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Abstract—Internet measurement studies utilize traceroute-
based path traces to build representative Internet maps. These
maps are then used to analyze various topological characteristics
of the Internet. IP alias resolution is an important step in
building a map from a set of collected path traces. In this
paper, we study the impact of incomplete IP alias resolution on
Internet measurement studies. Using a set of synthetic topologies
and a genuine topology map, we experimentally show that the
accuracy/completeness of alias resolution has an important effect
on the observed topological characteristics. The results obtained
in this work point out the importance of IP alias resolution and
call for further research in alias resolution.

I. INTRODUCTION

Understanding the topological and functional characteristics
of the Internet is an important research issue. This understand-
ing is not simply an intellectual curiosity but also a necessity to
better design, implement, and operate the underlying network
technologies, protocols, and services. In response to this need,
the research community has been analyzing the topological
characteristics of the Internet by using topology maps collected
from the Internet.

Most measurement studies utilize a well-known Internet
debugging tool called traceroute to collect a router-level
topology map from the Internet. Traceroute returns a path
from the local system to a given remote system by identifying
the routers in between. After collecting the path traces, the
information needs to be processed to build the corresponding
network topology. This step involves several tasks including
(1) verifying the correctness of the collected paths, (2) re-
solving unresponsive routers that are represented by ’*’s in
traceroute outputs, and (3) resolving IP addresses belonging
to the same router. The first task is relevant when certain types
of traffic engineering practices cause traceroute to return paths
that do not correspond to actual paths in the network [1].
This happens when a router forwards consecutive traceroute
probes on different paths toward the destination. The second
task is needed because not all routers respond to traceroute
probes all the time [2]. Finally, the last task is an artifact of
the traceroute-based topology collection procedure and is the
main focus of the work presented in this paper. Note that,
sampling bias, an artifact of traceroute based sampling, is an
important issue for the topology collection process [3]. In this
paper, however, we only analyze the effect of alias resolution
problem on the collected topologies.

Routers have multiple interfaces each one having a different
IP address. A router may appear on multiple path traces with
different IP addresses. Therefore, there is a need to identify
and group IP addresses belonging to the same router, an
operation referred to as IP alias resolution. Several tools have
been proposed to resolve IP aliases including mercator [4],
iffinder [5], ally [6], AAR [7], APAR [8], and others [9],
[10]. The current best practice is to use the existing tools to
resolve IP aliases to build a topology map. However, there
is no practical way to measure the success rate of the alias
resolution process. That is, it is extremely difficult to collect
the underlying topology information for verification purposes.
In fact, the lack of the underlying topology information is the
main reason that leads the researchers to conduct traceroute-
based topology collection studies.

One largely overlooked issue so far is to understand the
impact of the alias resolution process on the observed topo-
logical characteristics of the collected topology maps. If the
impact is acceptably small, then we could have confidence
on the conclusions of the measurement study even without an
alias resolution process. On the other hand, if the impact is
high, the conclusions of the study may significantly depend on
the accuracy of the alias resolution process. Although several
recent studies pointed out the impact of incomplete alias
resolution on certain measurement results [11], [12], to the best
of our knowledge, there is no systematic work that quantifies
the impact of incomplete alias resolution on traceroute-based
Internet measurement studies.

In this paper, we present an experimental study to quantify
the impact of alias resolution on Internet topology measure-
ment studies. We use both synthetic and genuine data for
our study. In the first part, we generate several synthetic
network graphs to represent the Internet. Then, we emulate
traceroute functionality to collect a number of path traces from
the network graphs. During topology construction, we use
different success rates for the alias resolution process to obtain
different sample topologies. We then study various topological
characteristics of these sample topologies to quantify the
impact of alias resolution on the observed results. In the second
part, we use the existing alias resolution tools to build sample
topologies from a set of path traces collected from the Internet
and conduct similar analysis.

Our main conclusion in this study is that the completeness



of the alias resolution process has a considerable impact on
almost all topological characteristics that we consider. Hence,
alias resolution should be an important task of topology
collection/analysis studies. In the remainder of this paper, we
first discuss the related work in the area. Then, we presents
our experimental study on the synthetic network topologies
in Section III. We present our findings on a genuine Internet
topology in Section IV and conclude with Section V.

II. RELATED WORK

Several recent studies pointed out the impact of incomplete
alias resolution in certain measurement study results. We
briefly discuss them below.

In [11], Teixeira et.al. analyze path diversity of an ISP
network (Sprint network) using two different topology maps;
(1) the map sampled by the Rocketfuel study [6] and (2) the
actual map of the network obtained from the ISP. They detect
significantly higher path diversity for the sample topology and
identify poor alias resolution as the main cause of the inflation.

In [12], Bilir et.al. point out the effect of alias resolution
on the intersection characteristics of Internet paths and trees.
The paper analyzes the load distribution of value added
Internet services on the backbone and border/exchange point
routers. In their work, authors demonstrate the importance of
alias resolution on their findings. They, also, argue that alias
resolution has an impact on the accuracy of recently proposed
sampling bias tests, which are devised to check for potential
sampling bias during a traceroute-based topology collection.

III. QUANTIFYING THE IMPACT OF ALIAS RESOLUTION

In this section, we quantify the impact of alias resolution in
building traceroute-based sample topology maps. In our exper-
iments, we analyze the impact of alias resolution on a broad
set of graph properties. We consider over 20 different graph
characteristics, as presented in [13]. In this paper, we present
results for a representative subset of these characteristics.

A. Analysis Procedure
In this analysis, we use 10K node synthetic graphs including

Barabasi-Albert (BA) [14] and Waxman (WA) [15]; Transit-
Stub (TS) [16]; and Inet [17] graphs generated by BRITE [18];
gt-itm [16]; and Inet [17] topology generators, respectively.
We annotate each graph such that each edge incident on a
node introduces a unique node identifier called an interface
identifier. Then, we take six different topology samples by
collecting shortest paths (to emulate traceroute) among a num-
ber of (source,destination) pairs including (5,500), (10,1000),
(20,2000), (50,50), (100,100), and (200,200) pairs from each
graph. We refer to the first three samples as (k,m)-samples
and the next three samples as (n,n)-samples for the ease of
presentation. Each path trace includes an interface identifier
for each intermediate node on the path.

After collecting the path traces, we apply alias resolution
with different success rates including 0%, 20%, 40%, 60%,
80%, and 100% to generate different sample topologies from
the same set of path traces. Here, 0% indicates that alias
resolution fails for all nodes in the network. 100% indicates

that alias resolution succeeds for all nodes and the resulting
sample topology corresponds to the real sample topology. In
our analysis, we utilize the real sample topology to quantify
the impact of alias resolution in generating other topology
samples. We assume that alias resolution succeeds or fails per
node as it is mostly the case with ally tool. Then, we analyze
various properties of the resulting topologies to measure the
impact of alias resolution. Note that, the way the sampling is
done has significant effects on the observed characteristics as
well. However, in this experiment we only focus on the effect
of alias resolution by comparing the sample topologies with
alias resolution problem to the samples without alias resolution
problem (i.e., 100% alias resolution case). We now present the
results of our analysis in several different groups.

B. Topology Size

Topology size, in terms of the number of nodes n and
links m, is the basic information regarding a network. It also
defines the average node degree k as k = 2m/n. According
to the experiment results, the success of alias resolution has
a big impact on the topology size. For the sample topologies
collected from the WA graph, in Fig. 1, topology size reduces
more than half for each sample as alias resolution improves.
Similar results are observed for BA and Inet graphs. The
average reduction in terms of the number of nodes is about
63% as the alias resolution success rate increases from 0% to
100%. For TS-based sample topologies the number of nodes
reduces about 27% on average.

The results suggest that (n,n)-samples are affected more by
imperfect alias resolution as evidenced by the steepness of the
slopes of the corresponding lines in Fig. 1. Similar trend is
observed for other graphs as well (figures not shown). (k,m)-
samples, by nature, have fewer routers with alias resolution
problem due to the tree-oriented nature of the collected path
traces. In addition, the impact of imperfect alias resolution in-
creases as the size of the sample topology increases. Consider
the case for (200,200)-sample for WA graph as an example.
In this case, as the alias resolution success rate increases, the
number of nodes (and links) reduces by more than 70% (and
75%) respectively. Moreover, the number of artificial links due
to imperfect alias resolution is more than that of artificial nodes
in the sample topology. This is because, in the worst case,
imperfect alias resolution may cause a node of degree d to
appear as d different nodes each with a degree d, introducing
d ∗ d− d artificial links in the resulting topology.
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Fig. 1. Impact of alias resolution on topology size for WA samples



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25

O
bs

er
ve

d 
D

eg
re

e

True Degree

(a) 0% Alias Resolution

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25

O
bs

er
ve

d 
D

eg
re

e

True Degree

(b) 40% Alias Resolution

(12,45)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25

O
bs

er
ve

d 
D

eg
re

e

True Degree

(c) 80% Alias Resolution

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45

F
re

qu
en

cy

Degree

(d) Frequency distribution

(45,1)
(17,1)

ar 0 %
ar 40 %
ar 80 %

ar 100 %

Fig. 2. Degree comparison for (100,100)-sample topologies from WA graph

C. Node Degree
The accuracy of the alias resolution process has an impor-

tant impact on the node degree-related characteristics of the
sample topologies. Although one may intuitively expect an im-
provement on the accuracy of the degree-related characteristics
with an increasing success rate of the alias resolution process,
we may not necessarily observe such a trend all the time. Fig. 3
presents an example scenario where ‘no-alias resolution’ case
(Fig. 3-b) results in a better approximation to (1) the degree
of node a and (2) the average and the maximum degrees of
the original subgraph (Fig. 3-a) compared to the ‘partial alias
resolution’ case (Fig. 3-c) when we resolve aliases only for a.
Note that, the traces are assumed to be obtained from vantage
points connected to any two of the routers (e.g., b and e)

Next, we study several sample topologies to observe the
changes in node degrees as the success of the alias resolution
process increases. This helps us gain more insight into the
impact of the alias resolution process on the node degree
characteristics. Fig. 2-a,-b,-c show the changes in node degrees
for (100,100)-sample topology of WA graph for 0%, 40%, and
80% alias resolution success rates. In these figures, observed
degree indicates the degrees of the nodes in the sample
topology with imperfect alias resolution and true degree in-
dicates the degrees in the sample topology with perfect alias
resolution. Each point in these figures may correspond to one
or more nodes in the sample topology with the same observed
and the same true degrees. The number of nodes corresponding
to each point is presented in the frequency distribution graph
in Fig. 2-d. As an example, the ‘+’ tick at location (45,1)
in Fig. 2-d indicates that there exists only one node with an
observed degree of 45 under 40% alias resolution success rate
and this node is presented in Fig. 2-b with the point marked
at (12,45). The label (12,45) indicates that the true degree of
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Fig. 3. Effect of partial alias resolution on a subgraph

this node is 12, while the observed degree is 45.
We now present several observations about the results pre-

sented in these figures. The points above the x=y line in Fig. 2-
a,-b,-c correspond to overestimation of node degrees and the
points below the x=y line correspond to underestimations of
node degrees in the sample topologies. In general, overestima-
tion is caused by alias resolution problems at the neighboring
nodes of a given node. Fig. 3-c presents an example for this
case. Similarly, underestimation is caused by alias resolution
problems at the node itself.

In addition, we observe that as the alias resolution success
rate increases some of the underestimation cases change to
overestimation (observe three nodes with a true degree of 14,
i.e., x=14 line, in Fig. 2-c). This indicates that although the
aliases of the corresponding nodes are resolved, there exists
some neighbors of these nodes with alias resolution problem
causing an overestimation (see Fig. 3-c).

Another observation from the Fig. 2 is that alias resolution
problems at a node may introduce a significantly large number
of artificial nodes in the resulting sample topologies. As an
example, according to Fig. 2-d, there is only one node with a
true degree of 17 in the real sample graph (i.e., refer to circle
at (17,1) in Fig. 2-d). On the other hand, Fig. 2-a shows a
number of nodes (i.e., 16 nodes on x=17 line) that correspond
to node(s) with a true degree of 17.

Finally, the comparison of Fig. 2-a,-b,-c show that the
observed maximum degree of the graph first increases from
19 in Fig. 2-a to 45 in Fig. 2-b. It then decreases to 38 in
Fig. 2-c (and to 17 with 100% alias resolution). The example
scenario shown in Fig. 3 presents a potential explanation for
this trend where the maximum degree increases from 5 (in
Fig. 3-b) to 10 (in Fig. 3-c) and then returns to its correct
value 5 (in Fig. 3-a).

D. Degree Distribution
Degree distribution represents the probability P(k) that a

randomly chosen node has degree k. Degree distribution has
been used to characterize network topologies and several
topology generators use this characteristic to generate syn-
thetic topologies [17], [18]. In our experiments, we observe
that degree distribution changes with the changing success
rate of the alias resolution process, but different effects are
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observed with different samples. Fig. 4 presents some sample
results for the impact of alias resolution on degree distribution
characteristics. In this figure, we plot CCDF of degree distribu-
tion for (100,100)- or (20,2000)-samples for different graphs.
For the power-law based graph samples, i.e., BA- and Inet-
based samples, imperfect alias resolution distorts the power-
law characteristic of the distributions. For TS- and WA-based
samples, the alias resolution process has different types of
impacts especially at low degree (3-13) or high degree (20
and up) ranges, respectively.

E. Joint Degree Distribution

Joint Degree Distribution (JDD) P (k, k′) characterizes the
degree relation of nodes, i.e., it reports the probability that
a node of degree k and a node of degree k′ are connected.
Average neighbor connectivity knn(k) and assortative coeffi-
cient r are summary parameters of JDD distribution. knn(k)
reports the average of the average neighbor degrees for k-
degree nodes. We observe that knn(k) increases as the success
rate of the alias resolution process increases for all sample
topologies (figures not shown). Assortativity coefficient mea-
sures the tendency of a network to connect nodes of the
same or different degrees. Positive values indicate assortativity,
i.e., most of the links are between similar degree nodes and
negative values indicate disassortativity, i.e., most of the links
are between dissimilar degree nodes. A value of 0 implies non-
assortativity. As seen in Fig.5, assortativity of the topologies
changes drastically in most of the samples with an increase in
alias resolution success rate. For instance, (n,n)-samples from
the BA graph seem to be assortative with 0% alias resolution.
With 100% alias resolution, they appear to be non-assortative.
In general, (k,m)-samples do not show such big differences
except for TS-based samples.
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Fig. 6. Hop distribution for (100,100)-samples

F. Characteristic Path Length

Characteristic path length (CPL) l measures the average of
the shortest path lengths between all node pairs in a network.
In all the sample topologies, CPL values reduce with the
increasing alias resolution success rate (figures not shown).
The average reduction for BA, Inet, and WA-based sample
topologies is about 30%. For TS-based samples, we do not
observe much changes. This is possibly due to the fact that
the TS graph is a hierarchical graph and the shortest path
lengths are not affected much by the alias resolution process.

G. Hop Distribution

Hop distribution shows the average percentage of the nodes
reached at each hop. We observe that as alias resolution
improves less number of hops are required to reach others.
As an example, in the case of WA-based (100,100)-sample
topologies shown in Fig.6, 24%, 60%, 78%, and 83% of the
nodes are reachable within 7 hops with 0%, 40%, 80% and
100% alias resolution, respectively. This behavior is observed
in all samples except TS-based topologies where percentage of
reached nodes are close for different alias resolution success
rates. As indicated, average path lengths do not reduce notice-
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Fig. 7. Betweenness (average, normalized average) for WA samples

ably with alias resolution in TS graphs. Thus, hop distribution
is not effected as significantly as the other samples. We can
also observe changes in network diameter by looking at the
hop distribution. For instance, the diameter is 19 hops for 0%
alias resolution in (100,100)-sample from WA graph but is 12
hops with 100% alias resolution.

H. Betweenness
Betweenness σ(v) is a mesure of centrality. It reports the

total number of shortest paths that pass through a node v.
In general, betweenness is normalized with the maximum
possible value, i.e, n(n− 1) where n is the number of nodes.
We analyze betweenness distribution and observe considerable
changes with the increasing alias resolution success rate.

We report the impact of imperfect alias resolution on the
average and the normalized average betweenness for WA-
based sample topologies in Fig.7. Other topologies have
similar changes. The average betweenness reduces with an
improvement in alias resolution success rate. This is due to
the fact that as the alias resolution rate improves, artificial
nodes are removed from the network causing a reduction in the
number of path pairs that contribute to the betweenness (e.g.,
compare σ(a) in Fig. 3-a and Fig. 3-c). On the other hand,
the normalized betweenness presents a reverse trend where
as the alias resolution success rate increases, the normalized
betweenness also increases. This is due to the fact that the
normalized betweenness of the artificially replicated copies of
a node v are less than the normalized betweenness of the node
v when the rest of the network is the same (e.g., compare σ(a)
in Fig. 3-a and Fig. 3-d).

I. Clustering
Clustering C(v) characterizes the density of the connections

in the neighborhood of a node v. We analyze clustering
distribution with respect to node degree and observe an in-
crease with increasing alias resolution success rate. Clustering
coefficient C is a summary metric of clustering. Clustering
coefficient is the ratio of the number of triangles to the number
of triplets. As seen in Fig.8, all samples yield a clustering
coefficient of 0 with 0% alias resolution success rate since
path traces from different directions observe different inter-
faces. Clustering coefficient almost always increases with the
increasing alias resolution success rate. The largest increase is
observed in TS samples. �

In this section, we analyzed the changes in topological
characteristics of sample topologies with respect to varying
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alias resolution success rate. In order to eliminate the effects
of sampling, each sample topology is compared with the real
sample topology (i.e., the topology obtained when the alias
resolution success rate is 100%). The analysis shows that
the alias resolution process has a significant impact on the
accuracy of the observed topological characteristics.

IV. IMPACT ON GENUINE TOPOLOGIES

In this section, we analyze the effect of alias resolution in
building a topology map from a set of collected path traces.
For our analysis, we consider two alias resolution approaches,
namely ally [6] and APAR [8]. Ally is the current state-of-
the-art probe based approach. APAR is a recent analytical
approach. In the analysis, we use three different steps to
resolve IP aliases to build new sample network topologies
from the same set of path traces. These are (1) using ally
only, (2) using APAR only, and (3) using ally and APAR as
a combined approach. We then study the changes in observed
topological characteristics of these three networks with respect
to the initial topology where none of the tools is used.

For our analysis, we first obtain a set of path traces collected
by AMP measurement infrastructure [19] on August 31, 2006.
Filtering erroneous traces, we combine all traceroute paths and
perform star resolution. Then, we separately mark identified
aliases by ally, APAR, and combined approaches. Table I
presents a summary of the analyzed characteristics of each
network map. We consider the combined approach, which
utilizes both ally and APAR, as the current state-of-the-art and
assume it’s output to be close enough to the genuine network
obtained at the end of the sampling.

Note that, the initial network map of collected path traces
is not the 0% alias resolution case since, in practice, some of
the routers use only one of its IP addresses in replies. This
can also be inferred from the clustering coefficient which was
0 for all 0% alias resolution cases of synthetic topologies but
is greater than 0 for the initial topology.

In Table I, we observe similar alterations as in the case of
synthetic topologies with improving alias resolution. First of
all, topology size changes drastically with alias resolution. The
number of nodes reduces by 25%, 35%, and 42% with ally,
APAR, and combined approaches, respectively. Similarly, the
number of edges decreases in the same order.

Average degree of ally graph is similar to that of the
initial network but reduces a little with APAR and com-
bined approaches. This behavior is also observed in synthetic
topologies where artificial nodes have opposing effects on



Initial Ally APAR Combined
Number of Nodes 4085 3080 2659 2376
Number of Edges 7313 5502 4132 3727
Average Degree 3.580 3.572 3.108 3.137

Maximum Degree 29 45 45 41
Assortative Coefficient 0.388 0.186 0.079 0.086

Characteristic Path Length 9.769 8.688 8.897 8.572
Normalized Betweenness 0.0021 0.0025 0.0030 0.0032

Clustering Coefficient 0.0061 0.0275 0.0474 0.0566

TABLE I
IMPACT OF ALIAS RESOLUTION ON TOPOLOGICAL CHARACTERISTICS

degree characteristics. That is, while degree of some nodes
are underestimated due to the alias resolution problem, there
are nodes whose degrees are overestimated as well. Maximum
degree increases with all alias resolution approaches but the
increase is smaller for combined approach as compared to ally
and APAR. In synthetic graphs, we observed that unresolved
neighboring nodes caused artificial increase in node degrees.
Fig. 9-a presents the degree distribution of topologies which
bears similarities to the BA sample in Fig. 4. Mainly high
degree (20-45) range is effected by ally. APAR and combined
approaches alter low-degree (3-12) range as well. Similar to
the (n,n)-samples from the BA graph, the network seems to be
assortative without alias resolution, but turns out to be non-
assortative for APAR and combined approaches. Besides, ally
graph is less assortative than the initial graph.

Additionally, characteristic path length reduces by 13%
and 12% for APAR and combined approaches, respectively.
Fig. 9-b indicates that hop distribution of the graphs changes
with alias resolution as well. For instance, the percentage
of reachable nodes at 10 hops, on average, is 61% without
any alias resolution and increases to 78%, 77%, and 80%
for ally, APAR, and combined approaches, respectively. The
diameter of network reduces from 28 to 27 when any of
the alias resolution is utilized. Similar to synthetic networks,
average normalized betweenness increases with improving
alias resolution, e.g., combined approach yields 52% increase.
Finally, clustering coefficient increases by more than 8 times
of the initial network’s clustering.

Overall, we observe alterations, similar to synthetic topolo-
gies, in topological characteristics of the collected topology
with improving alias resolution. These alterations, especially
degree related ones, are mostly similar to the ones in samples
from BA-graph. Note that, BA model is assumed to be rela-
tively more accurate model of the Internet. However, changes
in path length related characteristics are closer to that of TS
samples but not as low as in TS samples.
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V. CONCLUSION

Our main observation in this study is that the completeness
of the alias resolution process has a significant impact on
almost all topological characteristics that we consider in this
study. Therefore, Internet measurement studies should employ
all the means possible to increase the accuracy/completeness
of the alias resolution process. Even in this case, our con-
fidence in the results of such measurement studies will be
limited by the lack of a mechanism to verify the accu-
racy/completeness of the alias resolution process.

The combined approach of ally and APAR is promising.
However, both approaches have drawbacks. That is, ally needs
pairwise probing of IP addresses, which may be impractical
for large topologies. Similarly, APAR works effectively when
traceroute anomalies are minimal and majority of IP addresses
in a subset are present in the data set.
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