estimated 
path. 

40 m

10 m

10
m

20 m

20 m

 
Figure 1: Simulated environment 

      We import all the WiFi RSS data into MATLAB, and 
demonstrate the online localization in a small animation in 
MATLAB. As shown in Figure 2, this true path, shown in red 
circle, starts at coordinate (4.5, 4.5) and ends at coordinate 
(25.5, 10.5). For simplicity, the path is on the grid with equal 
gap between each step. On the right, it shows a one time 
simulation result. The particle distribution corresponds to 
different locations are shown in blue dots and the estimated 
path is shown in red stars. We have set the particle number to 
1000 and use all 4 APs in this simulation.  

 
Figure 2: Particle filter estimation of a random path 



      To evaluate the accuracy of the localization algorithm, the 
simulation has been performed 100 times and the estimated 
location is compared to the ground truth location. The error is 
measured as the Euclidean distance between the actual location 
shown in red circle and the estimated location shown in red 
star. The average error in Figure 2 is 3.8 m. 

      Furthermore, we analyze the system performance under 
various situations. 

      Firstly, we explore how the number of AP can affect the 
location accuracy estimation. We test the AP number from 1 to 
4, and fix particle number to 1000. The result is showed in 
Table 1. 

AP Num 1 2 3 4 

 error 14.8 m 7.4 m 6.5 m 3.8 m 

Table 1: The average error for different number of AP 

      As can be seen in Table 1, when the number of AP 
increases, the error drops significantly. This is reasonable as 
more APs provide more information and can achieve better 
location estimation accuracy.  

      Secondly, we investigate how the initial accuracy will 
affect the localization performance. We test the initial error 
from 0.5 m to 3 m, with particle number and AP number set to 
1000 and 4, respectively. The result is shown in Figure 3. 

 
Figure 3: Localization performance in different initial error  

      Figure 3 shows that the algorithm is not sensitive to the 
accuracy of the initialization. Better initial accuracy only gives 
a better performance in the beginning few steps. After 8 steps, 
the particle filter compensates the difference and gives a 
similar performance onwards. This result verifies our 
hypothesis in the particle initialization step, that particle 
initialization will not affect the location estimation 
performance as they will finally converge to the ground truth 
location. 

      Thirdly, it is desirable to know how many particles are 
needed for an accurate localization. The number of particles 
from 200 to 2000 is tested, with AP number equals 4. The 
result is shown in Table 2. 

 particles 200 400 1000 2000 

error 4.6 m 4.2 m 3.8 m 3.7 m 
Table 2: The average error for different number of particles 

      As seen from Table 2, by increasing the number of 
particles, we can improve the localization performance. But 
using more particles means higher computational cost at the 
online localization phase. The benefit of accuracy improvement 
is very little when the particle number reaches a large enough 
value, as this simulation unveils, around 1000. This is a 
reasonable particle number to obtain good localization 
accuracy and real time response. 

      Lastly, we are interested in how the extra sensors, like 
accelerometer, gyroscope and compass could improve the 
localization accuracy, as our target devices - smartphones, do 
have these common sensors equipped.  

      A simple motion model was built based on the information 
provided by motion sensors to constraint the particles’ 
movement. This motion model guides the particles to certain 
direction range and limits the step length to a reasonable range.  

      Figure 4 shows an estimated path with the help of motion 
model. We can observe that the particle distribution is more 
concentrated around the true path as compared to Figure 2. 

 
Figure 4: Particle filter location estimation with motion model 

Error No motion model With motion model 

1 AP 14.8 m 5.5 m 

 4 AP 3.8 m 2.9 m 

Table 3: Localization accuracy between WiFi iLocate against weighted KNN 

      Table 3 shows the comparison result of no motion model 
against with motion model under different number of AP. It 
can be seen that the simple motion model greatly increases the 
location estimation accuracy. When we don’t have many APs 
to provide enough information of the WiFi signal strength, we 
will need to use the motion model to guide the particle 
movement. Even with enough AP, the performance still 
improves by about 1 m in location estimation accuracy with the 
motion model equipped. 

IV. IMPLEMENTATION IN IOS DEVICE 
We realize the WiFi indoor localization algorithm on the 

iOS platform and built an app called WiFi iLocate. The system 
performance has been tested on the 3rd floor in Oakland 
University library. 

A. System architecture 

      Figure 5 presents the workflow of WiFi iLocate. In brief, 
we first import the floor plan into the system. With the floor 



plan display on the screen, we can set the survey points and 
scan WiFi. The scanned RSS values and corresponding 
BSSIDs are stored in an offline training dataset. After the 
construction of WiFi RSS dataset and preprocessing, we are 
able to perform the online localization by pressing the “Locate” 
button. Both the offline and online phases are completed on the 
iOS platform. 

Import Floor Plan

Set Survey Points

Scan WiFi

Store in Dataset

Preprocess

Offline Phase

Press “Locate”

Initialization

Localization
& Tracking

Online Phase  
Figure 5: WiFi iLocate workflow 

      One important issue for WiFi scanning is that APs may be 
missed in a scanning cycle both during the offline surveying 
and the online localization. To overcome this issue, we perform 
multiple scanning in offline WiFi surveying and apply GP 
modeling to deal with the missing alue. During the online 
localization, interval is set as 4 seconds, which means we 
update our location estimation every 4 seconds. We scan once 
every period, compare the scanned BSSIDs with pre-store 
BSSIDs in the dataset, and use all the detected APs to calculate 
the current particles’ weights. 

      The most computational costly step to generate the 
posterior of GP lies in the inverse of the covariance matrix: 

2 1( )nK Iσ −+ , which takes time 3( )O N , where N  is the 
number of survey points. Fortunately, this computation can be 
done before the real time localization step. After the creation of 
the training dataset, preprocess is performed and this inverse 
covariance matrix is stored in memory beforehand.  

      Right after we press the ‘Locate’ button, the iOS device 
starts scanning the WiFi RSS from all the APs it can detect. 
Particles are initialized through weighted KNN method. The 
number of particles is set to 1000 according to the simulation 
result. After particles are generated from the initial location, 
they start to move randomly, every 4 seconds the particles are 
resampled, as discussed in Section II. Through particle 
filtering, we can locate the user and track the user movement in 
real time.   

B. Experimental evaluation 

      Our test environment is on the 3rd floor of Oakland 
University library, with seven APs installed. In total 18 survey 
points are collected for training purposes, as shown in Figure 6. 
Localization tests were conducted 10 times on a predefined 
path. The average length of the path is about 85m. During the 
traverse on the path, we measured the error distance between 
the estimated location and the ground truth location. The 
ground truth location is based on manual annotation of 
waypoints.  

     Comparison between the estimated path and the ground 
truth path is shown in Figure 7. The red line represents the 

ground truth path, while the blue dot and the thick stroke 
illustrate the estimated path.  

  
Figure 6: Survey points display on the screen 

 
Figure 7: Comparison of the estimated path against the ground truth 

      The maximum error distance is about 5 m in the corner 
when we were making a turn. The mean and median error 
distances are 3.6 m and 2.9 m, respectively.  Table 3 shows the 
advantages of our system when compare to pure W-KNN 
method. This real time test result clearly demonstrates the high 
accuracy of our WiFi based indoor localization system. 

Error Mean Median Maximum 

WiFi iLocate 3.6 m 2.9 m 5 m 

 W-KNN 6.5 m 6.4 m >10 m 

Table 4: Localization accuracy between WiFi iLocate against weighted KNN 

      Noted that the above result is achieved with pure WiFi 
based localization algorithm, we haven’t incorporate the 
information of motion sensors in the iOS device, due to the 
difficulty in handling the noisy motion data. 

      Although we have applied Gaussian process to reduce the 
labor work of collecting WiFi survey point in the offline 
training phase, this job remains heavy in a large indoor 
environment. Researchers have tried to overcome this problem 
using crowdsourcing [13] or simultaneous localization and 
mapping (SLAM) [14] method. These techniques can be 
tailored and combined into our system. 

V. CONCLUSION AND FUTURE PLAN  
In this paper, we have demonstrated an indoor localization 

system based on Gaussian process modeling of WiFi RSS 
dataset and particle filter localizer. The simulation result 
showed that our algorithm yields promising location 
estimation. The implementation on iOS platform and the test in 
real world situation proved that WiFi iLocate is a reliable, real-
time, press-to-go indoor localization system. To the best of our 



knowledge, WiFi iLocate is the first app delivering such 
accurate, highly integrated indoor localization system on 
smartphone. Based on our system, many location-aware 
applications will be able to function properly indoor, provide 
more convenient service to people’s daily life.  

In the future, we will combine motion sensors on the 
smartphone, in hope that multimodality could provide more 
location-related information and help us develop a 
sophisticated motion model to improve the localization 
performance. 
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