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Abstract— Evolutionary multi-objective optimization algo-
rithms are commonly used to obtain a set of non-dominated
solutions for over a decade. Recently, a lot of emphasis have
been laid on hybridizing evolutionary algorithms with MCDM
and mathematical programming algorithms to yield a compu-
tationally efficient and convergent procedure. In this paper, we
test an augmented local search based EMO procedure rigor-
ously on a test suite of constrained and unconstrained multi-
objective optimization problems. The success of our approach
on most of the test problems not only provides confidence but
also stresses the importance of hybrid evolutionary algorithms
in solving multi-objective optimization problems.

I. INTRODUCTION

Evolutionary multi-objective optimization (EMO) algo-

rithms are playing a dominant role in solving problems with

multiple conflicting objectives and obtaining a set of non-

dominated solutions which are close to the Pareto optimal

front. They have a number of advantages such as, obtaining a

set of non-dominated solutions in a single run, easy handling

of problems with local Pareto fronts and discrete nature

due to their population approach and flexible recombination

operators [1]. Despite these advantages, EMO algorithms are

often criticized for their lack of convergence proofs. Besides,

in order to have a better diversity among non-dominated

solutions, a Pareto optimal solution may be sacrificed to

accept a non-Pareto optimal solution. This causes fluctua-

tions, i.e. convergence to the Pareto optimal front followed

by departure of some solutions out of the front [2].

In the case of solving single-objective optimization prob-

lems, the use of local search as a part of evolutionary algo-

rithms has proved beneficial [3]. The implementation is easy

as they both have the same goal to find the global optimum
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of a single function. But the use of local search in multi-

objective scenarios is not straightforward, as local search

usually deals with a single objective and it is not fair e.g to

choose one particular objective function among the multiple

conflicting ones. Multiple criteria decision making (MCDM)

techniques are also commonly used to solve multi-objective

optimization problems [9]. They constitute a collection of

approaches with convergence proofs. Hence, incorporating

MCDM techniques in EMO algorithms, can improve the con-

vergence. MCDM approaches usually scalarize the multiple

objectives into a single objective, which is later solved using

any suitable mathematical programming technique. Thus,

one way to amalgamate EMO with MCDM is to use some

MCDM technique as a local search operator in EMO.

Hybridization of local search with EMO has enjoyed a lot

of attention in recent past, to make EMO algorithms converge

faster and accurately on to the Pareto optimal front. Hybrid

EMO approaches galore in literature, such as multi-objective

local search by Ishibuchi and Murata [4] and Jaszkiewicz

[5], hybrid algorithms by Goel and Deb [6] etc.. For an

extensive literature survey, see [7] and [8]. Based on these

studies and others from the literature, we can conclude that,

not much effort has been spent on borrowing more effective

multiple criteria decision making (MCDM) [9] ideas for local

search, as usually a naive neighborhood search procedure or

a weighted sum of objectives is used. A weighted sum of

objectives is known to fail in producing all Pareto optimal

points when the problem is non-convex. Hence, in the

previous paper [8], a more effective scalarizing function

called achievement scalarizing function (ASF) was utilized

(which has optimal points on Pareto optimal front only)

in local search to propose a hybrid approach. Significant

reduction in function evaluations on test problems derived

from ZDT [1] and DTLZ [10] test suites was obtained. In

this paper, we use the hybrid approach suggested in [8], with

one change viz., a clustering technique is used instead of the

crowding distance in NSGA-II, as the crowding distance is

less effective in higher dimensions [1]. We present results

obtained by tests conducted on constrained and unconstrained

test problems reflecting complicated real-life problems for

the CEC09 multi-objective algorithm contest.

In the remainder of this paper, we first briefly describe the

ASF and local search based hybrid EMO procedure used in

this study, in subsequent two sections. Thereafter, we present



the simulation results on a number of unconstrained and

constrained test problems. Conclusions are drawn at the end

of the paper.

II. ACHIEVEMENT SCALARIZING FUNCTIONS

We consider multi-objective optimization problems of the

form:

minimize {f1(x), f2(x), ....., fk(x)}
subject to x ∈ S,

(1)

with k>2 conflicting objective functions fi : S → R. We

denote the vector of objective function values by f(x) =
(f1(x), f2(x), ..., fk(x))T to be called an objective vector.

The decision vectors x = (x1, x2, ..., xk)T belong to the

feasible region S, which is a subset of the decision variable

space Rn.

In multi-objective optimization, decision vector x
∗ ∈ S is

Pareto optimal if there does not exist another x ∈ S such that

fi(x) 6 fi(x
∗) for all i = 1, 2, ...., k and fj(x) < fj(x

∗) for

at least one index j. An objective vector is Pareto optimal if

the corresponding decision vector is Pareto optimal. A vector

is weakly Pareto optimal if there does not exist any other

feasible vector for which all objective values are better.

The MCDM literature as said in previous section has a

number of techniques for solving multi-objective optimiza-

tion problems. Among them reference point methods, a class

of interative procedure are commonly used [9]. A reference

point is a vector formed by the desirable values for each

objective function by the decision maker (DM). The DM is a

person who has prior knowledge on the problem under study

and can take a decision to choose the most preferred solution

from the supplied Pareto optimal set. Using this reference

point, a scalarizing function like ASF [11] is optimized

to find a solution that best satisfies the aspirations of the

DM. The ASF has many advantages: an optimal solution

of an ASF is always Pareto optimal and any Pareto optimal

solution can be obtained by just changing the reference point.

Assuming we have a reference point z̄ ∈ Rk, an example

of an achievement scalarizing function is given by:

minimize
k

max
i=1

[wi(fi(x) − z̄i)],

subject to x ∈ S,
(2)

where wi = 1
znadir

i
−zideal

i

is a weight factor assigned to

each objective function fi and is utilized for normalizing

each of the objective functions. The nadir and ideal vectors

are represented as z
nadir
i and z

ideal
i respectively, reflecting

the worst and best objective function values in the Pareto

optimal front. In the context of EMO and successive studies

we replace z
nadir
i and z

ideal
i with currently available worst

and best function values z
max
i and z

min
i respectively, as nadir

and ideal vector values may not be available during an EMO

algorithm run time.

One possible drawback with the ASF is the presence

of a non-differentiable function, which inhibits the use of

gradient-based mathematical programming algorithms for

solving it. The deficiency can be overcome with an extra

real-valued variable (α), new constraints and utilizing an

equivalent differentiable formulation [9]:

minimize α,

subject to [wi(fi(x) − z̄i)] 6 α for all i=1,. . . ,k,

x ∈ S, α ∈ R.

(3)

The above formulation of an ASF may produce a weakly

Pareto optimal solution and this can be avoided by adding

an augmentation term. The augmented ASF is written as:

minimize
k

max
i=1

fi(x)−z̄i

zmax

i
−zmin

i

+ ρ
∑k

i=1
fi(x)−z̄i

zmax

i
−zmin

i

,

subject to x ∈ S,
(4)

where ρ > 0, binds the trade-offs called an augmentation

coefficient. The above problem produces (properly) Pareto

optimal solutions with bounded trade-offs only.

In the next section we briefly summarize the hybrid

approach presented in [8].

III. LOCAL SEARCH BASED EMO

We present a hybrid approach where we use the NSGA-

II method [12] as the EMO algorithm and hybridize it

with an ASF which is solved with any appropriate local

search method. The local search is started from an offspring

solution, which is considered as a reference point. The

local search utilizes this reference point and minimizes the

augmented ASF to obtain at least a locally Pareto optimal

solution closest to the reference point.

The hybrid approach is as follows: In the t-th generation of

the NSGA-II algorithm, a parent population Pt is subjected to

selection, recombination and mutation operators and children

Qt are created. Later, each individual in the child population

Qt is evaluated and sent for local search with a probability

pl, which will lead to a new child population Q′

t. Thereafter,

the parent and child populations are combined and a non-

dominated sorting is performed. All the non-dominated indi-

viduals are then copied in Pt+1. If the size of Pt+1 exceeds/is

less than the population size, we reduce/increase the size of

the population with a clustering procedure. Thereafter, the

NSGA-II procedure continues as usual.

There are two significant changes that are made in the

original NSGA-II procedure, clustering by k-means [13]

replacing the crowding distance and the use of pl for local

search. During non-dominated sorting, the new population

Pt+1 is filled by solutions from different non-dominated

fronts, one at a time (1 is the best level or rank) until the

population size is met or exceeded. When the number of

individuals in a particular rank is more than that needed

to fix the population to a given size, we use clustering to

cluster all the individuals of a particular rank in the objective

space and then choose one from each of the clusters. If

the cardinality of a cluster is more than one, we chose the

individual closest to the centroid of the cluster. The hybrid

approach uses a probability of local search pl tracing a

saw-tooth function, which periodically increases and drops

linearly with generations. For example, starting from zero

at the initial generation, the probability rises to 0.01 in



(0.5N − 1) generations (where N is the population size)

and drops to zero in t = 0.5N generations. This means

that when N = 100 and generation = (0.5N − 1), on an

average one solution in the entire population gets modified by

the local search. The initial generations have a smaller local

search probability, as typically the population is far from the

Pareto-optimal front and the local search may mostly produce

extreme Pareto-optimal solutions. The probability increases

linearly as more solutions may need to be modified using the

local search procedure to ensure convergence to the Pareto-

optimal front. Probability pl goes to zero after each period to

prevent loss in diversity both during these initial phases and

when the population approaches the Pareto-optimal front.

In the next section, we present the simulation results with

parameter settings employed in the hybrid algorithm for

testing the given set of multi-objective test problems.

IV. NUMERICAL SIMULATION RESULTS AND

DISCUSSIONS

Our hybrid algorithm was tested using test problems

suggested by Zhang et. al [14]. The test suite is a collection

of thirteen unconstrained and ten constrained multi-objective

problems. Each of the test problems was run thirty times

independently, with different seeds, by pre-fixing the maxi-

mum number of function evaluations to be 300,000. Local

search which was incorporated as an extra operator in our

hybrid approach, uses KNITRO solver [15] with a sequential

quadratic programming (SQP) as a local solver. The finite

difference method was used to calculate the derivatives for

SQP. IGD metric is used to measure the performance of the

algorithm. For a detailed explanation, see [14].

All the tests have been executed on MACBOOK 2.1,

Intel core 2 Duo 2.16 GHz processor, with 1GB RAM. The

algorithm is coded using C programming language.

Any EMO usually involves a number of parameters and

their setting greatly influences the efficacy of the algorithm.

An hybrid algorithm usually involves two main types of set-

tings, NSGA-II and local search specific parameter settings.

Here, we briefly summarize them.

1) NSGA-II parameters:

a) Population size: 100 for bi-objective problems,

150 for three objective problems and 300 for five

objective problems.

b) Crossover probability: 0.9.

c) SBX distribution index: 5 for two and three ob-

jective problems. 10 for five objective problems.

d) Mutation probability:

i) Unconstrained: 0.01 for two and three objec-

tive problems. 0.033 for five objective prob-

lems.

ii) Constrained: 0.1 for all test problems.

e) Mutation distribution index: 15 for two and three

objective problems. 20 for five objective prob-

lems.

2) Local search parameters:

a) Probability of local search:

i) Unconstrained: Probability follows a sawtooth

function and reaches peak every 50 gener-

ations to 0.01 for two and three objective

problems and every 25 generations to 0.01 for

five objective problems.

ii) Constrained: Probability follows a sawtooth

function and reaches peak every 25 genera-

tions to 0.01.

b) Maximum number of iterations in local search is

fixed to be 50.

c) The final relative stopping tolerance for the KKT

(optimality) error is 10−4.

Fig. 1. Pareto front of UF1 obtained by hybrid approach and original
NSGA-II.

In the next subsection, we present the results obtained with

our hybrid algorithm on given test problems.

A. Simulation Results

In Tables I and II, the best and worst obtained IGD

values with their corresponding time taken for all the un-

constrained and constrained test problems respectively, are

presented with their mean and standard deviation. The al-

gorithm performances well on most of the test problems.

Our hybrid approach involves a local search algorithm,

which is derivative based. Hence, when the functions are

non-differentiable, another optimization method should have

been used. The five objective problems are rotated functions

and the SBX recombination operator, which is a variable-

wise recombination operator, does not perform well in such

problems [16] and we suspect this to be a reason for high

IGD values on such problems. The degraded performance

on some of the constrained problems may be due to the

constraint handling strategy, which is argued [17] to have

problems to maintain diversity.



Fig. 2. Pareto front of CF2 obtained by an hybrid approach and an original
NSGA-II.

Fig. 3. Pareto front of UF8 obtained by hybrid approach.

Figures 1 and 2 show the non-dominated fronts ob-

tained by original and hybrid approach for UF1 and CF2

respectively. It can be seen that, hybrid approach, was able

to generate the entire non-dominated front as against the

original NSGA-II. To investigate further the reason for the

superior performance of our hybrid algorithm, we also mark

all the points generated by the local search operator during

a single run. Since most of the points on the front were

a result of the local search, it clearly proves the ASF to

be an effective scalarizing function, but it should not be

concluded that local search was the sole reason for the good

convergence. The ASF needs reference points which in turn

were supplied by NSGA-II. Hence an effective integration

of local search and an EMO algorithm, is the reason for a

better performance of the hybrid algorithm. Figure 3 shows

the non-dominated front for the three objective unconstrained

TABLE I

IGD VALUES OF UNCONSTRAINED MULTI-OBJECTIVE TEST PROBLEMS

AND THEIR CORRESPONDING TIME TAKEN.

Test IGD values (Time in seconds)
Problem Best Worst Mean Standard deviation

UF 1 0.009851 (4) 0.04734 (4) 0.01153 0.0073

UF2 0.006025(8) 0.05455 (9) 0.01237 0.009108

UF3 0.03435 (6) 0.26207 (5) 0.10603 0.06864

UF4 0.04823 (7) 0.06975 (7) 0.0584 0.005116

UF5 0.29106 (5) 1.0498 (5) 0.5657 0.1827

UF6 0.08202 (5) 0.71745 (5) 0.31032 0.19133

UF7 0.007631 (5) 0.08801 (5) 0.02132 0.01946

UF8 0.06762 (16) 0.10911 (15) 0.0863 0.01243

UF9 0.03873 (9) 0.19140 (10) 0.0719 0.04504

UF10 0.5339 (7) 1.1266 (7) 0.84468 0.1626

UF11 0.1642 (95) 0.1836 (102) 0.1752 0.007103

UF12 78.16 (24) 207.834 (22) 158.05 40.437

UF13 2.7286 (780) 3.3937 (874) 3.2323 0.2273

UF8 problem and the reasons for its convergence can be

similarly argued.

Non-dominated fronts obtained for unconstrained prob-

lems are shown in Figures 4 to 13. Figures 14 to 26

show the non-dominated fronts for constrained problems.

In addition, in Figures 22, 24 and 26, we also show

a magnified version of the non-dominated set near the

Pareto optimal front, as the final non-dominated set in these

problems also has un-converged solutions due to insufficient

number of function evaluations.

TABLE II

IGD VALUES OF CONSTRAINED MULTI-OBJECTIVE TEST PROBLEMS AND

THEIR CORRESPONDING TIME TAKEN.

Test IGD values (Time in seconds)
Problem Best Worst Mean Standard deviation

CF 1 0.002665 (6) 0.01153 (6) 0.00692 0.0025062

CF 2 0.003381 (12) 0.0599 (11) 0.011836 0.01296

CF 3 0.11817 (5) 0.49155 (5) 0.23994 0.0858

CF 4 0.00912 (5) 0.02644 (6) 0.01576 0.00453

CF 5 0.1228 (6) 0.3447 (8) 0.1842 0.06077

CF 6 0.007197 (8) 0.09784 (8) 0.02013 0.01735

CF 7 0.08837 (4) 0.4751(5) 0.23345 0.08693

CF 8 0.08228 (25) 0.2309 (25) 0.11093 0.03682

CF 9 0.068661 (22) 0.1947 (20) 0.1056 0.02928

CF 10 0.2333 (14) 0.5010 (11) 0.3592 0.07503

V. CONCLUSIONS

In this paper, we have presented an efficient implementa-

tion of a local search procedure with an EMO algorithm. To

take advantage of fast and accurate convergence to Pareto

optimal solutions, EMO algorithms must use a directed and

provable local search procedure. In this study, we have

used an augmented achievement scalarizing function to be

solved with an appropriate local search method. The local

search procedure has been implemented as an additional

operator and applied to EMO populations with a varying



Fig. 4. Final approximation set - Unconstrained Problem 1.

Fig. 5. Final approximation set - Unconstrained Problem 2.

probability. On a number of test problems provided in the

test suite involving two to five objectives, we have observed

that our proposed hybrid approach with NSGA-II is able to

overcome different vagaries of landscapes, converging near

to the Pareto optimal front.
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Fig. 7. Final approximation set - Unconstrained Problem 4. Fig. 8. Final approximation set - Unconstrained Problem 5.

Fig. 9. Final approximation set - Unconstrained Problem 6. Fig. 10. Final approximation set - Unconstrained Problem 7.

Fig. 11. Final approximation set - Unconstrained Problem 8. Fig. 12. Final approximation set - Unconstrained Problem 9.



Fig. 13. Final approximation set - Unconstrained Problem 10. Fig. 14. Final approximation set - Costrained Problem 1.

Fig. 15. Final approximation set - Constrained Problem 2. Fig. 16. Final approximation set - Constrained Problem 3.

Fig. 17. Final approximation set - Constrained Problem 4. Fig. 18. Final approximation set - Constrained Problem 5.



Fig. 19. Final approximation set - Constrained Problem 6. Fig. 20. Final approximation set - Constrained Problem 7.

Fig. 21. Final approximation set - Constrained Problem 8. Fig. 22. Final approximation set (Magnified)- Constrained Problem
8.

Fig. 23. Final approximation set - Constrained Problem 9.
Fig. 24. Final approximation set (Magnified)- Constrained Problem
9.

Fig. 25. Final approximation set - Constrained Problem 10.
Fig. 26. Final approximation set (Magnified) - Constrained Problem
10.


