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Abstract—The bag of words model has been actively adopted
by content based image retrieval and image annotation tech-
niques. We employ this model for the particular task of pedes-
trian detection in two dimensional images, producing this way
a novel approach to pedestrian detection. The experiments we
have done in this paper compare the behavior of discriminative
recognition approaches that use AdaBoost on codebook features
versus Adaboost trained on primitive features that may be
extracted from a two dimensional image. By primitive features we
refer in this paper to Haar features and Histogram of Oriented
Gradients both being extremely used in object recognition in
general and in pedestrian detection in particular. The conclusion
of our experiments is that the codebook representation performs
better than the primitive feature representation.

I. INTRODUCTION

The detection of humans in still images and especially in
traffic scenarios is an important problem for artificial vision
and pattern recognition. A robust solution to this problem
would have various applications to autonomous driving sys-
tems, video surveillance, image retrieval.

In general, the goal of pedestrian detection is to determine
the presence of humans in images and videos and return infor-
mation about their position. The problem of detecting pedestri-
ans has a high degree of complexity because of the large intra-
class variability, as pedestrians are highly deformable objects
whose appearance depends on numerous factors:
• variability of appearance due to the size, color and texture

of the clothes, or due to the accessories (umbrellas, bags
etc) that pedestrians may carry;

• irregularity of shape: pedestrians may have different
heights, weights ;

• variability of the environment in which they appear
(usually pedestrians exist in a cluttered background in
complex scenarios whose look is influenced by illumina-
tion or by weather conditions);

• variability of the actions they may perform and positions
they may have (run, walk, stand, shake hands etc).

The inter and intra-class variability of pedestrians makes the
task of a uniform representation extremely difficult. That is the

width and height of the 2D image corresponding to perfectly
framed pedestrians varies a lot. That is why the number of
visual features that can be extracted for a pedestrian is not
constant. Also, we may choose from a variety of features and
as the number of features increases so does the complexity of
the recognition algorithms.

In this paper we perform a study of two types of represen-
tations used for pedestrian detection:
• Representation based on primitive features: we have

extracted relevant visual features in the field of pedes-
trian detection, namely Haar and Histogram of oriented
Gradient (HoG).

• Representation based on codebook computed from prim-
itive features.

We apply the same classification algorithm to both representa-
tion, for features computed on images in benchmark datasets.
We notice that the codebook representation provides better
detection results than the representation using primitive visual
features.

The novelty of the paper resides in the application of the
codebook representation for Haar and Histogram of Oriented
Gradient features to the particular task of pedestrian detection
in two dimensional images.

II. RELATED WORK

The two-dimensional approaches to pedestrian detection
scan the entire image space (process that can be very slow
and prone to false detections). The development of 2D pattern
analysis techniques for recognizing pedestrians has shown
a strong progress. These pattern analysis techniques include
methods to detect the pedestrian shape or walking motion.

Shape techniques rely on detecting spatial human features,
and are the most commonly used methods. For example [1],
[2], [3] used a shape finding method called the Chamfer system
to find pedestrian shapes with a set of hand crafted image
templates of pedestrians in different poses.

Haar wavelet transform (essentially multiple scaled edge
detection) is used by [4], [5] to extract a pedestrian shape



representation. A Support Vector Machine is then trained to
learn a model of pedestrians in a front/rear pose, producing
strong results. [6] introduced gradient orientation histograms
for pedestrian detection, and developed a recognition system
using Support Vector Machines. In [7] the classification is
performed based on the vertical symmetry that the human
figure exhibits. [8] have developed very efficient cascade
classifier to recognize image patterns. Originally created for
face detection and then applied to pedestrian detection for
surveillance cameras [9], these classifiers are trained by an
exhaustive selection of the best weak classifiers, then combin-
ing these weak classifiers they form a strong classifier, with
impressive results.

Motion techniques are used to detect human walking pat-
terns in image sequences. [10] use a model of the human gait
in various poses to detect temporal patterns which resemble
walking pedestrians. However this method will not detect
stationary pedestrians nor any pedestrian not moving across
the camera’s field of view.

The bag-of-words model has been used intensively in ob-
ject recognition but few algorithms are implemented for the
particular task of pedestrian detection in intensity images.
For example [11] use the model for representing high-level
concepts in images; the high-level concepts correspond to a
vocabulary used for Content Based Image Retrieval. The BoW
model is used by [12] to predict the presence of an object
within an image and it helps to accurately segment instances
of object classes in images without any human interaction.

III. METHOD DESCRIPTION AND SYSTEM ARCHITECTURE

This paper makes a study of the behavior of AdaBoost
classification algorithm with respect to the task of pedestrian
detection in two-dimensional images. The study compares
the detection rate of the classification when using primitive
features (Haar, HoG) and when using the bag-of-words model
for the same features. Figure 1 depicts our approach. The main
steps are the following:

1) Extract primitive features from different datasets. By
primitive features we mean: Haar wavelets, HoG fea-
tures.

2) Randomly choose a number of positive images and
generate for them the codewords. Then take all the
images in the positive and negative training set and
compute the extended codebook.

3) Feed the primitive features to a classification module
(AdaBoost).

4) Send the codebooks for each feature to the classification
module.

5) Compare the detection results of the previous two steps.

A. Datasets

We have used reference datasets in pedestrian detection in
intensity images.

Fig. 1. Methodology: pedestrian detection based on primitive features and
based on the bag-of-words model of the primitive features

1) Daimler: 1

Pedestrian Classification Benchmark Dataset introduced in
[13] contains three training sets, each consisting of 5000
negative samples and 4800 positive samples, hence a total of
15000 negatives and 14400 positives. All the images have a
dimension of 18× 36 pixels.

The database contains two test sets each being formed of
5000 negatives and 4800 positive images. Some samples from
the database are depicted in Figure 2.

Fig. 2. Samples from Daimler Pedestrian Behchmark Dataset

2) NICTA Pedestrian Dataset: 2

It is a relatively new benchmark dataset for pedestrian detec-
tion [14]. It contains positive and negative images at different
resolutions (in our experiments we have used 16 × 40 and
64×80 image dimensions). “The final dataset contains 25551
unique pedestrians, allowing for a dataset of over 50 000
images with mirroring”. Samples from the image data are
presented in Figure 3.

1http://www.gavrila.net/Research/Pedestrian Detection/Daimler
Pedestrian Benchmarks/daimler pedestrian benchmarks.html

2http://www.nicta.com.au/research/projects/AutoMap/computer vision
datasets



Fig. 3. Sample images from NICTA pedestrian dataset

We may notice that the datasets contain color or grayscale
images. In our work we have converted all images to grayscale
and we have extracted the features on this color representation.

B. Feature extraction

1) Haar: Haar-like features have been used by [15] for
object detection (faces and pedestrians). For computing Haar-
like features one has to consider adjacent rectangular regions
at a specific location in an image, compute the sum of
pixel intensities in these regions and calculate the difference
between the sums. These features have been divided into

Fig. 4. Examples of Haar features

rectangular features and tilted features. Figure 4 depicts some
of them.

We have worked with rectangular features. All Haar-like
features take advantage of a fast computation due to the
integral image representation[15]. The integral image, denoted
ii(x, y), at location (x, y) contains the sum of the pixel values
above and to the left of (x, y) where i(x, y) is the input image.

ii(x, y) =
∑

x′≤x;y′≤y

i(x′, y′) (1)

The integral image can be computed in one-pass over the
image using the following recurrence relation:

s(x, y) = s(x, y − 1) + i(x, y) (2)
ii(x, y) = ii(x− 1, y) + s(x, y) (3)

where s(x, y) denotes the cumulative row sum and s(x,−1) =
ii(−1, y) = 0.

Figure 5 shows how to compute the value of the sum of
the pixels from a rectangular region using the integral image
representation. The relations are as follows:

Fig. 5. Computing the sum of pixels in a rectangular region using the integral
image
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2) Histogram of Gradient Orientation Features HoG): HoG
features have been introduced by [6] that propose an efficient
algorithm for pedestrian detection. HoG features have a great
advantage of being invariant to illumination conditions and
they are based on the idea that local object appearance and
shape within an image can be described by the distribution of
edge directions.

The computation of HoG features involves the following
steps:

1) Gradient computation that consists in filtering the color
or intensity data of the image with the following kernels:
[−1, 0, 1] and [−1, 0, 1]T . Using the filtering result one
can compute the magnitude and orientation of each pixel
in the image.

2) Orientation binning: consists in dividing the image into
non-overlapping cells of equal dimension. Within each
cell a histogram of orientations is computed. The vote of
each pixel is weighted by the magnitude of the gradient.
The cells can either be rectangular or radial in shape,
and the histogram bins are evenly spread over 0 to 180
degrees or 0 to 360 degrees, depending on whether the
gradient is “unsigned” or “signed”.

3) Descriptor blocks: the cells are grouped into overlapping
blocks in order to locally normalize the gradient.

4) Block normalization: within each block a normalization
scheme is applied. We have used L2-Hys norm that
provided best results for [6].

The final feature vector is formed of the histogram entries in
each cell after performing the four steps previously mentioned.

C. AdaBoost Machine learning algorithm

The algorithm has been introduced by [16]. It is a meta-
classification algorithm hence it can be used in combination
with other learning algorithms in order to obtain better clas-
sification performance.

The general idea of the algorithm is as follows: consider
h1, h2, . . . hT a set of simple hypothesis and consider the



composite ensemble of hypothesis:

f(x) =

T∑
t=1

αtht(x) (5)

There are many approaches for selecting the coefficients αt
and the base hypothesis ht in equation 5. We have used the
algorithm provided by [17]. The basic idea of the algorithm
is presented in what follows:

1) Input: S=(x1, y1), . . . , (xn, yn), Number of iterations T
2) Initialize: d(1)n = 1

N for all n = 1, . . . , N
3) for t = 1, . . . , T do

a) Train classifier with respect to the weighted sample
set S, d(t) and obtain hypothesis
ht : x→ {−1,+1}, i.e. ht = L(S, d(t))

b) Calculate the weighted training error et of ht:

et =

N∑
n=1

d(t)n I(ym 6= ht(xn)) (6)

c) Set:
αt =

1

2
log

1− et
et

(7)

d) Update the weights:

d(t+1)
n =

d
(t)
n e−αtynht(xn)

Zt
(8)

where Zt is a normalization constant such that∑N
n=1 d

(t+1)
n = 1

4) Break if: et = 0 or et ≤ 1
2 and set T = t− 1

5) Output: fT (x) =
∑T
t=1

αt∑T

r=1
αt

ht(x)

where x is the pattern to be classified, y is its target label
and f(x) is the decision function.

A weight d(t) = (d
(t)
1 , . . . , d

(t)
N ) is assigned to the data at

step t and a weak learner ht is constructed based on d(t) . This
weight is updated at each iteration. The weight is increased
for the examples which have been misclassified in the last
iteration.

The weights are initialized uniformly: d(1)n = 1/N .
To estimate if an example is correctly or badly classified,

the weak learner produces a weighted empirical error defined
by:

εt(ht, d
(t)) =

N∑
n=1

d(t)n I(yn 6= ht(x)n) (9)

Once the algorithm has selected the best hypothesis ht , its
weight αt = 1

2 log
1−εt
εt

is computed such that it minimizes a
loss function. One of the possible loss function considered in
AdaBoost is:

GAB(α) =

N∑
n=1

e−yn(αht(xn)+ft−1(xn)) (10)

where ft−1 is the combined hypothesis of the previous itera-
tion given by:

ft−1(xn) =

t−1∑
r=1

αrhr(xn) (11)

The iteration loop is stopped if the empirical error εt equals
0 or εt ≥ 1

2 . If εt = 0, the classification is optimal at this stage
and so it is not necessary to add other classifiers. If εt ≥ 1

2 , the
classifiers do not respect the weak condition anymore. They
are not better than random selection so AdaBoost cannot be
efficient.

Finally, all the weak hypotheses selected at each stage ht
are linearly combined as follows:

fT (x) =

T∑
t=1

αt∑T
r=1 αr

ht(x) (12)

The final classification is a simple threshold which deter-
mines if an example xi is classified as positive or negative.

1) Weak learners: The adaptive boosting method calls the
“weak” or “base” learning algorithm repeatedly, each time
feeding it a different subset of training examples (actually, a
different distribution or weighting over the training samples).
Each time it is called, the base learning algorithm generates a
new weak prediction rule, and after many rounds the boosting
method must combine these weak rules into a single prediction
rule, that hopefully, will be more accurate than any one of the
weak rules.

For weak learners one can use:
• Bayes decision rule
• Decision trees having a root node and two children and

using as splitting criteria:
– Miss-classification error
– Entropy
– Gini index

• Other decision rules

D. Algorithm for codebook generation from a set of features

The Bag of Words (BoW) model has been introduced by
natural language processing techniques and during the last
years it has been used extensively in computer vision for the
object recognition task.

To represent an image using BoW model, an image can be
treated as a document. For the image context we need to define
the “word” concept. This concept has different meanings and
representations depending on the task we need to solve, on
the images and on the features extracted for them.

Three main computational steps are employed by the bag-
of-words model [18]:

1) feature detection: extract several local patches (or re-
gions), which are considered as candidates for basic
elements, “words”.

2) feature description: each image is abstracted by several
local patches. Feature representation methods deal with
how to represent the patches as numerical vectors. These
methods are called feature descriptors.

3) The final step is to convert vector represented patches to
“codewords” that are representative for several similar
patches. One simple method is performing K-means
clustering over all the vectors.



We have modified the classic approach of the bag-of-words
model by transforming the local patches into features. Our
idea is to find the most representative features by clustering
and then, for each image compute a histogram representation
that stores the information about how many features are in the
clusters. The steps of our algorithm are:

1) Randomly choose p images from the training data set.
2) For each image compute the features. The number of

features may differ from image to image. We denote fi
the number of features computed for the ith image.

3) Construct a large feature space by putting all the features
for all images in a single feature vector.

4) Perform a supervised clustering using all the features of
the large feature vector.

5) The features representing the centers of the clusters will
be the codewords.

These steps are done for each class of objects, in our case for
the Pedestrian class and for the NonPedestrian class.

The second major step consists in representing an image
by its codebook. To obtain the codebook representation of an
image we do the following:
• Compute all the features of the image;
• Find the cluster to which each feature belongs;
• Count how many features are in each cluster;
The final codebook representation feature vector associated

to an image has a number of elements equal to the number of
clusters and the value of the element at position i is given by
the number of features that belong to cluster i for the given
image.

Fig. 6. Codeword generation for images in a given class

IV. EXPERIMENTS AND RESULTS

For both features, Haar and HoG, and for both represen-
tations (codebook and primary) we have used the AdaBoost
classification method. Our experiments have been done with
the machine learning library, WEKA 3 [17]. The parameters
of the ensemble learning algorithm were the following:

3http://www.cs.waikato.ac.nz/ml/weka/

• Weak learner type: decision stump.
• Number of iterations: 10.
As clustering method for generating the codewords we

have used k-means [17]. The general idea of k-means is
that being given a set of observations (x1, x2, . . . , xn), where
each observation is a d-dimensional real vector, the algorithm
tries to partition the n observations into k sets (k ≤ n)
S = S1, S2, . . . , Sk so as to minimize the within-cluster sum
of squares (WCSS):

argminS

k∑
i=1

∑
xi∈Si

||xj − µi||2 (13)

where µi is the mean of points in Si.

A. Haar features

The first experiment comprised Haar features computed on
Daimler dataset.

1) Classification results based on primitive Haar features:
For Daimler dataset we have randomly chosen 5000 negatives
images and 4800 positives images and we have created a
classification model. The number of Haar features was equal
to 840 for each image.

For the test set we have considered all the other images,
that is: 20000 negatives and 19195 positives. The results are
the following:
• Correctly Classified Instances = 32981 that is 84.1459 %;
• Incorrectly Classified Instances = 6214 that is 15.8541 %

of the total number of samples;
• Kappa statistic = 0.6831;
• Mean absolute error = 0.2644;
• Root mean squared error = 0.3515;
• Relative absolute error = 52.9121 %;
• Root relative squared error= 70.3168 %;
The detailed accuracy by class is:

Class Measure Value
Pedestrian TP Rate 0.866
Pedestrian FP Rate 0.182
Pedestrian Precision 0.82
Pedestrian Recall 0.866
Pedestrian ROC-Area 0.9
NonPedestrian TP Rate 0.818
NonPedestrian FP Rate 0.134
NonPedestrian Precision 0.864
NonPedestrian Recall 0.818
NonPedestrian ROC-Area 0.9

TABLE I
PRIMITIVE HAAR DETAILED ACCURACY ON DAIMLER DATASET

The confusion matrix is given in table II.

# Pedestrians #NonPedestrians Classified as
16617 2578 Pedestrians
3636 16364 NonPedestrians

TABLE II
CONFUSION MATRIX FOR PRIMITIVE HAAR ON DAIMLER DATASET



2) Classification results based on Haar codebook repre-
sentation: For the codebook representation of Haar features
extracted on Daimler dataset we have randomly chosen 500
positives and 500 negatives. We have used them for generating
a bag of words model for the positive data and a bag of words
model for the negative data. Each of the models contained
70 codewords (we have generated 70 clusters). Next we have
randomly chosen other 4800 positive images that we have
used for generating the codebooks of positives and we have
picked randomly 5000 negatives for generating the codebook
of negatives. All the remaining images have been used for
creating the test data that contained: 19208 pedestrians and
19984 non-pedestrians. The results are much better than in
the case of primitive Haar features:

• Correctly Classified Instances = 39148 that is 99.8877 %;
• Incorrectly Classified Instances = 44 that is 0.1123 % of

the total instances;
• Kappa statistic = 0.9978;
• Mean absolute error = 0.0014;
• Root mean squared error = 0.0259;
• Relative absolute error= 0.2776 %;
• Root relative squared error = 5.1845 %;

The detailed accuracy by class is given in table III:

Class Measure Value
Pedestrian TP Rate 0.999
Pedestrian FP Rate 0.001
Pedestrian Precision 0.999
Pedestrian Recall 0.999
Pedestrian ROC-Area 1
NonPedestrian TP Rate 0.999
NonPedestrian FP Rate 0.001
NonPedestrian Precision 0.999
NonPedestrian Recall 0.999
NonPedestrian ROC-Area 1

TABLE III
CODEBOOK HAAR DETAILED ACCURACY ON DAIMLER DATASET

The confusion matrix is show in table IV.

# Pedestrians #NonPedestrians Classified as
19180 16 Pedestrians
28 19968 NonPedestrians

TABLE IV
CONFUSION MATRIX FOR CODEBOOK HAAR ON DAIMLER DATASET

The second experiment comprised Haar features computed
on NICTA pedestrian dataset.

3) Classification results based on primitive Haar features:
For NICTA training set we have considered 7000 positive
images and 7000 negative images having a resolution of
16 × 40 pixels. The number of features extracted for each
image equals 1152. For testing we have used 13785 pedestrian
images and 23100 negative images. The classification results
are as follows:

• Correctly Classified Instances = 32605 that is 88.3221 %;

• Incorrectly Classified Instances = 4311 that is 11.6779 %
of the total instances;

• Kappa statistic = 0.7509;
• Mean absolute error = 0.1851;
• Root mean squared error = 0.291;
The detailed accuracy by class is provided in table V:

Class Measure Value
Pedestrian TP Rate 0.84
Pedestrian FP Rate 0.091
Pedestrian Precision 0.999
Pedestrian Recall 0.848
Pedestrian ROC-Area 0.949
NonPedestrian TP Rate 0.909
NonPedestrian FP Rate 0.16
NonPedestrian Precision 0.999
NonPedestrian Recall 0.904
NonPedestrian ROC-Area 0.949

TABLE V
PRIMITIVE HAAR DETAILED ACCURACY ON NICTA DATASET

The confusion matrix is provided by table VI.

# Pedestrians #NonPedestrians Classified as
11695 2221 Pedestrians
2090 20910 NonPedestrians

TABLE VI
CONFUSION MATRIX FOR PRIMITIVE HAAR ON NICTA DATASET

4) Classification results based on Haar codebook represen-
tation: For the codebook representation on the NICTA dataset
we have randomly chosen 1000 positives and 1000 negatives
with which we have generated the centers of the clusters.
Then, the codebook representation for the training set was
formed of 8000 positive images and 8000 negative images. The
evaluation was done on a set that contained 13915 positives
and 22999 negatives.

The results are:
• Correctly Classified Instances = 36882 (99.9133 %),
• Incorrectly Classified Instances = 32 ( 0.0867 %),
• Kappa statistic = 0.9982;
• Mean absolute error = 0.0012;
• Root mean squared error = 0.0255;
• Relative absolute error = 0.2331 %;
• Root relative squared error = 5.1203 %
The detailed accuracy by class is depicted in table VII:
The confusion matrix is displayed in table VIII.

B. Hog features

For Histogram of Gradient orientation features we have used
the standard parameters of computation:
• cell size of dimension (8× 8)
• block size of dimension (16× 16)
• block stride of 8× 8
• unsigned gradient representation
• L2Hys normalization



Class Measure Value
Pedestrian TP Rate 0.999
Pedestrian FP Rate 0.001
Pedestrian Precision 0.998
Pedestrian Recall 0.999
Pedestrian ROC-Area 1
NonPedestrian TP Rate 0.999
NonPedestrian FP Rate 0.001
NonPedestrian Precision 1
NonPedestrian Recall 0.999
NonPedestrian ROC-Area 1

TABLE VII
CODEBOOK HAAR DETAILED ACCURACY ON NICTA DATASET

# Pedestrians #NonPedestrians Classified as
13908 7 Pedestrians
25 22974 NonPedestrians

TABLE VIII
CONFUSION MATRIX FOR CODEBOOK HAAR ON NICTA DATASET

As the Daimler dataset contains small images (18x36)
the number of HoG descriptors having standard parameters
is relatively small. That is why we have concentrated our
experiments with HoG features on NICTA database working
with images of dimension 64× 80.

1) Classification results based on primitive HoG features:
For the training set we have used 8000 positive images and
8000 negative images. For each image we have extracted 144
features. For testing we have used 16413 pedestrian images
and 20503 non-pedestrian images.

The obtained results are as follows:
• Correctly Classified Instances = 30923 ( 83.7658 %),
• Incorrectly Classified Instances = 5993 (16.2342 %);
• Kappa statistic = 0.6662;
• Mean absolute error = 0.2136;
• Root mean squared error = 0.3352;
The detailed accuracy by class is shown in table IX:

Class Measure Value
Pedestrian TP Rate 0.874
Pedestrian FP Rate 0.185
Pedestrian Precision 0.741
Pedestrian Recall 0.874
Pedestrian ROC-Area 0.922
NonPedestrian TP Rate 0.815
NonPedestrian FP Rate 0.126
NonPedestrian Precision 0.915
NonPedestrian Recall 0.815
NonPedestrian ROC-Area 0.922

TABLE IX
PRIMITIVE HOG DETAILED ACCURACY ON NICTA DATASET

The confusion matrix is displayed in table X.
2) Classification results based on HoG codebook represen-

tation: For the codebook representation we have randomly
chosen 1000 positives and 1000 negatives for which we have
generated the clusters. The number of clusters is equal to 60.
For computing the codebook representation of the training set

# Pedestrians #NonPedestrians Classified as
12168 1748 Pedestrians
4245 18755 NonPedestrians

TABLE X
CONFUSION MATRIX FOR PRIMITIVE HOG ON NICTA DATASET

we have chosen 8000 positives and 8000 negatives, while for
testing we have analyzed 13825 positives and 23089 negatives.

The classification results are:
• Correctly Classified Instances = 35404 (95.9094 %);
• Incorrectly Classified Instances = 1510 (4.0906 %);
• Kappa statistic = 0.9128;
• Mean absolute error = 0.0601;
• Root mean squared error = 0.175 ;
• Relative absolute error = 12.0399 %;
• Root relative squared error = 35.0631 %.
The detailed accuracy by class is provided in table XI:

Class Measure Value
Pedestrian TP Rate 0.943
Pedestrian FP Rate 0.031
Pedestrian Precision 0.949
Pedestrian Recall 0.943
Pedestrian ROC-Area 0.992
NonPedestrian TP Rate 0.969
NonPedestrian FP Rate 0.057
NonPedestrian Precision 0.965
NonPedestrian Recall 0.969
NonPedestrian ROC-Area 0.992

TABLE XI
CODEBOOK HOG DETAILED ACCURACY ON NICTA DATASET

The confusion matrix is shown in table XII.

# Pedestrians #NonPedestrians Classified as
13115 800 Pedestrians
710 22289 NonPedestrians

TABLE XII
CONFUSION MATRIX FOR CODEBOOK HOG ON NICTA DATASET

A general conclusion that can be drawn from the experi-
ments we have performed is that, in terms of accuracy, the
codebook representation overcomes the representation based
on primitive features. Another advantage of the codebook is
the dimension of data space that is much smaller and the
classification algorithms work faster. Nevertheless, for a test
image we still need to compute all the features in order to
generate the codebook, hence the feature computation time is
not reduced.

V. CONCLUSIONS AND FUTURE WORK

The paper has presented a study and experiments on the
pedestrian detection task for features extracted from two-
dimensional images. We have approached two directions: (a)
detection based on Haar and HoG features and (b)detection
implemented on top of the codebook representation of Haar



and HoG features. The codebook representation is a novel
approach in pedestrian detection and we have shown that it
has better performance than the usual representation.

As future work we propose the extension of the method to
the application on images that have a larger dimension than the
training models, the introduction of other features (for example
SIFT and SURF) and even the application of more complex
classification algorithms.
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