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Abstract XML has become a widespread format for data exchange over the
Internet. The current state of the art in querying XML data is represented by
XPath and XQuery, both of which rely on Boolean conditions for node selection.
Boolean selection is too restrictive when users do not use or even know the data
structure precisely, e.g. when queries are written based on a summary rather than
on a precise representation of the schema. In this paper we describe a XML query-
ing framework, called FuzzyXPath, based on Fuzzy Set Theory, relying on fuzzy
conditions for the definition of flexible constraints on stored data. To this end, we
introduce a function called “deep-similar”, which aims at substituting XPath’s
typical “deep-equal” function. Its goal is to provide a degree of similarity be-
tween two XML trees, assessing whether they are similar both structure-wise and
content-wise. Several query examples are discussed in the field of XML-based
metadata for e-learning.

1 Introduction

In the last ten years, the need for expressing in a declarative form complex manipula-
tions of XML trees has raised a lot of interest on XML query languages. The World
Wide Web Consortium (W3C) has defined two standard languages for querying XML
data: XPath and XQuery. XPath allows selecting XML node sets viatree traversalex-
pressions. Although XPath is not a fully-fledged query language, it is expressive enough
for many practical tasks, and has been adopted within XQuery for expressing selection
conditions. XQuery adds to XPath the capability of working on multiple XML doc-
uments, of joining results, and of transforming and creating XML structures. XPath
selection, used by both languages, is Boolean in nature: it partitions XML nodes into
those which fully satisfy the selection condition, and those which do not. However,
Boolean conditions can be —in some scenarios— not flexible enough for effectively
querying XML data. A few considerations can be made to justify this claim. The first



is about prescriptive schemas defining the tree structure of individual documents. Even
when XML schemas do exist, they may be not available to users. Moreover document
trees with the same schema may be widely different (both in used tags and nesting),
and hence the schema will allow for diverse instantiations, making it difficult to predict
a particular document structure from the schema. As a consequence, users often end up
definingblind queries, i.e. queries written without a precise knowledge of the schema.
This happens either because users do not know the XML schema in detail, or because
they do not know exactly what they are looking for. Finally, the same XML tree can be
sometimes described using different schemas. These observations are highly relevant
for practical applications; for instance, they are all well-known consequences of pro-
viding users with schema summaries rather than with complete XML schemas [1].
In order to fix our ideas we shall focus on the field of e-learning, which will constitute
our explanatory context throughout this paper. We have chosen to use learning objects
as our example because they are typically described using XML metadata that contain
many different kinds of data.Learning Management Systems(LMSs) consist of dis-
tributed systems through which an institute can provide personalized e-learning content
to its students. The main component of such systems is the repository, which contains
information concerning (a) the system’s end-users (i.e., teachers and students), (b) the
electronic content items (calledlearning objects) (LO) created by the teachers and con-
sumed by students, and (c) other physical content (e.g., books) the student can consult
for more information. Data describing LOs are called LO metadata (LOM). A simpli-
fied representation of the structure of the data contained in an e-learning repository is
shown in Figure 1. We shall use the situation depicted in Figure 1 as a running example
throughout the paper.
The data structure used for representing a student comprises identification fields such as
the student’s name and surname, and her/his unique identification number. Each student
has also a curriculum vitae field. In our example, the students are not required to use
a common structure for their curricula. We will assume that all the curricula will pro-
vide at least some of, and probably not all, the following information: previous studies,
known languages, previous jobs, professional training, etc. All these data are used by
the LMS to personalize the student’s program, by suggesting the learning objects (LOs)
and books that are most appropriate for her/him. In this field of research it is common to
describe electronic content, i.e., learning objects (LOs), using the LOM standard1 and
its XML representation. The choice of this running example is motivated by the fact
that LOMs data management poses all the challenges of XML data management: LOMs
contain all data types (numerical, string,...) and the complexity of structures involved
is variable and covers most typical scenarios. Indeed LOMs lie on a middle-ground be-
tween document-centric and data-centric XML: both these XML document categories
have been widely studied by the Information Retrieval (XML retrieval) and database

1 This IEEE standard specifies the syntax and semantics of Learning Object Metadata, defined as
the attributes required to describe a Learning Object. The Learning Object Metadata standard
focuses on the minimal set of attributes needed to allow these Learning Objects to be managed,
located, and evaluated. Relevant attributes of Learning Objects include object type, author,
owner, terms of distribution, format and pedagogical attributes such as teaching or interaction
style, grade level, mastery level, and prerequisites.
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Figure 1. A simplified representation of the structure of the data contained in the LMS.

communities. Instead LOMs are a good example of an important category of data pos-
ing problems which have not been fully addressed by current techniques. Moreover, the
structures that are used are sufficiently diverse to be significant.
In our example we assume that the system is distributed across multiple repositories,
where the same content may be duplicated and stored with slightly different metadata.
We shall use the above scenario to illustrate a framework for querying XML data that
goes beyond Boolean selection, and that allows the user to define ’vague’ and flexible
selection conditions in order to obtain ranked results according to her/his preferences.
To do so, we use concepts coming from the area of Fuzzy Set Theory. The main idea
is that the constraint evaluation produces a fuzzy subset, with the consequence of as-
sociating a numeric value (the membership degree) with each information item. This
represents the Retrieval Status Value (RSV) of the associated item. To obtain these
gradual results fuzzy conditions are allowed, and expressed by linguistic labels with
a membership function associated. Concretely, we propose FuzzyXPath2 an extension
of XPath query language accommodating fuzzy selection. We describe our extension
with respect to XPath since it presents a simpler starting point with respect to XQuery,
but our entire approach is constructed with the aim to be easily applicable to XQuery.
Extensions can be summarized as follows:

– Fuzzy conditions: the user can express vague selection conditions formally repre-
sented as fuzzy subsets on the attribute domain.

– Fuzzy Tree Matching: Standard XPath provides adeep-equalfunction that can be
used to assess whether two sequences contain items that are atomic values and are
equal, or that are nodes of the same kind, with the same name, whose children are
deep-equal. This can be restrictive, so we propose an extension nameddeep-similar
to assess the structure similarity.

With respect to an earlier description of the approach[2], in this paper we go into the
details of fuzzy conditions syntax and semantics, we add the fuzzy condition APPROX-
IMATELY and present a query evaluation proposal based on the tree edit distance. In
our approach the relevance estimate is based on the evaluation offuzzy constraintson
crisp data. A fragment obtains a higher evaluation score with respect to another one if

2 SinceFXPathhas recently been used with the meaning ofFunctional XPath, in our work we
suggest the nameFuzzyXPathto avoid misunderstanding.



it satisfies more the fuzzy constraints contained in the query and appropriately com-
bined. As a consequence the ranking of the fragments is ”well founded” if the fuzzy
constraints are ”well defined”.
When FuzzyXPath query results are returned, they are associated with a ranking value
(theRetrieval Status Value— RSV) indicating “how much” each data item satisfies the
selection condition. For example, while searching for LOs published in a year around
2000, we might retrieve LOs published in 2000, in 2001, 2002, with distinct RSV in-
dicating the estimated relevance with respect to users’ preferences. Returned items are
wrapped into annotations, so as to recall XML tagging:

<!--RankingDirective RankingValue="1.0" -->
<LO year="2000"> <title>t1</title> </LO>

<!-- /RankingDirective -->
<!-- RankingDirective RankingValue=".8" -->

<LO year="2001"> <title>t2</title> </LO>
<!-- /RankingDirective -->
<!-- RankingDirective RankingValue=".65" -->

<LO year="2002"> <title>t3</title> </LO>
<!-- /RankingDirective -->

In this example it is possible to notice the presence of a ranking directive containing the
ranking value —in the set[0, 1]— of each retrieved item. The closer it is to 1, the better
the item satisfies the condition (i.e. to be published in a year near 2000). This way, large
result sets can be organized according to user’s interests.
The rest of this paper is structured as follows. Section 2 presents relevant related work.
Section 3 provides some preliminary concepts useful to the comprehension of the pro-
posed approach; Section 4 presents the application of fuzzy conditions useful to extend
XPath regarding both the node contents and names. Section 5 illustrates the weighting
of the document tree, it discusses vagueness in the tree structure, fuzzy tree matching
and our implementation of the “deep-similar” function. Section 6 brings the two ap-
proaches together, Section 7 presents a prototype tool and finally Section 8 draws our
conclusions.

2 Related Work

In this section we briefly review the main approaches to flexible querying techniques
focusing on applications of of Fuzzy Set Theory.
A stream of research onFuzzy Pattern Matching(FPM) was started in the Eighties.
Given a query in which fuzzy selection conditions are expressed, and a database con-
taining imprecise or vague attribute values, FPM returns two matching degrees (degrees
of possibility and necessity)[3].
The work [4] proposes a counterpart to FPM, calledQualitative Pattern Matching
(QPM), for estimating levels of matching between a request and data expressed by
words. Given a request, QPM rank-orders the items which possibly, or which certainly
match the requirements, according to the preferences of the user.
As far as flexible database querying is concerned, fuzzy quantifiers allowing to define
aggregated concepts have been described in [5] and [6]. The seminal paper [7] showed a



convenient way to model flexible queries using fuzzy sets. Some of the above mentioned
approaches deal with fuzzy data in datasets while the approach presented in this paper
is aimed at adding flexibility in query formulation while having only crisp data in the
datasets.

Many attempts to extend relational query languages like SQL with fuzzy capabilities
were undertaken in recent years. For instance, [8] describesSQLf, a language that ex-
tends SQL by introducing fuzzy conditions evaluated on crisp information. TheFSQL
system [9], developed upon Oracle, represents imprecise information as possibility dis-
tributions stored in standard tables. FSQL queries are translated into ordinary SQL
queries which call special functions to compute the degrees of matching.

The approach presented in [10] applies fuzzy logic to multimedia databases where doc-
uments have to be retrieved and selected depending not only on their contents, but also
on the idea the user has of their appearance, through queries specified in terms of user
criteria.

As far as semi-structured information processing is concerned, several research ap-
proaches have been proposed to enhance flexibility of XML querying. An early ap-
proach [11] was based on fuzzy encoding of XML data trees. W.r.t. our approach, that
method did not attempt to define a query language; rather, it supported introducing new
nodes in the XML tree structure in order to carry out fuzzy similarity comparison of
XML data trees. This approach was later extended in [12] providing some flexibility in
content comparison with the concept of XML datasmushing. A later paper [13] pro-
posed an approach based on XML query rewriting, supporting renaming and deletion
of nodes in the query. Hybrid techniques [14] have also been proposed, where XML
data are encoded and queries are rewritten. On the one hand, hybrid techniques can pro-
vide an accurate computation of the query cost; on the other hand, it is very difficult to
implement them because they require ad hoc XML data indexing.

A recent approach to this problem [15] proposes a dynamic summarization and index-
ing method, FLUX, based on Bloom filters and B+-trees. Also, the work [16] presents
an indexing method to execute approximate queries on XML documents taking into ac-
count approximation on both document structure and content. The proposed indexing
aims to reduce the complexity of finding approximate query patterns, avoiding sequen-
tially scanning of all documents in the collection.

Another recent paper [17] proposes a fuzzy-based XML querying system that performs
approximate comparisons between query and data trees. This technique supports impre-
cise data via possibility distributions. The authors claim that their system is fully com-
patible with XML querying standards since the final rewriting is performed in XQuery;
however, their query rewriting is based on amediated architecturecalledMIEL++ that
requires several rewriting steps; the number of rewritings can be controlled by a thresh-
old on the maximal transformation cost and the parameters associated with the views
which determine the number of deletions and renaming which are authorized.

In [18] the authors propose an approach to approximate query answering in which,
instead of working directly on the data, they apply the structural component of the query
to execute a reworking of the documents’ schemas by means of aschema matching
process.



The closest approach to ours is the work [19] which presentsFlexPath, an attempt
to integrate database-style query languages such as XPath and XQuery and full-text
search on textual content. FlexPath considers queries on structure as a template, and
looks for answers that best match this template and the full-text search. To achieve this,
FlexPath provides an elegant definition of relaxation on structure and defines primitive
operators to span the space of relaxations. Query answering is now based on ranking
potential answers on structural and full-text search conditions. However, FlexPath does
not provide a syntax for presenting flexible structural requirements both for the inquired
documents and for the retrieved answers.
Finally we mention the XQuery 1.0 and XPath 2.0 Full-text (XQFT) language, which
has been developed by the W3C to extend XQuery and XPath with full-text search
capabilities. XQFT allows users to specify a mix of structured and complex full-text
predicates, and also allows users to score/rank such queries. Another text retrieval based
approach is NEXI, which is used in the INEX evaluation of XML retrieval. While they
concentrate on flexibility in text search, our approach introduces flexibility in the query
expression by means of fuzzy constraints, and proposes a methodology to compute the
similarity between query and data trees.

3 Technical Background

In this section we present the background of our work. We briefly recall the semantics of
XPath queries [20] and the main definitions of Fuzzy Set Theory [21]. These represent
the basis of our approach and their introduction allows a better understanding of our
proposal.

3.1 XPath

The XML Path Language (XPath) is an expression language for extracting portions
of or computing information on XML documents by exploiting the tree representation
of XML documents, it provides the ability to navigate trees and select nodes using a
variety of specified selection methods.
XPath uses a declarative notation and allows to extract information through path expres-
sions. Each expression is composed by a finite sequence of steps. A step is composed
by three main elements: anaxis specifier, that indicates the navigation direction within
XML tree representation, anode test, that specifies a node name or, more in general, an
expression, which allow to identify one or more particular nodes or paths in the speci-
fied direction, and apredicate, that is an expression of any complexity, which must be
satisfied before the preceding node will be matched by an XPath expression.
Each path expression describes the types of nodes to match based on the hierarchi-
cal relationship between the nodes. For example, the expressionLO/Educational
means finding allEducational elements contained withinLO elements. This no-
tation enables to query an XML tree as a hierarchy of nodes. The result of the eval-
uation of an expression is the set of allEducational elements returned in the or-
der they occurred in the document. At each step in the traversal, nodes selected in
that step can be filtered using a predicate, also called qualifier. As an example, if we



ask for /LO/Educational/LearningResourceType[source] the result is
all LearningResourceType elements that have at least one child element named
source . Previous examples are allabsoluteXPath expressions (since they involve a
leading ”/”). The general meaning of an expression is defined relatively to a context
node in the tree. Starting from a particular context node in the tree, each other node can
be reached by means of sequence of axis specifiers.

3.2 Fuzzy Set Theory

Fuzzy Set Theory was introduced to extend classical Set Theory, in which the member-
ship of an element to a set is binary, i.e. an element either belongs or does not belong
to a set. Differently, fuzzy set theory allows to assign a degree of membership of each
element to a given set. More precisely the membership of an element to a set is not
defined in a binary way, but is defined by means of amembership function. Given a
domainX, more often called universe, a membership functionµf : X → [0, 1] assigns
to each objectx ∈ X a membership degreeµf (x) ∈ [0, 1]. As a consequence of this
new definition of membership, the classical set operations, such as intersection, union
and complement were redefined3.
As a consequence, the classical Boolean operators,∧, ∨ and¬, are re-defined using the
redefined set operations. In this work we adopt the following definitions:

µA∧B = min{µA(x), µB(x)};
µA∨B = max{µA(x), µB(x)};
µ¬A = 1− µA;

4 A Fuzzy Extension of XPath

In this section we describe an extension to the XPath language and its semantics. We
propose to allow fuzzy conditions to express flexible constraints in query formulation.
Fuzzy conditions are expressed by using linguistic labels identifying fuzzy sets (Sec-
tion 4.1) and allowing flexible specification for the axes (Section 4.2). Moreover, we
define a flexible tree matching algorithm, to exploit flexibility also in evaluating simi-
larity between tree structures (Section 4.3).

4.1 Supporting flexibility in value matching

In order to allow the query constraints to express vagueness, we introduce two fuzzy
constraints, namelyCLOSEandSIMILAR , that apply to specific items within XML
documents and are associated with a coherent fuzzy subset. Constraints evaluation for
a given item produces a numeric value which expresses the satisfaction degree of the
constraint when applied to that particular item.

3 By contrast with classical set theory, there are different possible definitions for these opera-
tions, although some of them are more often adopted. For an overview of these definitions
refer to [21].



These two flexible constraints can be applied to different kinds of data and, as a con-
sequence, are evaluated by means of different definitions. Indeed, the XML Schema
standard supports more than 40 elementary data types, that, by definition, carry dif-
ferent kind of information. When the elementary type is structured, like numeric or
date types, the definition of a fuzzy constraint to evaluate conditions on values is quite
straightforward4. Here, for the sake of conciseness, we shall deal with three data types,
namely text, integer and date.
Before giving the formal definition for each case, we briefly introduce their meaning
and utility in querying XML documents.

CLOSEThis linguistic label is used to specify a fuzzy condition in which closeness
to the content value specified in the query must be evaluated against the values
in the stored information items. This fuzzy condition relaxes the usual Boolean
condition of exact matching to a precise value specified in the query.CLOSEis
useful whenever the query involves a numeric value that does not need to be exact
or when the value is a string that may contain typos and synonyms. As an example
consider the number of slides in a presentation. When a user is looking for a LOM
containing a presentation that is not too big, she can quantify this concept saying
that the number of slides isclose to 100. Consider another example: if a user queries
the dataset asking for the LOMs in which the author is Betty Price it will find all
the LOMs in which the name is exactly the one expressed in his/her query, but if
he/she asks for the LOM whose author has a name “close” to Betty Price, the result
will contain also the LOMs where the content of the author element is spelled
incorrectly (for example where the author is equal to Betty Prize).

SIMILAR This linguistic label allows to specify in the query a flexible constraint to
select nodes with a name similar to a given name, i.e. the node matching does
not require a perfect matching. This is useful, because often XML tag or attribute
names can be introduced with typos or substituted by a synonyms. Consider as an
example the tag representing the author of a LOM. If a user queries the dataset
asking for the LOMs whose author is Betty Price, using theSIMILAR construct
you can find it in a tag calledwriter (where a synonym has been used).

Hence, the two selected labels allow to specify flexible constraints on crisp data and to
take in consideration also data affected by typing errors.
We can now formally define the use of these labels. Their syntax is defined as follows.

Definition 1 The constraintCLOSEis applied to content values. It requires to evaluate
the similarity of stored (crisp) values with respect to a single value specified in the
query. The syntax is:

"[{ selection_node" ("NOT")? "CLOSE" "compare_value }]"

whereselection node is a path expression representing the node to be retrieved
the content of which is taken to assess its similarity to the value specified by the clause
compare value . The (optional) negation operatorNOTis used to negate the simi-
larity constraintCLOSE(as defined in 3.2).

4 Unfortunately, the same cannot be said for user-definedComplexType s. The reader inter-
ested in fuzzy matchings for complex XML types is referred to [22]



Figure 2. TheCLOSEfuzzy constraint applied to a date of birth

Definition 2 The constraintSIMILAR is applied to a tag or to an attribute name. It
allows to specify in the query a constraint to select nodes with a name similar to a given
name:

"[{ selection_node" ("NOT")? "SIMILAR" "node_name }]"

whereselection node is an XPath path representing the node to be retrieved whose
tag name is expected similar to the name expressed by the clausenode name. The
(optional) negation operatorNOTis used to negate the similarity constraintCLOSE(as
defined in 3.2).

We now give a formal definition of the semantics of these fuzzy constraints. This is done
by defining the membership functions associated with the allowed fuzzy constraint. The
domains of reference (universe of discourse) are texts, integers and dates.

For integers and dates, we can define the fuzzy membership function as a symmetric
triangular function centered inx ∈ X. Triangular functions have proved in literature to
work well in text-retrieval contexts. Moreover there are several techniques to construct
membership functions automatically [23], while other works have studied the best way
to associate membership functions and data domains (as instance see [24]). In figure 2
an example of membership function for theCLOSEconstraint applied on a date of birth
is shown.

When the flexible constraintsCLOSEand SIMILAR are applied to free text nodes,
we consider two different approaches: the first analyzes the similarity between two
strings, while the other performs a semantic analysis between words. To address the
first problem we useLevenshtein distance[25]. Given two stringsS andT , it performs
all the possible matchings among their characters, obtaining a matrix|S| ∗ |T | from
which the distance between the two words is obtained. This approach can be useful
when the same word appears in different points written with different spellings, but in
general it does not help us to identify two words with the same meaning but different



lexical stems. For analyzing the similarity from a semantics point of view it is necessary
to integrate the system with a dictionary that contains all relevant synonyms5.

4.2 Supporting flexibility in path structures
In order to provide a more flexible support to query process, we also define two flexible
conditions for flexible matching of path structures. Namely, we introduceBELOWand
NEARthat express axis specification in a fuzzy way. Informally, the fuzzy condition
BELOW, inserted into a path expression, allows to extract elements, attributes or text
that are direct descendants of the current node, giving a penalty which is proportional
to the result’s distance from the current node.NEARis a generalization ofBELOW. It
is inserted into a path expression, the selection tree, to extract elements, attributes or
text that are placed close to the current node, giving a penalty which is proportional
to the result’s distance from the current node. In this case the similarity evaluation is
performed within any XPath axis.
Next we give an idea of possible uses of the proposed fuzzy constraint in order to show
their utility.
BELOWOften, users expect to find the information they are looking for are in a par-

ticular node, while in reality it lies in a more deeply nested subtree. For exam-
ple consider the query searching for students that have taken a course of “Eng-
lish” in their university career. The user could guess this information to be in node
<university-career > but curricula could be structured more in detail, e.g.
by putting language exams in a subsection. Students who have structured their cur-
ricula this way could be selected by a query using theBELOWfuzzy constraint.

NEARTheNEARconstruct is motivated as a generalization ofBELOW. In some cases
a query searches information that would be significant even if it located in a node
“close” to the target one. Let us consider again the curricula example. Querying for
someone who has in her/his professional experiences a working holiday in a foreign
country is not easy, because different curricula could use different nodes to store
professional experiences (e.g., some distinguish work abroad from work within the
country, and others do not). The application ofNEARfuzzy constraint in the query
allows to obtain these last kind of curricula as a part of the query result.

The syntax of fuzzy structural constraints is formally defined as follows:

Definition 3 ConstraintBELOW, inserted into the axis of a path expression, allows
to extract elements, attributes or text that are direct descendants of the current node,
giving a penalty which is proportional to the result’s distance from the current node.
The syntax is:

"[{ selection_node" ("NOT")? "BELOW" "node_name }]"

whereselection node is an XPath node name representing the node to be retrieved
as descendant node of the node expressed by the clausenode name. The (optional)
negation operatorNOTis used to negate the similarity flexible constraintCLOSE(as
defined in 3.2).

5 The vocabulary we use is calledJWordNet, and is available athttp://wordnet.
princeton.edu/ .



Definition 4 ConstraintNEAR, inserted into the axis of a path expression, allows to
extract elements, attributes or text that are successors of the current node, giving a
penalty which is proportional to the result’s distance from the current node. The syntax
is:

"[{ selection_node" ("NOT")? "NEAR" "node_name }]"

whereselection node is an XPath node name representing the node to be retrieved
whose path position can differ from the position of the node expressed by the clause
node name. The (optional) negation operatorNOTis used to negate the similarity
flexible constraintCLOSE(as defined in 3.2).

As an example, consider the following query:

\LO\{NEAR::}duration

Here, we search for aduration element placed near aLO element. The degree of
satisfaction of this constraint is a function of the number of steps needed to reach the
duration element starting from theLOone.
Besides the previous flexible constraints, we introduce another derived one, called
APPROXIMATELY, related to fan-out. It allows to select the elements with a given
name that have a number of direct descendants close to the one indicated in the query.
APPROXIMATELYis a derived constraint that can be substituted by a CLOSE con-
straint applied to the result of thecountfunction on the sons of a given node.
As an example, if we suppose that theteachers element contains one ore more
teacher , where eachteacher contains the list ofcourse s (one ore more) where
he/she teaches, we can use the query

\teachers\teacher{APPROXIMATELY[3]::}course

to extract a ranked list of teachers whose top results are teachers that have3 (or a number
close to3) courses.

4.3 Supporting flexibility in matching tree structures

Finally we present a possible proposal to support flexible tree matching. The notation
we propose of partial matching is based on thedeep-similarfunction, allowing to com-
pute the distance between two XML trees based on the concept ofTree Edit Distance
(TED), a well-known approach for calculating how much it costs to transform one tree
(the sourcetree) into another (thedestinationtree). This approach has been widely
used to evaluate structural similarity in XML documents as shown in [26], to correlate
XML data streams as shown in [27], or, in a field close to XML, for the automatic
web news extraction as shown in [28]. Generally speaking, we rely on deep-similarity
to assess the similarity between two arguments of a function appearing in a FuzzyX-
Path query.deep-similarcan be considered as the fuzzy extension of thedeep-equals
function. Before applying thedeep-similarfunction, it is important to clarify when it
will be used during FuzzyPath query evaluation. In FuzzyXPath all path expressions
appearing within a deep-similar comparison6 correspond to the sub-trees rooted in each

6 Paths appearing elsewhere do maintain the usual node-set semantics.



of the nodes in the target node-set. In other words, for each selection path featured in a
comparison we take the trees rooted in each of the nodes obtained interpreting the path
as if it were an ordinary XPath, and then apply deep-similarity to them7 .
The formal definition ofdeep-similaris given below:

Definition 5 (Deep-similar) Given two XML treesT1 andT2, deep-similar(T1, T2) is
the function that returns their degree of similarity as a value in [0,1]. GivenC as
the cost of transformingT1 into T2 using Tree Edit operations,C ∈ [0, 1], this degree
of similarity is given askC , wherek ∈ (0, 1). Therefore, if two trees are completely
different, their degree of similarity is small (inversely proportional to the total cost
of the Tree Edit Operations); if they are exactly the same —both structure-wise and
content-wise— their degree of similarity is 1.

In order to transform the XML treeT1 into T2, our deep-similar function uses the fol-
lowing operations:

Definition 6 (Insert) Given a XML treeT , a XML noden, a location loc (defined
through a path expression that selects a single nodep in T ), and an integeri,
Insert(T, n, loc, i) transformsT into a new treeT ′ in which noden is added to the
first level children nodes ofp in positioni.

Definition 7 (Delete) Given a XML treeT , and a locationloc (defined through a path
expression that selects a single nodep in T ), Delete(T, loc) transformsT into a new
treeT ′ where noden is removed.

Definition 8 (Modify) Given a XML treeT , and a locationloc (defined through a path
expression that selects a single nodep in T ), and a new valuev, Modify(T, loc, v)
transformsT into a new treeT ′ where the content of nodep is replaced byv.

Definition 9 (Permute) Given an XML treeT , a locationloc1 (defined through a path
expression that selects a single noden1 in T), and a locationloc2 (defined through a
path expression that selects a single noden2 in T ), Permute(T, loc1, loc2) transforms
T into a new treeT ′ in which the locations of nodesn1 andn2 are exchanged.

Before these operations can be applied to the source tree, it is necessary to perform
a preprocessing of the XML document divided in two steps. The first step consists in
weighing the nodes within the two XML trees following the approach described in
Section 5, in order to discover the importance they have within the trees. This operation
will provide the basis to calculate the cost of each tree transformation. The second
consists in matching the nodes in the source tree with those in the destination tree.
This step is necessary to outline which nodes will be target of the different Tree Edit
operations. The costs of these Tree Edit Operations will be presented as soon as we
complete a more in depth explanation of the two aforementioned steps.

7 Of course, this turns comparing two pathsS andT into computingdeep-similarityof multiple
pairs of subtrees (potentially as many as the product ofS andT node sets cardinalities) and
taking the maximum (coherently with the typical existential quantification of XPath condi-
tions) of the resulting similarity values. We shall not further elaborate on this issue, as it does
not impact on thedeep-similaritysemantics.



1.   distribute-weight (Tree T, Weight w)
2.   {
3.      wRoot = (fx/my)
4.      annotate the root node with (w_root * w)
5.      for each first-level sub-tree s 
6.      {
7.         w_subTree = b * Ls/LT + (1-b) * Is/IT
8.         distribute-weight(s, (1-w_root)*w_subTree)
9.      }
10.  }

Figure 3. Thedistribute-weightalgorithm

5 Deep-similar

Tree node weighing consists in associating a weight value —belonging to the inter-
val [0,1]— to the nodes of an XML tree, depending on their position within the tree.
Unlike other weighing techniques [29] the weighing algorithm we propose is designed
to maintain a fundamental invariant: the sum of the weights associated to tree nodes
must be equal to1. Weighting techniques based on distance from root and fan-out have
been used in both semi-structured and object-oriented databases to assess data item rel-
evance. However, the ”right” weighting to use may be application and even data-set
dependent. Nevertheless, it can be compared and adjusted with respect to users percep-
tions, e.g., by having the user to provide weights for the schema items [30].
In our framework, this is ensured via a function calleddistribute-weight. As seen in
Figure 3,distribute-weightis a recursive function that traverses the XML tree, annotat-
ing each node with the appropriate weight. The weighting algorithm is initially called
passing it the entire tree to be weighed. The first step is to decide how much of the total
available weight (1) should be associated with the root-node (code line 3). Intuitively,
the weight —and therefore the importance— of any given node must be directly pro-
portional to the number of first-level children nodes it possesses (variablef in code line
3) and inversely proportional to the total number of nodes in the tree (variablem in code
line 3). It is reasonable to assume that this relationship is probably document-set spe-
cific, as it quantitatively represents the ratio of document semantics carried by the root
with respect to the one of internal elements; so it cannot be fixed once and for all. In
our approach, it is calibrated through the use of two parameters,x andy, that are dataset
dependant. In our scenario, after a number of experiments, parameter values0.2246 and
0.7369 (respectively) have proven to give good results. In the example shown in Figure
4, we are interested in finding LOMs which include similar educational metadata.
The FuzzyXPath selection query below (see Section 7)

\LOM{[deep-similar(Educational,\LOM[1]\Educational] }

asks the system to provide just that. The sub-tree rooted inEducational from the
left-hand side LOM is compared for similarity to the sub-tree rooted inEducational
from the right-hand side LOM. Therefore, the algorithm is initially called passing to it
as parameters the sub-tree starting at nodeEducational and a weight of 1 to be
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Figure 4. The example

distributed. The variablewRootis calculated to be30.2246/160.7369, which is equal to
0.165. The second step consists in deciding how to distribute the remaining weight onto
the sub-trees. This cannot be done by simply looking at the number of nodes each of
these sub-trees possesses. Intuitively, the importance —and therefore the weight— of
a sub-tree depends both on the amount of data it contains (stored typically in its leaf
nodes) and on the amount of semantics encoded in its structure (typically, represented
by its intermediate nodes). These considerations are taken into account in code line
7, in which variableLs indicates the number of leaf nodes in sub-trees, while the
variableLT indicates the number of leaf nodes in treeT. On the other hand, variable
Is indicates the number of intermediate nodes in sub-trees, while variableIT indicates
the number of intermediate nodes in treeT. Again, we need to tune our weighting to
the specific scenario by setting a balance between the semantics carried by leaves and
by intermediate nodes. This balance is set by tweaking parameterb. Our experiments
show that in our scenario our algorithm is more effective if we balance the formula
slightly in favor of the leaf nodes by settingb to 0.6. Code line 7, however, only gives
the percentage of the remaining weight that should be associated to each sub-tree. The
actual weight is calculated in code line 8 through an appropriate multiplication, and
passed recursively to thedistribute-weighttogether with the respective sub-tree.
In our running example, the remaining weight (1−0.165), equal to 0.835, is distributed
onto the three sub-trees. The percentage of the weight that is associated to sub-tree
Intended End Useris 0.6 ∗ 2/6 + 0.4 ∗ 2/6, which is equal to 0.333 (see code line 7).
Therefore, the algorithm is called recursively passing sub-treeIntended End Userand
a weight of0.835 ∗ 0.333, which is equal to 0.278. For the sake of conciseness, the
weights associated to the remaining nodes are shown directly in Figure 4.

5.1 Tree Node Matching

Tree Node Matching is the last step in determining which Tree Edit Operations must be
performed. Its goal is to establish a matching between the nodes in the source and the
destination trees. Whenever a match for a given a noden cannot be found in the other
tree, it is matched to thenull value.
In this step, we use an algorithm that takes into account more complex structural prop-
erties the nodes might have, and —for the first time— semantic similarity. It scores



candidate nodesby analyzing how “well” they match thereference node. The candi-
date node with the highest score is considered the reference node’s match.
Regarding structural properties, the algorithm considers the following characteristics:
number of direct children, number of nodes in the sub-tree, depth of the sub-tree, dis-
tance from the expected position, position of the node with respect to its father, positions
of the nodes in the sub-tree, same value for the first child node, andsame value for the
last node. Each of these characteristics can give from a minimum of 1 point to a maxi-
mum of 5 points.
Regarding semantic similarity, the algorithm looks at the nodes’ tag names. These are
confronted using, once again, Wordnet’s system of hyperonyms (see Section 4.1). If the
two terms are exactly the same, 1 point is given, if not their degree of similarity —a
value in the set [0,1]— is considered.

5.2 Costs
Techniques presented in the above Sections 5 and 4.3 determine the costs the Tree Edit
Operations have in our framework:

– The cost of theInsertoperation corresponds to the weight the node being inserted
has in thedestinationtree.

– The cost of theDeleteoperation corresponds to the weight of node being deleted
from thesourcetree.

– The cost of theModify operation can be seen as the deletion of a node from the
sourcetree, and its subsequent substitution by means of an insertion of a new node
containing the new value. This operation does not modify the tree’s structure, it
only modifies its content. This is why it is necessary to consider the degree of sim-
ilarity existing between the node’s old term and its new one. The cost is therefore
k ∗ w(n) ∗ (1 − Sim(n, destinationNode)), wherew(n) is the weight the node
being modified has in thesourcetree, the functionSimgives the degree of similar-
ity between noden and the destination value, andk is a tuning parameter dataset
dependant. Experience in our scenario has shown that a good value fork is (0.9).

– The Permuteedit operation does not modify the tree’s structure. It only modifies
the semantics (if any) that is implicit in the nodes’ order. Therefore, its cost is
h ∗ [w(a) + w(b)], wherew(a) is the weight of nodea, w(b) is the weight of node
b, andh is a tuning parameter. Again, experience has shown that a good value forh
is (0.36).

All the above cost-formulas are directly proportional to the weights of the nodes being
treated. All operations, exceptPermute, can also be used directly on sub-trees as long
as their total weights are used.
In the case of our running example (see Figure 4), the matchings, the corresponding
tree edit operations, and their costs are presented in the following table. The cost of the
Modify operation in the third row is computed as0.9 ∗ 0.033 ∗ (1 − 0.769), while the
cost of thePermuteoperation in row four is computed as0.36 ∗ [0.278 + 0.278].

Source DestinationOperation Cost
null Difficulty Insert 0.278

Semantic Density null Delete 0.278
learner student Modify 0.006

Intended End User / Learning Resource TypeNA Permute 0.2



The degree of similarity between the twoEducational sub-trees can therefore be
calculated as0.5(0.278+0.278+0.006+0.2) (in this example we supposek = 0.5 in the
similarity formula), which evaluates to 0.589. This means that theEducational sub-
trees of the two LOMs are quite different. If we had applied the same algorithm to the
entire LOM trees, had they differed only in theirEducational sub-trees, a much
higher degree of similarity would have been obtained.

6 Integrated Query Evaluation

We are now ready to show integrated execution of structure- and content-related flexible
queries. Fuzzy constraints on content and structure can be composed within a single
query by means of simple logical connectives, that, in this context, are redefined to take
into account the different semantics of the flexible constraints. Following the standard
fuzzy approach [31], extended logical connectives can be straightforwardly defined as
follows:

– NOTThe negation preserves the meaning of complement, considering a fuzzy set
A, with membership functionµ, for each elementa, if a ∈ A has membershipµ(a)
thena ∈ Ā has membership1− µ(a).

– ANDGiven two fuzzy setsA1, A2 with membership functionsµ1, µ2, and given
the elementsa1 ∈ A1, a2 ∈ A2 thena1 AND a2 is traditionally equal to the
intersection of the two elements that in the Fuzzy Set Theory is evaluated by means
of a T-norm function as, for instance, themin function. Henceµ(a1 AND a2) =
min(µ1(a1), µ2(a2)).

– ORGiven two fuzzy setsA1, A2 with membership functionsµ1, µ2, and given
the elementsa1 ∈ A1, a2 ∈ A2 then a1 OR a2 is evaluated by means of
a T-conorm function as, for example, themax function. Henceµ(a1ORa2) =
max(µ1(a1), µ2(a2)).

As one would expect, the interpretation of the disjunction is symmetric with respect
to conjunction. Consider now a query combining structure and content-related flexible
features:
\LOM{[deep-similar(educational,\LOM[1]\educational] AND

\\duration CLOSE PT1H }
The evaluation of such a query is the result of a four-steps process:
1. The query is transformed into a crisp one, capable of extracting data guaranteed to

be a superset of the desired result. In the example we obtainLOMwhich extracts all
the LOMs, which are clearly a superset of the desired result.

2. Each fuzzy constraintpi is evaluated w.r.t. each of the extracted data’s items, and a
degree of satisfactionvi is assigned to it.
In this example, we evaluate deep-similarity betweenEducational sub-items,
and then take into account to what degree the LOM’s duration isCLOSEto one
hour (e.g., using a dictionary). For the first item of the result-set (the right-hand
side LOMin Figure 4), the former evaluates to 0.238, and the latter to 0.67 (45
minutes against one hour).

3. An overall degree of satisfaction is obtained for each item in the result. This is done
considering all constraints of the path expression in conjunction. In our example,
we take the smallest of the two degrees of satisfaction (0.238).

4. The items in the result are ordered according to the degree of satisfaction.



Figure 5. FuzzyXPath client architecture.

6.1 User-centered Query Execution

Even if deep-similarity greatly increases FuzzyXPath recall w.r.t. standard XPath, for
some advanced applications even the idea of taking all flexible constraints in conjunc-
tion can be too rigid. An alternative, a user-centered approach can be taken allowing
advanced users to explicitly bind degrees to variables and to define their own function
to calculate the final degree of satisfaction. To this end, we define aWITH RANKING
clause in order to combine the bound values in the final ranking. The following exam-
ple shows a FuzzyXPath expression with two fuzzy conditions:

\LOM{[deep-similar(educational,\LOM[1]\educational] | v1 AND
\\duration NEAR PT1H | v2 WITH RANKING v1 * v2}

The ranking of the result set is obtained as the product of the values bound tov1 and
v2. More complexWITH RANKINGclauses can involve linear combination of the values
bound to the ranking variables (e.g.,WITH RANKING 0.4* v1 + 0.6 * v2 ) as well
as a normalized weighted average.

7 Implementation of FuzzyXPath Query Execution Engine

In this Section, we discuss some issues regarding FuzzyXPath implementation. Fig-
ure 6 illustrates the prototype software environment we have developed (using .NET
2.0 technology) for the execution of FuzzyXPath queries. The tool allows us to import
any valid XML data file, to display its contents in a special-purpose text pane, and to
perform FuzzyXPath queries against it. Queries can be typed manually, or loaded from
a file in which they have been previously stored, and remain visible at all times on the
left hand side of the interface. The results for executed queries can be seen in theXML
Result pane, or in a special “ranked” format in theRanked Result pane. The
result cardinality (i.e., the number of returned nodes) is show at the bottom of the inter-
face, together with the total query execution time. Query results can also be filtered by
indicating the maximum ranking value to be accepted. Finally, our tool also supports
the definition of “projects”, in which we jointly store an XML data source and a set of
FuzzyXPath queries.
Theinterface(see Figure 6) is mainly devoted to editing the queries. The user is assisted
with a strong syntactic feedback that prevents the composition of incorrect queries.



Figure 6. FuzzyXPath client interface.

When a query has been completed, it is sent to theengine, where it goes through a se-
quence of steps before the engine returns the result set. First of all, the query is parsed
and translated into a set of crisp queries that can be managed by a standard XPath en-
gine. The nature of the translation depends on the fuzzy constraints used in the original
query.
The results of the crisp queries are then passed to a special-purpose fuzzy constraint
evaluator. Once the fuzzy constraints have been evaluated, the results are sorted and
filtered to produce the end results.
Our current FuzzyXPath query execution environment consists of about 80 C# classes.
An overall picture of the system’s architecture is shown in Figure 5.

7.1 Evaluation

In order to provide a preliminary evaluation of the performance of our implementation,
we defined a set of three simple queries and executed them against different sized data
files. The data files used for the evaluation contain references to publications, used as
teaching material, much in the line of our sample scenario.
The first query (referenced asSingle, since it only uses one fuzzy constraint) asks the
engine to return all the publications that have a price that isclose to thirty euros. Such
a query is written in FuzzyXPath as
//publication {[price CLOSE 30] }.
The second query (referenced asTwo-step) asks the engine to return the titles of the
publications that have a price that isclose to thirty euros. This query is written in
FuzzyXPath as
//publication {[price CLOSE 30] }/title .



Figure 7. Query performance

The third query (referenced asDouble, since it introduces a second fuzzy constraint)
asks the engine to return all publications whose price that isnear thirty euros and that
were published in a yearclose to 2003. This query is written in FuzzyXPath as
//publication {[price CLOSE 30 and year CLOSE 2003] }.
These three queries were executed against four differently sized data sets. The first
was circa10KB in size and contained56 publication references; the second was circa
100KB in size and contained596 publication references; the third was circa1MB in
size and contained6052 publication references; the fourth was circa10MB in size and
contained60972 book references. The performance evaluation tests were performed
on an AMD Athlon XP2600 + 1.92 GHz computer, with512MB of RAM running
Windows XP Service Pack 2.
Figure 7 presents a stacked-line chart of the query results. As we can see, the tool
performs quasi-logarithmically. On thex-axis we have each step represents a tenfold
increase in the size of the data set being used. Similarly, on they-axis we have a tenfold
increase of the time. We experienced a deviation from the expected behavior when
performing theDoublequery on the10MB data set. The reason is due to the saturation
of our CPU.
Table 1, on the other hand, gives the number of nodes returned by each query for each
data set.
Similar experiments were performed using other flexible constraints, obtaining re-
sults that confirmed that the tool performance are good. As an example, we eval-
uated the querydeep-similar(/LOM/book, /LOM/book[1]) obtaining the
stacked-line chart of the query results shown in Figure 8. In this case the graphic shows
a linear time increase with respect to the size — number of nodes — of the documents.
Note that if the complexity of the nodes to compare increases, the evaluation time in-



Size of data setSingleTwo-stepDouble
10 KB 32 35 23
100 KB 338 371 240
1 MB 3444 3767 2476
10 MB 34842 38108 25042

Table 1.Number of nodes returned by the queries.

Figure 8. Query performance with the deep-similar constraint, the x-axis shows the number of
document nodes while the y-axis represents the execution time in ms

creases exponentially with respect to this complexity (that is in general limited in real
use cases).

8 Conclusion and Outlook

In this paper, we presented FuzzyXPath, a complete framework for querying semi-
structured XML data based on Fuzzy Set Theory. FuzzyXPaths main advantage is pre-
venting silence that can be caused by (1) data not following a schema precisely, (2) the
user providing a blind query (e.g., because she does not know the schema or exactly
what she is looking for), and (3) data being produced using slightly diverse schemas,
e.g., due to schema evolution). All three phenomena listed above are highly relevant for
practical applications, specifically, they have been documented where users of XML
query environments were provided with schema summaries rather than with complete
schemas. FuzzyXPath flexibility is achieved through the integrated evaluation of fuzzy
constraints, and fuzzy tree matching. Both evaluations must rely on domain semantics
for dealing with variations in vocabulary: our approach currently relies on external dic-
tionaries like WordNet for calculating semantic similarity. However, we believe that
more small domain specific dictionaries should be used to obtain better results and to
improve performance at the same time. Our future work will, in fact, concentrate on
further validating our approach using domain specific dictionaries.
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