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ABSTRACT

In this paper we propose distributed strategies for the estimation

of sparse vectors over adaptive networks. The measurements col-

lected at different nodes are assumed to be spatially correlated and

distributed according to a Gaussian Markov random field (GMRF)

model. We derive optimal sparsity-aware algorithms that incorpo-

rate prior information about the statistical dependency among ob-

servations. Simulation results show the potential advantages of the

proposed strategies for online recovery of sparse vectors.

1. INTRODUCTION AND RELATED WORK

We consider the problem of distributed estimation, where a set of

nodes is required to collectively estimate some vector parameter of

interest from noisy measurements by relying solely on in-network

processing. One typical strategy is the incremental approach [1]-[2],

where each node communicates only with one neighbor at a time

over a cyclic path. However, determining a cyclic path that covers

all nodes is an NP-hard problem and, in addition, cyclic trajectories

are prone to link and node failures. To address these difficulties,

diffusion-based [3] and consensus based [4] techniques were pro-

posed and studied in literature. In these implementations, the nodes

exchange information locally and cooperate with each other without

the need for a central processor. In this way, information is pro-

cessed on the fly by all nodes and the data diffuse across the network

by means of a real-time sharing mechanism. A characteristic of the

observed signal that can be advantageously exploited to improve the

estimation accuracy is the sparsity of the parameter to be estimated,

as demonstrated in many recent efforts in the area of compressive

sensing (CS) [5]-[6]. In particular, several algorithms for sparse

adaptive filtering have been proposed based on Least-Mean Squares

(LMS) [8], Recursive Least Squares (RLS) [9], and projection-based

methods [10]. In subsequent studies, cooperative techniques have

also been proposed for sparse adaptation over networks. Investiga-

tions on sparsity-aware, adaptive, and distributed solutions appear

in [11], [12], [13], and [14]. In [11], the authors employ projection

techniques onto hyperslabs and weighted ℓ1-balls to develop a use-

ful sparsity-aware algorithm for distributed learning over diffusion

networks. In [12], [13], the authors employed diffusion techniques

that are able to identify and track sparsity over networks in a dis-

tributed manner thanks to the use of convex regularization terms. A

distributed RLS algorithm with l1-norm constraint, which enables a

recursive solution, was proposed in [14].

All the previous methods considered the simple situation where

the observations are uncorrelated. In some circumstances, however,

this assumption is unjustified. This is the case, for example, when the
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sensors monitor a field of spatially correlated values, like a tempera-

ture or atmospheric pressure field. In such cases, nearby nodes sense

correlated values and then the statistical independence assumption is

no longer valid. It is then of interest, in such cases, to check whether

the structure of the joint probability density function (pdf) induced

by the statistical dependency of the observations can be exploited

to improve performance. There is indeed a broad class of observa-

tion models where the joint pdf cannot be factorized into the product

of the individual pdf’s pertaining to each node, but it can still be

factorized into functions of subsets of variables. This is the case

of Markov random fields [15]. An example of (Gaussian) Markov

random field where the statistical dependencies incorporate the spa-

tial distances was suggested in [16]. In this paper, we propose dis-

tributed LMS strategies for sparsity-aware estimation over adaptive

networks, where the observations collected at different sensors are

spatially correlated and distributed according to a GMRF. These so-

lutions are able to exploit prior knowledge regarding the spatial cor-

relation among nodes, while tracking sparsity and processing data in

real-time and in a fully distributed manner. Numerical results illus-

trate the performance of the proposed strategies.

2. GAUSSIAN MARKOV RANDOM FIELDS

A Markov random field is represented through an undirected graph

[15]. More specifically, a Markov network consists of: (a) an undi-

rected graph G = (V,E), where each vertex v ∈ V represents

a random variable and each edge represents the statistical depen-

dency among random variables; (b) a set of potential (or compatibil-

ity) functions ψc(xc), that associate a non-negative number to the

cliques 1 of G. Let us denote by C the set of all cliques present in the

graph. The random vector x is Markovian if its joint pdf admits the

factorization

p(x) =
1

Z

∏

c∈C

ψc(xc), (1)

where xc denotes the vector of variables belonging to the clique c.
The term Z is simply a normalization factor necessary to guarantee

that p(x) is a valid pdf. A node p is conditionally independent of

another node q in the Markov network, given some set S of nodes, if

every path from p to q passes through a node in S. Hence, represent-

ing a set of random variables by drawing the correspondent Markov

graph is a meaningful pictorial way to identify the conditional de-

pendencies occurring across the random variables. This is the so

called pairwise Markov property. This property states that the joint

pdf factorizes in terms that contain only variables whose vertices are

neighbors. An important example of jointly Markov random vari-

ables is the Gaussian Markov Random Field (GMRF), characterized

1A clique is a subset of nodes which are fully connected and maximal.
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by having a joint pdf expressed as

p(x) =

√

|B|

(2π)N
e
−
1

2
(x− µ)TB(x− µ)

, (2)

where µ = E{x} is the expected value of x, B = C−1 is the

so called precision matrix, with C = E{(x − µ)(x − µ)T } de-

noting the covariance matrix of x, which is assumed to be positive

definite. In this case, the Markovianity of x manifests itself through

the sparsity of the precision matrix, i.e., the coefficient bij of B is

different from zero if and only if nodes i and j are neighbors in the

dependency graph. The following result from [16] provides an ex-

plicit expression between the coefficients of the covariance and the

precision matrices for acyclic graphs. The elements of the precision

matrix B = {bij}, for a covariance matrix C = {cij} ≻ 0 and an

acyclic dependency graph, are given by:

bii =
1

cii
+

c2ij/cii

ciicjj − c2ij
; bij =







−cij
ciicjj − c2ij

, j ∈ Mi;

0, o.w.

(3)

where Mi = {j ∈ V : bij > 0} denotes the set of neighbors

of node i in the dependency graph. Let us assume that cii = σ2,

for all i, and that the amount of correlation between the neighbors

(i, j) of the dependency graph is specified by an arbitrary func-

tion g(·), which has the Euclidean distance dij as its argument, i.e.

cij = σ2g(dij). Furthermore, if we assume that the function g(·)
is a monotonically non-increasing function of the distance (since

amount of correlation usually decays as nodes become farther apart)

and g(0) = ν < 1, exploiting a result from [16], it holds C ≻ 0.

3. SPARSE DISTRIBUTED LMS ESTIMATION

Let us consider a network composed of N nodes, where the obser-

vation xi[k] collected by node i, at time k, follows the linear model

xi[k] = u
T
i [k] θ + vi[k], i = 1, . . . , N (4)

where θ is the M -size column vector to be estimated, ui[k] is

a known time-varying regression vector of size M and v[k] =
[v1[k], . . . , vN [k]]T is an observation noise vector such that v[k] ∼
N (0,C), with C denoting the noise covariance matrix. The inter-

action among the nodes is modeled as an undirected graph, which

is described by a symmetric N ×N adjacency matrix A := {aij},

whose entries aij are either positive or zero, depending on whether

there is a link between nodes i and j or not. To ensure that the data

from an arbitrary node can eventually percolate through the entire

network, we assume that the network graph is connected.

The goal of the network is to adaptively estimate the parameter θ

starting from the observations xi[k] in a sparsity-aware, distributed

way, i.e. without requiring the presence of a sink nodes that col-

lects all the measurements. Sparsity can be enforced for example by

assuming a Bayesian approach incorporating some prior knowledge

of θ. For example, θ can be modeled as the outcome of a random

vector having a Laplacian prior pdf, i.e.

pΘ(θ) = (γ/2)M exp (−γ‖θ‖1) (5)

with γ > 0, having denoted with ‖θ‖1 the ℓ1 norm of θ. Following

a Bayesian approach, the optimal estimate can be found as the vector

that maximizes the log-likelihood function [17], i.e., as the solution

of the following optimization problem:

max
θ

E {log [p(x[k]/θ)pΘ(θ)]} (6)

where p(x[k]/θ) is the pdf of the observation vector x[k] =
[x1[k], . . . , xN [k]]T collected by all the nodes at time k, condi-

tioned to θ. Let us assume the noise sequence v[k] is distributed

according to a Gaussian Markov random field with zero-mean and

precision matrix B. Exploiting the joint pdf expression (2) and the

linear observation model (4) in the formulation (6) and considering

the Laplacian prior in (5), the optimal estimate θ̂[k] at time k is the

vector that solves the following optimization problem:

θ̂[k] = argmin
θ

1

2
E
{

‖x[k]−U [k]θ‖2B
}

+ γ‖θ‖1 (7)

where U [k] =
[

u1[k], . . . ,u
T
N [k]

]T
and ‖y‖2X = yTXy, with X

denoting a generic positive definite matrix. Due to the presence of

the weighted norm in (7), the problem does not seem to be amenable

for a distributed solution. However, since the precision matrix B

reflects the structure of the dependency graph, we can write

V (x[k]) :=
1

2
‖x[k]−U [k]θ‖2B =

N
∑

i=1

φi(xi[k]; θ) (8)

with xi[k] = [xi[k], {xj [k]}j∈Mi ,j>i]
T , and

φi(xi[k]; θ) : =
1

2
bii(xi[k]− u

T
i [k]θ)

2

+
∑

j∈Mi,j>i

bij(xj [k]− u
T
j [k]θ)(xi[k]− u

T
i [k]θ). (9)

Thus, exploiting (8) in (7), the optimization problem becomes

θ̂[k] = argmin
θ

N
∑

i=1

E {φi(xi[k]; θ)}+ γ‖θ‖1. (10)

The problem in (10) still needs a centralized solution due to the pres-

ence of the parameter θ, which is common to every node in the net-

work. To find a distributed solution of (10), we introduce the local

estimates θi, for each node, and add the constraint that all the local

estimates must be equal to a common, instrumental variable z [18].

Thus, let us consider the convex constrained minimization problem:

min
{θi}

N

i=1

N
∑

i=1

E {φi(xi[k]; θi)}+ γ‖θi‖1

s.t. θi = z, ∀i = 1, . . . , N. (11)

To solve the problem in (11), let us consider the quadratically aug-

mented Lagrangian function given by:

L(Θ,z,λ) =
N
∑

i=1

E {φi(xi[k]; θi)}+ γ‖z‖1

+

N
∑

i=1

λT
i (θi − z) +

ρ

2

N
∑

i=1

‖θi − z‖2 (12)

where Θ = {θi}
N
i=1, λ = {λi}

N
i=1 are the Lagrange multipliers as-

sociated to the equality constraints in (11), and ρ > 0 is a coefficient

penalizing the violation of the constraints. We will now resort to the

Alternating Direction Method of Multipliers (AD-MoM) [18] to iter-

atively minimize (12) through a set of simple recursions that update

(Θ, z,λ) in a fully distributed fashion. The first step implements re-

cursions of the local estimates Θ obtained by minimizing (12) using

block coordinate descent, i.e., (12) is minimized with regards to Θ
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assuming the other variables z and λ are fixed. The separable struc-

ture of (11) is inherited by the augmented Lagrangian, and therefore

Θ[k + 1] = argminΘ L(Θ,z[k],λ[k]) decouples into N simpler

minimization subproblems:

θi[k + 1] = argmin
θi

[

E {φi(xi[k]; θi)}

+ λ
T
i [k](θi − z[k]) +

ρ

2
‖θi − z[k]‖2

]

. (13)

It is important to notice that, in this case, even if the global problem

concerning the minimization of the augmented Lagrangian in (12) is

certainly convex, the local problem in (13) is not necessarily convex

because there is no guarantee that the term φi(xi[k]; θi) is a posi-

tive definite function. Nevertheless, the quadratic penalty in (13) can

make every local problem in (13) convex, provided that the coeffi-

cient ρ is chosen sufficiently large. At the same time, at convergence,

the penalty goes to zero by virtue of the constraints in (11), thus not

inducing an undesired bias on the final result. Then, since at large ρ
the cost function in (13) is convex and differentiable, the first-order

necessary condition is also sufficient for optimality, thus getting

E {∇θi
φi(xi[k]; θi)}+ λi[k] + ρ(θi − z[k]) = 0. (14)

The estimate update can be obtained as the root of the equation

in (14). Nevertheless, since the local covariance information in

E {∇θi
φi(xi[k];θi)} (see eq. (9)) are not known, the root of (14)

is not computable in closed form. Exploiting (9) and motivated by

stochastic approximation techniques [19], which find the root of

an unknown function given a time-series of noisy observations, the

proposed recursion is given by

θi[k + 1] = θi[k] + µi

[

biiui[k]
(

xi[k]− u
T
i [k]θi[k]

)

+
∑

j∈Mi,j>i

bij
[

(xj [k]ui[k] + xi[k]uj [k])−
(

uj [k]u
T
i [k]

+ ui[k]u
T
j [k]

)

θi[k]
]

− λi[k]− ρ(θi[k]− z[k])

]

, (15)

where µi > 0 is a constant step-size. In order to compute (15), we

assume each node i knows the coefficients {bij} of the i-th row of

the precision matrix B. The second step entails updating the global

variable z[k]. The recursions are then obtained by minimizing (12)

keeping fixed the variables Θ[k + 1] and λ[k], thus leading to the

closed form solution:

z[k + 1] =
1

ρN
Tγ

(

N
∑

i=1

λi[k] + ρ
N
∑

i=1

θi[k + 1]

)

, (16)

where Tγ(x) is a threshold function defined over each component as

Tγ(x) =







x− γ, x > γ;

0, −γ ≤ x ≤ γ;

x+ γ, x < −γ.

(17)

The third step is a dual variable update, whose goal is to maximize

the dual function, as in the dual ascent method. The pertinent recur-

sions for the multipliers’ update are then

λi[k + 1] = λi[k] + ρ (θi[k + 1]− z[k + 1]) (18)

for i = 1, . . . , N . Recursions (15), (16), and (18) constitute the pro-

posed algorithm, which can be arbitrarily initialized. From this for-

mulation, we can see that the first and third steps can run in parallel,

over each node. The only step that requires an exchange of values

among the nodes is the second step that requires the computation

of an average value, which can be computed in a distributed fash-

ion through the use of a consensus algorithm [20] over a connected

graph. Let us introduce the notation x̄ as the averaging operation

across the nodes, i.e. x := 1

N

∑N

i=1
xi. The algorithm is summa-

rized in Table 1; we will refer to it as the Sparse Distributed LMS

algorithm over GMRFs (SD-LMS-GMRF).

Table 1: SD-LMS-GMRF

Each node initializes θi[0], z[0], and λi[0] randomly. Then, it re-

peats the following steps for k ≥ 0:

1) θi[k + 1] = θi[k] + µi

[

biiui[k]
(

xi[k]− u
T
i [k]θi[k]

)

+
∑

j∈Mi,j>i

bij
[

(xj [k]ui[k] + xi[k]uj [k]) −
(

uj [k]u
T
i [k]

+ ui[k]u
T
j [k]

)

θi[k]
]

− λi[k]− ρ(θi[k]− z[k])

]

;

2) Run a consensus loop to compute λ[k] and θ[k + 1];

3) z[k + 1] =
1

ρN
Tγ

(

Nλ[k] + ρNθ[k + 1]
)

;

4) λi[k + 1] = λi[k] + ρ (θi[k + 1]− z[k + 1]) ;

As we can see from Table 1, the SD-LMS-GMRF algorithm has

inherently two time-scales, i.e., the sensing time k, and one consen-

sus loop per iteration k, which is needed to fuse the data coming

from all the nodes in the network. In principle, one could argue that

running many consensus iterations may not be a problem in a sta-

tionary environment. However, when the WSN is required to track a

time-varying parameter vector, one cannot afford significant delays

in-between consecutive sensing instants. One possible way to over-

come this hurdle is to run a single consensus iteration per acquired

observation (xi[k],ui[k]), which can be simply written as a local

weighted average among neighbors, i.e.,

θi[k + 1] =
∑

j∈Ni

wij θj [k + 1], (19)

where Ni is the spatial neighborhood of node i comprised itself,

and W = {wij} ∈ R
N×N are real, non-negative coefficients sat-

isfying W1 = 1. The combination of intermediate estimates in

(19) reminds the diffusion approach followed in [3], where several

rules were proposed to select the coefficientswij in order to improve

the estimation and tracking performance of the resulting algorithms.

Similar arguments follow to compute λi[k]. Thus, exploiting the

combination step in (19) to evaluate θi[k + 1] and λi[k] at step 2

in Table 1, one arrives at a Single Time Scale Sparse Distributed

LMS algorithm over GMRF (STS-SD-LMS-GMRF), which is more

suitable for operating in nonstationary environments.

Up to now, we have considered the ℓ1 norm constraint in (7),

which is commonly known as the Lasso [7]. We denote the strategy

using the function in (17) as the ℓ1-SD-LMS-GMRF algorithm. It is

well known that the Lasso leads to the presence of a strong bias in

the case of estimation of less sparse vectors. To reduce the effect of

the bias, we consider the non-negative Garotte estimator as in [21],
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whose thresholding function is defined as a vector whose entries are

derived applying the threshold

Tγ(x) =

{

x (1− γ2/x2), |x| > γ;

0, −γ ≤ x ≤ γ;
(20)

We denote the algorithm using (20) as the G-SD-LMS-GMRF.

Numerical Results : We consider a connected network com-

posed of 20 nodes. The topology of the network is shown in Fig.

1, where the blue links represent the communication graph, whereas

the red links depict the statistical dependency graph. Each red link

is also supported by a communication channel so that the depen-

dency graph can be seen as a sub-graph of the communication graph.

The regressors ui[k] have size M = 50 and are zero-mean white

Gaussian distributed with covariance matrices Ru,i = σ2

u,iIM , with

σ2

u,i shown in Fig. 1 (bottom). Since the dependency graph in

Fig. 1 is acyclic, we compute the precision matrix as in (3) with

cii = σ2 = 0.0157 and cij = σ2ν exp(−κ · dij), where dij is

the Euclidean distance among nodes i and j, ν < 1 is the nugget

parameter, and κ ≥ 0 is a correlation coefficient. To illustrate the

steady-state performance of the proposed strategies, in Fig. 2, we re-

port the steady-state network Mean Square Deviation, i.e., MSD =
limk→∞ E

∑N

i=1
‖zi[k] − θ‖2/N versus the number of non-zero

components (set equal to one) of the vector parameter θ, for 3 dif-

ferent algorithms: the sparsity agnostic STS-SD-LMS-GMRF with

γ = 0, the ℓ1-STS-SD-LMS-GMRF with γ = 3, and the G-STS-

SD-LMS-GMRF with γ = 45, which are described in Table 1,

with combination steps as in (19) and thresholding functions in (17)

and (20), respectively. The results are averaged over 100 indepen-

dent realizations. The combination matrix W is chosen such that

wij = 1/|Ni| for all i. The other parameters are chosen as ν = 0.7,

κ = 0.5, µi = 10−3 ∀i, and ρ = 500. As we can notice from

Fig. 2, when the vector is very sparse both sparsity-aware strate-

gies yield better steady-state performance than the sparsity agnostic

algorithm. When the vector θ is less sparse, the ℓ1-STS-SD-LMS-

GMRF performs worse than the sparsity-agnostic counterpart due to

the dominant effect of the bias introduced by (17). The G-STS-SD-

LMS-GMRF greatly outperforms both ℓ1-STS-SD-LMS-GMRF and

sparsity-agnostic algorithms, while matching the performance of the

latter only when the vector is completely non sparse.
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Fig. 3: Network MSD versus nugget parameter, considering differ-

ent values of the correlation coefficient κ.

To assess the sensitivity of the proposed strategies to variations

in the parameters describing the GMRF, in Fig. 3, we report the

steady-state network MSD of the G-STS-SD-LMS-GMRF versus

the nugget parameter ν, considering different values of the corre-

lation coefficient κ. The results are averaged over 100 independent

realizations. We consider a vector parameter θ with only 5 elements

set equal to one, which have been randomly chosen. The other pa-

rameters are chosen as µi = 6× 10−4 ∀i, ρ = 500, and γ = 45. As

we can see from Fig. 3, the performance of the algorithm gets worse

by increasing the correlation among the nodes observations.

4. CONCLUSIONS

In this paper we have proposed adaptive strategies for distributed es-

timation of sparse vectors, which are able to exploit the underlying

structure of the statistical dependency among observations collected

by network nodes at different spatial locations. Two different thresh-

olding functions, namely, the Lasso and the Garotte estimators, have

been exploited to improve performance under sparsity. Simulation

results illustrate the potential advantages achieved by these strate-

gies for online, distributed, sparse data recovery.
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