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Abstract: This paper investigates self-organizing binary majority consensus disturbed by1

faulty nodes with random and persistent failure. We study consensus in ordered and random2

networks with noise, message loss, and delays. Using computer simulations, we show that:3

(a) explicit randomization by noise, message loss, and topology can increase robustness4

towards faulty nodes, (b) commonly-used faulty nodes with random failure inhibit consensus5

less than faulty nodes with persistent failure, and (c) in some cases such randomly failing6

faulty nodes can even promote agreement.7

Keywords: Binary Consensus; Randomized Consensus; Self-Organizing Systems; Faulty8

Agents; Byzantine Failure; Density Classification;9

1. Introduction10

The use of consensus algorithms is reported in various systems, ranging from distributed database11

management [1], to detection [2], and mission planning [3].12

Networked algorithms for distributed decision making, operating in real-life systems should be robust13

towards various disturbances. Studies on robustness of consensus algorithms investigate the influence14

of noise [4,5], message loss [6], random topologies [7], and faulty node behavior [8]. Faulty nodes are15

often considered as one of the main impediments to consensus [8,9].16

Scholars approach the problem of fault tolerance with fault-detection [10,11], increasing system-wide17

synchrony [12,13], and randomization. Randomization is a technique that utilizes random processes18
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(that are often considered as negative disturbances) to increase fault tolerance [14]. Unlike the fault-19

detection, randomization does not significantly increase the complexity of the algorithm and does not20

require system-wide adjustments such as an imposed synchrony. Studies show that randomization can21

be beneficial for consensus, both in terms of efficiency [14,15] and fault tolerance [14,16]. Recent22

studies show that such beneficial randomization can sometimes be provided explicitly by noise [17,18]23

or errors [15].24

This motivated us to investigate the impact of faulty nodes on self-organized binary majority25

consensus. In this article we focus on faulty nodes with persistent and random failure and different26

layout over the network. We study influence of the faulty nodes in ring lattices and Watts-Strogatz [19]27

and Waxman [20] networks randomized by message loss, additive noise, and topology randomization.28

We show that the decrease in efficiency induced by faulty nodes can be mitigated by randomization of29

different origin. We show that commonly-used faulty nodes with random failure and faulty nodes with30

random full failure are less adverse for consensus than faulty nodes with persistent failure. Finally, we31

show that in some cases randomization by faulty nodes can even promote consensus.32

The article is organized as follows. Section 2 gives a short overview of related work. Section 333

describes system modeling. Section 4 presents simulation results and analysis. Finally, Section 534

concludes the article.35

2. Related Work36

Self-organization is a phenomenon often observed in systems, where simple local interactions of37

networked agents can produce global coordination [21–23]. Networked control algorithms, inspired38

by such systems can be efficient and robust [24]. Binary majority consensus exhibits self-organizing39

features: it is performed by simple rules in a distributed manner, and can show an increase in efficiency40

with stochastic intrusions [15,25]. Studies on self-organized consensus can provide practical insights on41

engineering of networked control systems. In this article we focus on simple binary majority consensus42

algorithms to investigate whether randomization can have positive effect not only on its efficiency but43

also on its robustness.44

2.1. Distributed Binary Majority Consensus45

In this article we focus on a wait-free binary majority consensus — a sub-class of the general46

consensus. Consensus algorithms are a class of algorithms that aim to provide common decision for47

all nodes in a networked system and satisfy the following conditions [14]:48

1. Agreement. All nodes choose the same value.49

2. Termination. All non-faulty nodes eventually decide.50

3. Validity. The common output value is an input value of some node.51

Let us briefly specify the wait-free Binary Majority Consensus (BMC) in this perspective. Binary52

majority consensus is a sub-class of consensus algorithms with specific agreement and termination53

conditions. Binary majority consensus algorithms provide that a network agrees on state that is selected54
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out of limited set of binary inputs, generally defined as {0, 1} or {−1, 1}. The agreed state should55

correspond to the initial majority of all states in the network. A wait-free requirement specifies a56

termination condition: such algorithms are terminated after a predefined time T , whether agreement was57

reached or not. Wait-free binary majority consensus can be beneficial in real-life networked systems,58

where the termination time is important. Time limitation, however, can lead to lower efficiency and59

higher sensitivity to disturbances [15,26,27].60

Strict termination conditions of BMC make it difficult to guarantee the agreement. Due to this61

efficiency of the binary majority consensus is registered as convergence rate, R — a fraction of initial62

network configurations that result in successful agreement. BMC has been actively studied since Gacs63

et al. [26] introduced the Gacks-Kurdymov-Levin (GKL) consensus that provides R ' 82%. This64

convergence rate was registered in a synchronized ring lattice of N = 149 nodes, where each node is65

connected to its 2K = 6 neighbors. Since then most scholars adopted this network as a reference case66

for comparing the convergence rate of BMC algorithms. In the last several decades several solutions67

slowly advanced the R up to 86% [28]. Land and Belew [29] show that a deterministic algorithm cannot68

solve the consensus with 100% efficiency in a reference setup. This motivated research on randomized69

solutions that advanced the convergence rate up to 90% [15,30]. However, proposed solutions only70

work in a limited set of synchronous networks, and were not tested for robustness towards faulty node71

behavior.72

2.2. Fault Tolerance of Consensus73

Studies on the robustness and the fault tolerance of general consensus algorithms consider faulty74

nodes as one of the main impediments to consensus. Faulty nodes are generally represented as Byzantine75

faulty nodes — nodes that can have any arbitrary failure, except full failure. Early study by Pease et76

al. [31] shows that in a synchronized networked system of N nodes, M of them being faulty, consensus77

is possible if M < N−1
3

. Later, Fischer et al. [8] strengthened this condition for asynchronous systems,78

showing that consensus may become impossible with already M = 1.79

Due to strict termination conditions, BMC can be sensitive to the faulty node behavior. Specific80

cases of BMC with faulty nodes has been previously studied in [32] and [17]. Thus, [32] reports that81

Simple Majority (SM) consensus is stronger inhibited by faulty nodes with persistent failure than by82

faulty nodes with random failure in some networks. Another affect is reported in [17], where it is shown83

that Gacs-Kurdyumov-Levin (GKL) and SM consensus inhibited by a low number of faulty nodes with84

persistent failure can restore convergence rate with randomization.85

This article complements and extends these works for a wider range of network models, types of86

disturbances and faulty nodes. We study BMC with faulty nodes in ring lattices, Watts-Strogatz and87

Waxman networks with various stochastic disturbances. We consider persistently and randomly failing88

faulty nodes in networks with random and clustered faulty node layout. We show that randomization89

by topology, noise, and message loss can mitigate the decrease in efficiency induced by faulty nodes90

of different type. We also show that in some cases faulty nodes with random failure can even promote91

consensus. Finally we explain and illustrate the mechanisms behind these effects with convergence92

analysis.93
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3. Experimental Setup94

3.1. Network Model95

We investigate BMC in ring lattices and randomized Watts-Strogatz (WS) [19] and Waxman [20]96

networks. Watts-Strogats graph can produce networks, ranging from ordered grids to Small-World,97

and fully random networks. Due to this WS networks are widely used to model systems interactions,98

spanning from technical systems [15] to natural [33], and social networks [34]. Graphs proposed by99

Waxman [20], on the other hand, are widely used to model human-designed random networks, like100

internet [35]. These types of systems compliment each other and allow us to compare the efficiency101

of the algorithms with preceding solutions and cover major network models for areas, where consensus102

algorithms found their use.103

3.1.1. Ring Lattices104

To model ring lattices we follow a reference network design introduced in [26]. Such a network105

is initially created as a one-dimensional cellular automaton of N nodes, connected to their 2K closest106

neighbors. This automaton is then closed in a ring to avoid boundary effects. Such setup is often used107

to register convergence rate of BMC [30,36,37]. Neighbors of each node i ∈ {0, . . . , N} are split108

into three sets: set of all neighbors Ni, ||Ni|| = 2K, Ni = {i − K, . . . , i − 1, i + 1, . . . , i + K},109

set of left-side neighbors Nl, ||Nl|| = K, Nl = {i − K, . . . , i − 1, } and set of right-side neighbors110

Nr, ||Nr|| = K, Nr = {i + 1, . . . , i + K}. These sets are further used by consensus algorithms111

to access neighbors’ state information. For comparison purposes, for all algorithms we use K = 3,112

initially defined for GKL in [26]. Here and further we study undirected graphs, and refer to the “link”113

as the connection between nodes i and j. For ring lattices and WS networks a “link length” between114

nodes i and j is defined as the difference between their respective indices. For Waxman networks link115

length is an actual Euclidean distance, randomly chosen in the beginning of simulation. Random and116

complex networks such as WS and Waxman graphs are often characterized with the path lengths that are117

composed of multi-hop connections. The simple consensus algorithms studied in this paper only account118

for the closest, one-hop neighborhood of each node. Due to this we characterize the networks with “link119

length” and “node degree” rather than a “path length”.120

3.1.2. Watts-Strogatz Networks121

A Watts-Strogats graph can produce networking models ranging from ordered grids to fully random122

networks. It is initially modeled as one-dimensional ring ofN nodes, where each node is connected with123

the next K nodes. Further, with rewiring probability P ∈ [0, 1] each link of the node i is substituted124

with a link to a random node j /∈ {i − K, . . . , i + K}. I.e., at P = 0 a network is a 2K-connected125

ordered grid of N nodes. At P = 0.5 approximately half of the links is substituted with random ones,126

and the network can be represented as a Small-World graph. Finally, at P = 1 all links are random and127

the network is a fully random graph.128



Version May 13, 2014 submitted to Entropy 5 of 18

3.1.3. Waxman Networks129

A Waxman graph is built as follows. First, for each pair of nodes i, j ∈ {1, 2, . . . , N}, i 6= j,
the distance d is randomly uniformly chosen from the interval (0, 1]. Next, the nodes are linked with
probability

α exp

(
−d
β

)
, (1)

with parameters α, β ∈ (0, 1]. Parameters α and β influence the system as follows. An increasing α130

yields an increasing link probability, thus increasing the average node degree. An increasing β has an131

influence similar to that of P in WS networks: it increases the number of long random links compared132

to short links, thus increasing the average link length in the network. We model sparsely connected133

Waxman graphs with fixed α = 0.05 and β ∈ [0.01, 0.4]. Within the given parameter range of β, we134

limit the average node degree and average link length to match the WS model.135

3.2. Consensus Algorithms136

At the first time step t = 0 every node i ∈ {0, . . . , N} is randomly assigned with a binary state σi ∈137

{−1, 1}. The combination of all N initial states σi is called initial configuration. The sum of all states138

in initial configuration
∑i=N

i=0 σi[0] is called initial density and denoted as ρ[0].139

At every time step 0 ≤ t ≤ T each node updates its state following a given consensus algorithm,140

based on its own state, and the state information received from neighboring nodes. Within T time141

steps all nodes are expected to agree on a single state, corresponding to the initial majority (density).142

I.e., a network is converged if there exist time tc ≤ T , so that
∑i=N

i=0 σi[tc] = N for ρ[0] > 0, or143 ∑i=N
i=0 σi[tc] = −N for ρ[0] < 0. We use T = 2N as initially defined in [26].144

In this article we focus on randomized Gacs-Kurdyumov-Levin and Simple Majority consensus145

algorithms which we will now briefly describe.146

3.3. Simple Majority Consensus
With Simple Majority consensus every node updates its state on a basis of its own state, and the state
information received from its neighbors.

σi[t+ 1] = G

(
σi,i[t] +

∑
j∈Ni

σi,j[t]

)
. (2)

Here, σi,j[t] denotes the state of the node j at the time t received by the node i. The update function
G(x) is defined as in [15,25]:

G(x) =

{
−1 for x < 0,

+1 for x > 0.
(3)

SM consensus is arguably the simplest algorithm for binary majority sorting, and has a balanced147

design: in ring lattices each node i receives equal number of messages from both sides of the lattice. Due148

to this SM indicates low convergence rate in ordered and noiseless systems, but in strongly randomized149

setups it can show high convergence rate [15,17,32], and outperform GKL.150
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One can see that G(x) is not defined for x = 0, which is a valid assumption for undisturbed networks151

where an odd number of received state messages ensures that their sum is always either negative either152

positive. However, in noisy networks or in networks with message loss a sum of received state messages153

can sometimes be equal to 0. For this case we adjust G(x) in a following manner: if a decision cannot be154

taken (i.e., when the sum of received state messages is equal to 0) the state of the node stays unchanged:155

σi[t+ 1] = σi[t].156

3.4. Gacs-Kurdyumov-Levin Consensus
GKL consensus is known among the best algorithms for binary majority problem [36]. It is simple and
efficient, and is often used as a benchmark for new algorithms [30,37,38]. Nodes driven by GKL, update
their states as follows. Depending on its own current state, each node chooses which side to receive
messages from: if σi,i[t] < 0, node i receives state information from the first and the third neighbor to
the left, if σi,i[t] > 0, it receives information from the first and the third neighbor to the right.

σi[t+ 1] =

 G
(
σi,i[t] + σi,l1 [t] + σi,l3 [t]

)
for σi,i[t] < 0,

G
(
σi,i[t] + σi,r1 [t] + σi,r3 [t]

)
for σi,i[t] > 0.

(4)

Here, l1, l3 and r1, r3 are the first and the third neighbors of the node i to the left and to the right,157

respectively. One can see that essentially GKL is a modification of SM consensus with a built-in state-158

direction bias. This bias provides for high efficiency of GKL in ring lattices but it can lead to low159

efficiency if the network structure or the update sequence are disturbed [15,17].160

3.5. Update Mode161

System-wide synchrony can be crucial for consensus process [12,13]. We simulate systems with162

synchronous and asynchronous update functions. In the synchronous mode all nodes update their163

states simultaneously. In the asynchronous mode nodes are updated sequentially, one after each other,164

according to their indices, i.e., 0 → N . To update its state, a node uses the latest available states of its165

neighbors.166

3.6. Initial Configurations167

For our simulations we use test sets combined of 104 initial configurations. Each initial configuration is168

composed of N initial states σi obtained as a result of a coin-flip operation, returning 1 or −1 with equal169

probability, as in [15,26].170

3.7. Faulty Nodes Modeling171

We study faulty nodes with two failure models: faulty nodes with random failure, modeled after172

Byzantine failure model, and faulty nodes with persistent failure.173

We implement faulty nodes as follows. At a starting time t = 0, M faulty nodes are added to174

N non-faulty nodes to avoid bias of the initial configuration. Network topology is then created for175
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all N + M nodes. After adding M faulty nodes to the system they are labeled as faulty and counter176

consensus according to their failure model.177

3.7.1. Faulty Nodes Layout178

We use two schemes of faulty nodes layout: clustered and distributed. With clustered layout all faulty179

nodes are located next to each other. Location of the cluster is randomly chosen at each simulation run.180

With distributed layout all faulty nodes are randomly placed over the network independent from each181

other.182

3.7.2. Faulty Nodes with Random Failure183

We implement faulty nodes with random failure after commonly-used Byzantine random failure with184

a reduced state space. Such nodes randomly change their broadcasted state, independently from the state185

information received from their neighbors. We investigate two types of faulty nodes:186

• two-state faulty nodes, randomly switching between states σM ∈ {−1, 1}, and187

• three-state faulty nodes, switching between σM ∈ {−1, 0, 1}.188

The first case presents a faulty node that broadcasts correct and erroneous state information with equal189

probabilities. The second case additionally implements a state of sending no information, i.e., a full190

failure.191

3.7.3. Faulty Nodes with Persistent Failure192

Faulty nodes with persistent failure are modeled as follows. After M faulty nodes are added, they193

are assigned with a faulty value σM , opposite to the initial majority: if
∑i=N

i=0 σi[0] < 0, σM = 1, and if194 ∑i=N
i=0 σi[0] > 0, σM = −1. During consensus process such faulty nodes broadcast their state but do not195

update it. Unlike faulty nodes with random failure, faulty nodes with persistent failure provide enduring196

inhibition for consensus.197

3.8. Additive Noise
To introduce the noise, we modify the system as follows. Recall that in the original system node i
receives state information from the node j via state information message σi,j[t]. We implement noise
added to the received state information by the following transformation:

σi,j[t]→ σi,j[t] + φi,j . (5)

Here, a random value φi,j is a sample of added noise. We implement two types of noise: Additive White198

Gaussian Noise (AWGN), where φi,j ∼ N
(
0, (A

3
)2
)
, and Additive White Uniform Noise (AWUN),199

where φi,j ∼ U
(
− A,A

)
, with the magnitude A ∈ [0, 4]. Previous studies mostly consider AWGN as200

the most common noise type in real networks [5,6], and AWUN is generally used to model the response201

of filters and amplifiers [39]. The range for the noise amplitude A is chosen empirically to account for202

level of disturbances that not only promote, but also hinder consensus.203
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3.9. Message Loss
A message loss can inhibit the BMC, since a node decision is based on an odd number of state
information messages received from other nodes. If a message is lost, a node can come to a state when
the sum of received state messages is equal to zero, and the state of the node stays unchanged. In our
model, a state information is lost with the probability Ei,j ∈ [0, 1), i.e., if a message from node the j to
node the i is lost, the received state message σi,j[t] = 0:

σi,j[t]→

{
σi,j[t],with probability (1− E)
0, with probability E

. (6)

In our simulations the state information of the node i is also affected by the noise and message204

loss, i.e., σi 6= σi,i. This scenario corresponds to the problem of distributed detection where nodes205

with unreliable sensory inputs are expected to agree whether a detected event took place. The other206

possible scenario assumes influence of noise and message loss only in node-to-node communication,207

i.e., σi = σi,i. We omit results for this scenario as our simulations only indicate a slight decrease of208

randomizing influence (both positive and negative), while the character of the influence remains the209

same.210

4. Performance Analysis211

As we mention above, the distributed binary majority consensus problem is generally solved in a wait-212

free manner. Additional restrictions in system connectivity and synchrony make it difficult to guarantee213

the convergence.214

Due to this efficiency of wait-free binary majority consensus is generally measured as convergence215

rate R - a fraction of initial system configurations that result in a successful agreement. For each216

set of parameters we generate three random networks which are then simulated over 30 sets of initial217

configurations. Resulting 90 values of R are then averaged and plotted with 95% confidence intervals.218

We investigate impact of faulty nodes on SM and GKL in WS and Waxman networks randomized219

by noise, message loss and topology. In the following sections we consequently compare the impact220

of faulty nodes with persistent and random failure in randomized networks with different faulty nodes221

layout. Next, we investigate the effect of strong consensus promotion by faulty nodes with random222

failure, observed in [32].223

4.1. Faulty Nodes with Random and Persistent Failure224

Let us analyze SM and GKL with faulty nodes and randomization by topology, noise and message225

loss. Figures 1a and 1b show that randomization by topology and noise can promote robustness of SM226

consensus towards faulty node behavior in asynchronous and synchronized networks respectively. It also227

shows that noise and topology randomization promote consensus in systems without faulty nodes (M =228

0). This extends results earlier obtained in [15], where it was shown that topology randomization and229

low level of errors can promote asynchronous SM. Figure 1 also shows that faulty nodes with persistent230

failure inhibit consensus stronger than faulty nodes with random failure.231
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Figure 1. SM with M faulty nodes. Noise (AWUN) and topology randomization in WS
networks. Faulty nodes with persistent failure (denoted as PF) inhibit consensus stronger
than faulty nodes with random failure (denoted as RF). K = 3, N = 99.
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Figure 2. Asynchronous SM withM faulty nodes and message loss in random WS networks
(P = 1). Stochastic message loss increases convergence rate of SM. PF and RF stand for
faulty nodes with persistent and 2-state random failure models, respectively. K = 3,N = 99.
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This can be explained as follows. Topology randomization in WS networks connects a faulty node232

with random neighbors, enabling latter to overcome the reduced negative impact. Additive noise washes233

out the negative impact of the faulty node and promotes consensus in a similar manner. Cluster-breaking234

impact of randomization also contributes to the convergence rate in the systems without faulty nodes.235

This effect was earlier observed in [15,18,25], and can be explained as follows. Binary majority236
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consensus is designed to provide a common decision for all nodes in the system, so the stable clusters of237

nodes sharing a different state inhibit the convergence. Some algorithms, like GKL, explicitly introduce238

the direction bias to wash out such clusters, for other algorithms the cluster-breaking effect can be239

provided by stochastic disturbances.240

Randomization by message loss can promote consensus with faulty nodes, as shown in Figure 2.241

Thus, Figure 2a shows that in random WS networks message loss can increase R of SM and GKL with242

faulty nodes of both types. Figure 2b shows convergence rate of SM in random WS networks, indicating243

that faulty nodes with random full failure have impact similar to that of faulty nodes with random failure.244

Figure 3 presents convergence rate of SM in Waxman networks with randomization by noise and245

message loss. It indicates that in Waxman networks faulty nodes with persistent failure inhibit consensus246

stronger than faulty nodes with random failure — effect we earlier observed for WS networks. These

Figure 3. Asynchronous SM with M faulty nodes in loosely connected Waxman networks.
Faulty nodes with persistent failure are more adverse than ones with random failure. PF and
RF stand for faulty nodes with persistent and random failure models, respectively. K = 3,
N = 99, α = 0.05, β = 0.18.
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247

observations extend results reported in [17,32] for a wider range of network topologies and a larger scope248

of randomizing disturbances and faulty node types.249

It can be explained by the nature of persistently failing faulty nodes: such nodes always send state250

information that counters consensus process. Faulty nodes with random failure can also send correct251

information, and thus contribute to the agreement.252

Observed small difference in impact between faulty nodes with random failure and faulty nodes with253

random full failure can be explained as follows. BMC can be promoted by stochastic message loss due254

to its “de-clustering” effect. Faulty nodes with stochastic full failure produce localized impact similar to255

that of message loss, and thus can promote consensus. For the same reason such faulty nodes decrease256
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robustness towards high levels of message loss that can be seen in Figure 3b. This can infer the following257

generalization: although faulty nodes with full failure are often considered as a strong adversary for258

consensus, their impact on BMC indicates little difference. Moreover, both types of randomly failing259

faulty nodes are less adverse than persistently failing faulty nodes. Another important observation is that260

a number of persistent faulty nodes can be more adverse than an equal or even a bigger number of of261

randomly failing faulty nodes. In other words, BMC systems can be stronger inhibited with, e.g., M262

persistent faulty nodes with equal number of both faulty states σM ∈ {−1, 1} than with 2M randomly263

failing faulty nodes.264

4.2. Influence of Faulty Nodes Layout265

In the previous section we observed that topology randomization can mitigate the negative impact of266

faulty nodes. This motivated us to determine whether a static random placement of the faulty nodes can267

produce similar effect in various networks, as it was observed for ring lattices in [32].268

We simulate networks with two types of faulty nodes layout on the network where: (a) all faulty nodes269

are located in a single cluster, and (b) faulty nodes are randomly placed over the network.270

Figures 4 and 5 present R of asynchronous GKL and SM in WS and Waxman networks with271

persistently failing faulty nodes with random and clustered layouts.272

4.2.1. Topology Randomization273

Figure 4 shows dynamics of the SM consensus with clustered and randomly placed faulty nodes in274

Watts-Strogatz and Waxman networks with topology randomization (increasing P and β).

Figure 4. Topology randomization increases efficiency of asynchronous SM in noiseless
WS and Waxman networks with M clustered and randomly placed faulty nodes. K = 3,
N = 99, A = 0, E = 0.
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Thus, Figure 4a indicates an effect, similar to that earlier observed in [32]: in WS networks, ranging276

from a ring lattice (P = 0) to a random network (P = 1), faulty nodes with clustered layout inhibit277

asynchronous SM slightly stronger than faulty nodes randomly placed over the network. However, the278

difference in impact between clustered and randomly placed faulty nodes is low and is not observed in279

other setups, e.g., with synchronous SM or GKL, or in Waxman networks. The difference in impact280

is observed with M ≥ 3 and can be explained by the sensitivity of asynchronous SM to external281

disturbances.282

Further, Figure 4b does not indicate a notable difference in impact between clustered and randomly283

placed faulty nodes in Waxman network. However, it indicates that increasing topology randomization284

promotes SM with faulty nodes.285

4.2.2. Randomization by Noise and Message Loss in Random Networks286

Figure 5. Asynchronous GKL and SM in random WS and Waxman networks (P = 1, α =

0.05, β = 0.26). M faulty nodes inhibit GKL stronger than SM. Clustered and randomly
placed faulty nodes show little difference in impact. “Clust.” and “dist.” stand for clustered
and random faulty node placement. K = 3, N = 99.
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Figures 4b, and 5 show that in random networks impact of clustered faulty nodes is similar to that287

of randomly placed ones. This can be explained by topology randomization that dithers impact of the288

clustered faulty nodes into a wider set of nodes. This leads to “de-clustering” of the faulty nodes and289

mitigates the difference in impact with randomly placed faulty nodes. This effect is observed with290

different types of randomization in both WS and Waxman networks, as can be seen from Figure 5. This291

can infer that observed difference in the impact of clustered and randomly placed faulty nodes is a feature292

of the asynchronous SM evident in noiseless ring lattices and WS networks.293
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4.3. Consensus Promotion with Randomly Failing Faulty Nodes294

Figure 6 shows R of asynchronous GKL with clustered randomly failing faulty nodes in WS networks295

and ring lattices of different size. Figure 6a resembles results similar to that shown in [32], showing296

that M ≥ K faulty nodes located in a single cluster can significantly increase R in ring lattices (P =297

0). Figure 6b shows that this effect remains with system growth. It also indicates similar consensus298

promotion with randomly failing faulty nodes with full failure. Impact of randomly failing faulty nodes

Figure 6. Asynchronous GKL in WS networks. M ≥ K clustered and randomly failing
faulty nodes increase efficiency up to 100%. N ∈ {29 . . . 999}, K = 3.
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299

is stronger expressed than the impact of randomly failing faulty nodes with full failure, though both types300

indicate similar dependencies. This can hint to the fact that randomization within the consensus state301

space can be more efficient [15,17,25]. The positive impact of faulty nodes on GKL consensus can be302

explained by explicit randomization they impose on the information exchange. It was previously shown303

that randomization by binary errors can promote consensus [15]. Positive randomization by faulty nodes304

reaches maximum with M ≥ K faulty nodes located in a single cluster (see Fig. 7a). Such setup can be305

presented as an open one-dimensional lattice with M faulty nodes at both ends (see Fig. 7b). This setup306

has two important features: it logically “disconnects” the network and thus produces boundary effects307

that have not been considered previously. These latter features and consensus promotion to ' 100%308

efficiency motivated us to investigate this case in more detail.309

4.3.1. Convergence Dynamics310

Let us study how faulty nodes promote consensus in terms of a system evolution. Figures 8 and 9311

show state and density evolution of GKL with faulty nodes over time, respectively. Figure 8a shows312

an agreement process of a synchronous GKL with no faulty nodes. It illustrates that in a connected313

ring clusters can migrate over the network. Figure 8b shows an example of agreement process of a314
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Figure 7. A network with M = K clustered faulty nodes, N = 15, K = 3.

a) Connected ring with M = K

faulty nodes
b) Disconnected ring with M = K

faulty nodes at each network border

Figure 8. State evolution of GKL. K = 3, N = 99.
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b) Asynchronous GKL, M ≥ K

logically disconnects the ring lattice and
restraints cluster to the boarder

synchronous GKL withM ≥ K faulty nodes. It shows that a cluster in a logically disconnected ring (see315

Figure 7) does not migrate and is destroyed faster. Figure 9 shows evolutions of a GKL in ring lattice316

over 500 initial configurations. Figure 9a shows the density evolution of the successfully converged317

networks with synchronous GKL. It illustrates that systems (each line represents a network evolving over318

the unique initial configuration) steadily evolve to correct majorities and terminate. Figure 9b shows319

density evolution of the asynchronous GKL with M ≥ K randomly failing faulty nodes, indicating320

that state direction bias of the GKL combined with asynchronous updates can steer the system to the321

expected state. However, it also shows that due to stochastic intrusions systems often evolve closely to322
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Figure 9. Density evolution of synchronous and asynchronous GKL in ring lattices over 500
initial configurations. K = 3, N = 99.
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b) Asynchronous GKL, ' 100% of networks
agree on correct majority, but often evolve close to

incorrect majority, M ≥ K

the opposite majority, and then get steered to the correct one. This happens due to the steering effect of323

the asynchronous sequential update and the contribution of the faulty nodes random state messages.324

Latter observations can be explained as follows. Even though asynchronous GKL with additional325

randomization by faulty nodes can reach R ' 100%, it can not be considered as a solution to the binary326

majority consensus problem: the system exhibits significant measure of random dynamics and cannot327

guarantee a stable correct convergence in the given consensus time T .328

5. Conclusions329

In this article we study the impact of faulty nodes on randomized binary majority consensus. We simulate330

two standard algorithms, GKL and SM, in ordered and topologically randomized networks with noise331

and stochastic message loss. We study faulty nodes with persistent failure in comparison with commonly332

used faulty nodes with random failure, including nodes with random full failure. We simulate faulty333

nodes with clustered and random layout, focusing on asynchronous networks. The main contributions334

of this article can be summarized as follows:335

• A number of faulty nodes with persistent failure are more adverse for binary majority consensus336

than even a larger number of commonly-used faulty nodes with random failure, or faulty nodes337

with random full failure;338

• Simple binary majority consensus algorithms such as Simple Majority do not degrade with339

randomization, but respond with increase in convergence rate;340

• Randomization by noise, message loss and topology can promote such consensus algorithms and341

mitigate the impact of a low number of faulty nodes.342
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These new results can be explained by the “de-clustering” influence, provided by explicit stochastic343

intrusions, such as noise and message loss. Such consensus-promoting “de-clustering” influence, in344

some cases, can be provided by faulty nodes with random failure. Such nodes can promote BMC in345

asynchronous networks providing unstable, but efficient convergence.346

This can be generalized as follows: due to restrictions in connectivity, synchrony, and time BMC347

exhibits diverse dynamics. This dynamics can be further exaggerated by disturbances. In particular,348

randomizing disturbances not only increase the efficiency of BMC but also promote its robustness349

towards faulty node behavior. Consequently, stochastically failing faulty nodes present a weak350

adversary for such consensus, and in some cases can even promote it. These observations can infer351

that aforementioned restrictions and disturbances are not only essential requirement for modeling of352

distributed consensus systems [15], but an intrinsic feature that helps yield self-organizing behavior353

from simple networked interactions [24].354

This work extends and complements previous investigations on binary majority consensus with355

stochastic elements [15,17,18,25,30,32] in terms of the robustness towards faulty node behavior.356
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