
TeXOR: Temporal XML Database on an Object-Relational
Database System

Kjetil Nørvåg,� Marit Limstrand, and Lene Myklebust
Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway

Abstract

Storage costs are rapidly decreasing, making it feasible to store larger amounts of data in
databases. This also makes it possible to store previous versions of data in the databases, instead
of only keeping the last version. Recently, the amount of data available in XML has been rapidly
increasing. In this paper, we describeTeXOR, a temporal XML database system built on top of an
object-relational database system. We describe the TXSQL query language used in TeXOR for
querying temporal XML documents stored in the system, discuss storage alternatives for XML
documents in such a system, and some details about the implementation of the current TeXOR
prototype.

1 Introduction

Storage costs are rapidly decreasing, making it feasible to store larger amounts of data in databases.
This also makes it possible to store previous versions of data in the databases, instead of only keeping
the last version. Recently, the amount of data available in XML has been rapidly increasing. One of
the advantages of XML is that a document itself contains information that is normally associated with
a schema. This makes it possible to do more precise queries, compared to what has been possible
with unstructured data. It also has advantages for long-term storage of data: even though the schema
has changed, the data itself can contain sufficient information about the contents, so that meaningful
queries can be applied to the data.

When previous versions of data are stored in the database, it is possible to search in the historical
(old) versions, retrieve documents that were valid at a certain time, query changes to documents, etc.
Our main context is storage of XML documents, and querying versions of these. Thus, we will in this
paper restrict the discussion totransaction-time, i.e., versions are timestamped with the commit time
of the transaction that created the versions (in contrast tovalid time, where a time interval is associated
with every tuple/object, denoting when the object is valid in the modeled world).

A temporal database can be realized either through theintegrated approach, in which the internal
modules of a DBMS (database management system) are modified or extended to support time-varying
data, or astratum approach, in which a layer converts temporal query language statements into con-
ventional statements, executed by an underlying database system [10]. Although we consider the

�Corresponding author. Email address:Kjetil.Norvag@idi.ntnu.no

1



integrated approach as the long-term solution, it is not appropriate for storing and querying temporal
XML data today, for the simple reason that no such system with product quality exists. Thus, for the
time to come, a stratum approach is the most adequate solution. The stratum approach also makes
it possible to utilize the existing support for XML data management in the system (including XPath
based queries), in addition to benefit from the quality of the system from a database point of view.

In order to demonstrate the usefulness of a temporal XML databases in general, and gain ex-
perience from actual use of such systems, we have implementedTeXOR, a temporal XML database
system on top of the commercial object-relational database system Oracle. In this paper, we describe
the functionality of TeXOR, and how we implemented it on top of Oracle. It should be emphasized
that although Oracle is used in our prototype, the use of JDBC between TeXOR and Oracle means that
it should not be too difficult integrating TeXOR with another system providing support for XML data.
It should also be noted that even if we call TeXOR a temporal XML database system, it can also be
used for storing general temporal data. However, the design decisions have been made and optimized
based on the assumption that temporal XML storage will be its most important application.

The organization of the rest of this paper is as follows. In Section 2 we give an overview of related
work. In Section 3 we give an overview of storage of XML documents. In Section 4 we describe
the functionality provided by TeXOR. In Section 5 we describe the design and implementation of
TeXOR. Finally, in Section 6, we conclude the paper and outline issues for further research.

2 Related Work

A model for representing changes in semistructured data (DOEM) and a language for querying changes
(Chorel) were presented by Chawathe et al. in [3, 4]. Chorel queries were translated to Lorel (a lan-
guage for querying semistructured data), and can therefore be viewed as a stratum approach. The
work by Chawathe et al. has later been extended by Oliboni et al. [15].

In order to realize an efficient temporal XML database system, several issues have to be solved,
including efficient storage of versioned XML documents, efficient indexing of temporal XML docu-
ments, and temporal XML query processing. Storage of versioned documents is studied by Marian
et al. [11] and Chien et al. [5, 6, 16]. Chien et al. also consider access to previous versions, but only
snapshot retrievals. Temporal query processing is discussed in [12, 13].

An approach that is orthogonal, but related to the work presented in this paper, is to introduce
valid time features into XML documents. One such approach is presented by Grandi and Mandreoli
in [8].

Obviously, our work is heavily inspired by previous work in extending SQL to the temporal
domain, for example TSQL2 [17], and previous systems based on the stratum approach. A good
overview of the stratum approach, and systems using it, is given in [19].

Other relevant work includes work on temporal document databases [1], temporal object query
languages [7], and temporal object database systems [18].

3 Storage of XML documents

In order to put our work in context, we will in this section give an overview of alternative approaches
for storing XML documents, and describe in more detail the XML support in Oracle, the system that
is used by TeXOR.

2



3.1 Approaches

At first, XML documents were mostly stored as ordinary text files. This is still common. However,
in many cases the features provided by DBMSs are desired, for example support for transactions,
recovery and querying. As a result several approaches to support these features have been introduced.

Before we describe the approaches in more detail, it can be useful to have in mind that what will be
the best approach for a given application, depends very much on whether the XML documents mostly
are document-centric (this is often documents meant for human consumption, like books, papers, etc.),
or data-centric (this is often documents meant for computer consumption, and that uses XML as a data
transport). Many documents also have features of both categories, we call these hybrid documents.

Several approaches to XML storage in DBMSs have been proposed, and can be classified into
three categories:

� XML-enabled database systems: Traditional database systems (typically object-relational
systems), extended with support for XML documents. Examples of XML-enabled database
systems are Oracle, IBM DB2, and Microsoft SQL Server. The supported features include
storing/retrieving XML documents, as well as query capabilities. Examples of XML-enabled
database systems are Oracle, IBM DB2, and Microsoft SQL Server. In general, the XML doc-
uments can be stored in two ways:

– In CLOBs:1 Each document is essentially an attribute in a tuple. In order to make it
possible to efficiently query the documents, the contents is indexed (for example in a text
index), in order to avoid scans of all the documents stored in one relation. One of the most
important advantages of this approach is efficient retrieval of single documents (no need
for reconstruction/join operations). This is often a good approach for document-centric
documents, where retrievals of complete documents/parts of documents are frequent.

– Mapped to relations: The documents are mapped to relations, for example using atable-
based mapping or a object-relational mapping (cf. [2] for a more detailed description
of the mapping techniques). This is often a good approach for data-centric documents,
where we usually are not interested in retrieving the whole documents, only parts of the
data stored in it. These documents also often have a regular structure because they are
computer-generated, making the mapping easier.

� Native XML database systems: These systems define a data model for XML documents (for
example the DOM or XPath data model), and all retrieval/storage is based on this model. This
makes it possible to support XML-specific features better and more efficiently than the other
approaches. Examples of native XML database systems are the Tamino XML Server, eXcelon
Extensible Information Server, and X-hive/DB.

� Middleware: Transfer data between XML documents and databases, usually using protocols
as ODBC/JDBC. One variant is transferring XML documents into data in tables. Another ap-
proach is simply to store the XML documents as CLOBs in the database system. Often, the
support for queries when this approach is used, is limited.

3.2 XML support in Oracle

Support for XML documents in Oracle has evolved from a middleware approach in Oracle8i, where
the documents where stored outside the database, to XML support and the new XML datatype in the

1A CLOB is a large object that holds text data, and is similar to a BLOB, which can store any kind of binary data.

3



database in Oracle9i Release 1 (this is the version that TeXOR is based on).2

Oracle supports both storage of documents in CLOBs, as well as mapping to relations. Our
intended application area is mostly document-centric, and exact round-trip (supporting exact round-
trip means that a document retrieved from the database is exactly the same as it was when it was stored)
of documents is required. As a result, CLOB storage is the most appropriate of the two alternatives,
and here we restrict the description to this alternative.

A document stored in a CLOBs in an Oracle relation, is (logically) essentially stored in an attribute
of the relation, where the attribute is ofXMLType. It should be mentioned that one disadvantage of
this approach, is that even if only a small part of a document is updated, the whole document has
to be updated. However, this is only a problem for very large documents, and many of these can be
expected to be fairly static. The XMLType has a set of functions operating on the CLOB, of which the
most important for our purpose arecreateXML() for storing documents, andgetClobVal() for
retrieving an XML document from an attribute.

Two indexing techniques can be used in Oracle for indexing XMLType columns: 1) functional
indexes, and 2) text indexes. Functional indexes can be declared as SQL/XPath queries, so that sub-
sequent uses of the particular query queries do not involve parsing a lot of documents.

In order to query XML documents stored in XMLType attributes using SQL, it is possible to use
XPath expressions in the query. It is also possible to use theCONTAINS andWITHIN functions for
ordinary text searching.

4 TeXOR Functionality

In this section we describe the functionality provided by TeXOR. We describe the query language,
and how to access the system through the terminal interface and the API.

4.1 The TXSQL query language

The TXSQL query language is an extension of the XPath extended SQL query language that Oracle
uses, and it also contains support for declaring and querying temporal tables.

4.1.1 Creating tables

A temporal tables is created by using thet time modifier in acreate table statement. For
example, the following statement creates a temporal table where each row contains an oid and an
XML document:

create table usertable t_time (
oid number(8),
xml sys.xmltype)

The result of this statement will beTable created. Each tuple in such a table contains times-
tamp(s), but this is transparent to the user. As will be shown later, the data might be stored in more
than one Oracle table, in order to make some operations more efficient.

2After we made our prototype implementation, Oracle9i Release 2 with even better XML support has been released.

4



4.1.2 Querying time in temporal tables

Although the timestamps of the tuples normally are hidden, they can be retrieved by explicitly declar-
ing them in the query statement. The (normally hidden) column containing the timestamp is named
t start, and is used inselect-part of queries when querying temporal tables. For example, issu-
ing the following query:

select oid, t_start
from usertable

gives the following results (the timestamp consists of date and time):

oid t_start
--------------------------
1 20.05.02 12:15:00
2 23.05.02 08:05:00

If t start is not included explicitly, the timestamp is not returned. This also applies when using
“*”. If only “*” is used to retrieve all columns, the timestamp is not returned. This is illustrated by
the following query:

select *
from usertable

which gives the following results:

oid xml
------------------
1 xmltype()
2 xmltype()

As can be seen, no timestamp is returned. This also illustrates another aspect of XML support in
Oracle: the result is a set ofxmltype(). In order to retrieve the XML data itself, which is what we
normally would want,xml.getclobval() has to be used.

A version in a temporal database is valid in a certain time interval, fromt start to t end.
Querying the end timet end can be performed similar to querying for the start time as shown above,
and the end timestamp is essentially the start timestamp of the next version.

4.1.3 Querying particular versions

When querying a temporal table, we often want to restrict the query to particular versions. This could
for example be the first version, versions valid at a particular time, or all versions valid during a
particular time interval. In TXSQL, theversion function is used in thewhere part of theselect
statements in order to determine which versions should be involved in the query. In order to specify
versions, one of the following parameters is used (also illustrated in Figure 1, which shows which
versions will be returned by using the different parameters):

� all: all versions.

� first: the first version.

5



Figure 1: Some version parameters and the versions they will return.

� last: the last version.

� date(timestamp): uses a particular timestamp as parameter (we use the DATE type in
Oracle for storing timestamps), and returns the versions valid at that time.

� period(����������, ����������): uses two timestamps as parameters, and returns all
versions valid in the period from���������� to ����������.

If version is not specified, only the current version will be queried, in order to be compatible with
non-temporal queries.

Example of use of version: The following query illustrates how to retrieve all versions of the
tuple with a given oid:

select x.xml.getClobVal()
from usertable
where oid = 123 and version(all)

Note thatxml is the name of the attribute containing the XMLType data, and that the contents is
retrieved by usinggetClobVal(). The result is:

x.xml.getClobVal()
-----------------------------------
<name>Per</name><tel>73882934</tel>
<name>Per</name><tel>56894534</tel>

4.1.4 Non-implemented features

In this section we give an overview of some interesting features of the TXSQL-language that are not
yet implemented. This includes statements for vacuuming and control of granularity.

6



Figure 2: The TX terminal interface.

Vacuuming. Even with cheap disks, it will sometimes not be feasible to store all versions. The
vacuum(date | period) statement is applied in order to physically delete all versions created
before a particular time, or delete all versions created during a particular time period. A current
version (non-deleted and most recent version) will not be removed during vacuuming even if it was
created before the particular date or time period. Example:

alter table usertable vacuum(date(01.01.00))

Granularity control. It should be possible to state how close to each other two versions can be in
the database by using agranularity statement. For example,set granularity day(3)
says that if a new version is inserted, and it is less than 3 days since the previous version was inserted,
only the last version will actually be kept. Granularity control can be useful in some applications
where intermediate versions are not required to be kept (or not wanted). Such versions can for ex-
ample be documents under revision/updating, where only the resulting document is really of interest.
Granularity control can be an alternative to the use of traditional versioning/use of revisions. Another
use of granularity is in vacuuming. Often, when versions gets older, it is not necessary to have a large
number of versions created during short time interval. If versions were originally created several times
a day, some months later one version for each day might suffice. This can be stated as, for example:

granularity_vacuum(date(01.01.98), day(5))

4.2 Interface

Users of TeXOR have two interfaces available to the system. One interface is a terminal interface,
similar to SQL*Plus in Oracle, and the other is an API for interaction through Java programs.

4.2.1 Terminal interface

The terminal interface TX, illustrated by a screenshot in Figure 2, has a functionality similar to
SQL*Plus in Oracle, but with some extended editing features. From TX the user can connect to

7



the database, enter an TXSQL query, and execute the query. The result from the query is displayed in
the terminal window.

4.2.2 API

Even though the terminal interface is nice for testing and experimenting, when using TeXOR from
a program, the API is more useful. Using the TeXOR API, the query is submitted as a string to the
TeXOR object, and the result can be retrieved by calling another function in the interface.

5 Design of TeXOR

The main part of TeXOR is essentially a middleware layer between the TX/API interfaces and the
Oracle DBMS. TeXOR rewrites the TXSQL expressions into SQL, and post-processes the results
before they are returned to the user/application. It also manages some extra metadata, for example
which tables are temporal tables. The metadata is itself stored in Oracle. In the rest of this section,
we will describe in more detail how data is stored. It should again be noted that in the cases where
we have several alternative approaches to choose from, the application of XML storage has been the
driving decision factor.

5.1 Timestamp management

There are several alternative approaches to store the timestamp in the database. One is to store the
timestamp inside the XML document. However, retrieval of the timestamp is expensive with this
alternative. A better alternative in the context we are working, is to store timestamps together with
identifier in a separate table. For example, if one table is used to store both historical and current
versions, and the user creates a tableUsertable with the column XML, the following table will
actually be created (and managed):

Usertable {oid, xml}
Time_usertable {doc_id, oid, start_time, end_time}

The actual storage of timestamps in TeXOR will be described below.
Timestamps will in our system only be used for retrieval/querying purposes, and not for concur-

rency control or similar purposes. For this reason, it is not criticalwhen the timestamp is decided,
as long as all document versions stored during one transaction are assigned the same timestamp.3 If
the actual commit timestamp should be used, it would be necessary to postpone until commit time
the updates to the table containing the timestamps. This would increase commit time considerably, so
that instead, we decide transaction timestamp when the first document is stored in a transaction, and
this timestamp also for the other documents stored during this transaction.

5.2 Storage of versions

As described previously, XML documents can be stored in Oracle either as 1) CLOBs or 2) by ex-
tracting documents into tables. In the TeXOR prototype, only CLOB storage is supported. The main
reason for this decision, is that the CLOB alternative 1) permits exact round-trip of documents, and
2) it uses text indexes, which should enhance efficiency for typical XML-queries in our application
areas, and in particular for XPath-queries which are supported by this storage alternative.

3This is a simplification. For a more thorough discussion on this topic, we refer to [9] and [14].

8



TX3 H + C C

TX2 H C

TX1 H + C

Figure 3: Storage alternatives.

As illustrated in Figure 3, there are several alternative approaches for storing a temporal relation:

� TX1: Store both historical (previous) and current versions of the data in one relation. This is the
easiest alternative, and in this case the temporal table is essentially the non-temporal equivalent
with additional timestamp attributes for start and end time. Although simple to realize, this
approach can have problems in some queries for current versions. If a table scan is necessary,
it is necessary to scan all the historical versions in addition to the current versions.

� TX2: Store historical and current versions in separate relations. Using this approach, the previ-
ous current version is moved to the historical relation when it is updated, and the new current
version inserted into the current version relation. Using this approach, only start time is needed
in the current version relation, and that might save some space. The most important advantage
of this approach is efficient queries for current versions, as all these are stored in a separate
table. This table is likely to be much smaller than the size of the historical table.

� TX3: Store current versions in a separate relation, and historical versions plus a copy of current
versions in another relation. A possible advantage of this approach is that queries for current
versions are efficient, and at the same time queries involving all versions are simple because
only one table is involved. However, this is not likely to outweight the disadvantages of using
more space, which will in particular be a problem in the case of few versions of each tuple.

Based on the informal arguments given above, we decided to use alternative TX2. This alterna-
tive also has the additional advantage of simplifying the vacuuming process, because only historical
versions need to be considered. The tables that are created in the ORDBMS for one temporal table in
TeXOR, are summarized as an example in Figure 4.

6 Summary

We have in this paper described stratum temporal XML database management, based on an object-
relational database system. In order to provide support for querying temporal data, we designed the
TXSQL query language, which is SQL extended with support for querying versions and temporal
aspects. The ideas have been realized in the TeXOR prototype, where most aspects described in the
paper have been integrated, except vacuuming, granularity control, and some of the version selection
support.

As a result of using a stratum approach, some problems and bottlenecks are inevitable. For ex-
ample, no efficient time-index for our purpose is available, and query optimization can be a problem
when part of the “knowledge” is outside the database system. Thus, we suspect that for large amounts

9



OID XML
3 �name	Ola�/name	

4 �name	Kari�/name	
�tlf	555 4826�/tlf	

5 �name	Lise�/name	
�age	26� 
age	

(a) Usertable

DocOID OID Start Time
3 3 20.04.02

12:45:00
1 4 24.04.02

08:05:00
2 5 03.05.02

09:00:00

(b) time Usertable

OID XML
1 �name	Kari�/name	

�tlf	555 2345�/tlf	
2 �name	Lise�/name	

�age	24�/age	

(c) Usertableold

DocOID Oid Start Time End Time
1 1 02.03.02 24.04.02

12:00:00 08:05:00
2 2 20.03.02 03.05.02

07:15:00 09:00:00

(d) time Usertableold

Figure 4: ORDBMS tables used for one TeXOR temporal table.

of data, where disk accesses are needed, query cost can be high. However, it should be kept in mind
that with the improving size of main memory the effect of this is not necessarily disastrous. For
example, a desktop computer today often has 512MB or more of main memory.

It should be noted that even if we call TeXOR a temporal XML database system, it can also be
used for storing general temporal data. However, the design decisions have been made and optimized
based on the assumption that temporal XML storage will be its most important application.

The rationale behind development of TeXOR was to gain experience in temporal XML data man-
agement, and results so far have been useful input to the V2 project, which is another temporal XML
database project we are currently working on (see [14]). In the V2 project, we study more in more
detail the aspects of efficiency in temporal XML databases. V2 is based on an integrated approach,
where also the more low-level parts of the system are implemented.

Acknowledgments

We would like to thank Jon Olav Hauglid for help during the implementation of TeXOR, and for
volunteering for the job as database administrator. We would also like to thank Gregory Cobena for
providing us with temporal XML testdata.

References

[1] M. J. Aramburu-Cabo and R. B. Llavori. A temporal object-oriented model for digital libraries
of documents.Concurrency and Computation: Practice and Experience, 13(11), 2001.

10



[2] R. Bourret. XML and databases, February 2002 (most recent version available at
http://www.rpbourret.com/xml/XMLAndDatabases.htm).

[3] S. S. Chawathe, S. Abiteboul, and J. Widom. Representing and querying changes in semistruc-
tured data. InProceedings of the Fourteenth International Conference on Data Engineering,
1998.

[4] S. S. Chawathe, S. Abiteboul, and J. Widom. Managing historical semistructured data.TAPOS,
5(3), 1999.

[5] S.-Y. Chien, V. J. Tsotras, and C. Zaniolo. A comparative study of version management schemes
for XML documents (short version published at WebDB 2000). Technical Report TR-51, Time-
Center, 2000.

[6] S.-Y. Chien, V. J. Tsotras, and C. Zaniolo. Version management of XML documents: Copy-based
versus edit-based schemes. InProceedings of the 11th International Workshop on Research
Issues on Data Engineering: Document management for data intensive business and scientific
applications (RIDE-DM’2001), 2001.

[7] L. Fegaras and R. Elmasri. A temporal object query language. InProceedings of the Fifth
International Workshop on Temporal Representation and Reasoning, 1998.

[8] F. Grandi and F. Mandreoli. The valid web: An XML/XSL infrastructure for temporal manage-
ment of web documents. InProceedings of Advances in Information Systems, First International
Conference, ADVIS 2000, 2000.

[9] C. S. Jensen and D. B. Lomet. Transaction timestamping in (temporal) databases. InProceedings
of the 27th VLDB Conference, 2001.

[10] C. S. Jensen and R. T. Snodgrass. Temporal data management.IEEE Transactions on Knowledge
and Data Engineering, 11(1), 1999.

[11] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-centric management of versions in
an XML warehouse. InProceedings of VLDB 2001, 2001.

[12] K. Nørvåg. Algorithms for temporal query operators in XML databases. InProceedings of Work-
shop on XML-Based Data Management (XMLDM) (in conjunction with EDBT’2002), 2002.

[13] K. Nørvåg. Temporal query operators in XML databases. InProceedings of the 17th ACM
Symposium on Applied Computing (SAC’2002), 2002.

[14] K. Nørvåg. V2: A database approach to temporal document management (submitted for publi-
cation), 2002. Available from http://www.idi.ntnu.no/�noervaag/papers/V2.pdf.

[15] B. Oliboni, E. Quintarelli, and L. Tanca. Temporal aspects of semistructured data. InProceeding
of TIME-01, 2001.

[16] C. Z. Shu-Yao Chien, Vassilis J. Tsotras. Efficient management of multiversion documents by
object referencing. InProceedings of VLDB 2001, 2001.

11



[17] R. T. Snodgrass (ed.), I. Ahn, G. Ariav, D. S. Batory, J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Kfer, N. Kline, K. G. Kulkarni, T. Y. C. Leung, N. A. Lorentzos,
J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada.The TSQL2 temporal query language.
Kluwer Academic, 1995.

[18] A. Steiner. A Generalisation Approach to Temporal Data Models and their Implementations.
PhD thesis, Swiss Federal Institute of Technology, 1998.

[19] K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum approaches to temporal DBMS imple-
mentation. InProceedings of the 1998 International Database Engineering and Applications
Symposium, 1998.

12


