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Abstract—New 3D video applications and services are emerg-
ing to fulfill increasing user demand. This effort is well supported
by the increasing 3D video content including user generated
content (e.g., through 3D capture/display enabled mobile phones),
technological advancements (e.g., HD 3D video capture and
processing methods), affordable 3D displays, and standardization
activities. However, not much attention has been given to how
these technologies, along the end-to-end chain, from content
capture to display, affect user perception and whether the overall
experience of 3D video users is satisfactory or not. 3D video
streaming also introduces artifacts on the reconstructed 3D
video at the receiver end, leading to inferior quality and user
experience. In this article we present and discuss in detail how
artifacts introduced during 3D video streaming affect the end
user perception and how we could use real-time quality evalu-
ation methodologies to overcome these effects. The observations
presented can underpin the design of future QoE-aware 3D video
streaming systems.

I. INTRODUCTION

Interactive 3D video streaming will enable seamless, more
involving and adaptable delivery of 3D content to end users.
However, 3D video streaming over band-limited and unreliable
communication channels can introduce artifacts on the trans-
mitted 3D content. The effect could be much more significant
compared to conventional 2D video streaming. For instance,
the nature of 3D video source format (e.g. colour plus depth
images vs. left and right views) and the way our Human Visual
System (HVS) perceives channel introduced artifacts in 3D
video is different from 2D video; as an example, colour plus
depth map 3D video presentation may have to utilize impaired
depth map information at the receiver-side to render novel
views.

In the remainder of this paper, after an introduction on
interactive video streaming and 3D artifacts, we discuss how
we can quantify the overall user experience in 3D viewing
and how our HVS reacts to different artifacts. Moreover, we
elaborate on how we could exploit the measurement of the
quality at the receiver side to overcome these effects through
QoE-driven system adaptation.

A. Interactive 3D video streaming

Video streaming over the Internet has become one of the
most popular applications and Internet 3D video streaming
is expected to become more popular in the future, also
thanks to the recently standardized wireless systems, including

WIMAX, 3GPP LTE / LTE advanced, the latest 802.11 stan-
dards, and advanced short range wireless communication sys-
tems, enabling the transmission of high bandwidth multimedia
data. For such applications the target of the system design
should be the maximization of the final quality perceived by
the user, or Quality of Experience (QoE), rather than only
of the performance of the network in terms of “classical”
quality of service (QoS) parameters such as throughput and
delay. 3D video services, and in particular those delivered
through wireless and mobile channels, face a number of
challenges due to the need to handle a large amount of data
and to the possible limitations due to the characteristics of
the transmission channel and of the device. This can result
in perceivable impairments originated in the different steps of
the communication system, from content production to display
techniques (see Fig. 1), and influence the user’s perception
of quality. For instance channel congestion and errors at the
physical layer may result in packet losses and delay, whereas
compression techniques introduce compression artifacts. Such
impairments could be perceived by the end user and result
to a different extent in the degradation of the quality of the
rendered 3D video. Some of these artifacts are common to
2D video applications as well. In addition, artifacts which are
specific to 3D can be introduced during end-to-end chain of
3D video delivery such as cross talk, keystone distortion, etc.
[1].

Fig. 1. End-to-end 3D video processing chain.

B. 3D video QoE

The overall enjoyment or annoyance of 3D video streaming
applications or services is influenced by several factors such
as human factors (e.g., demographic and socio economic
background), system factors (e.g., content and network related
influences) and contextual factors (e.g., duration, time of the
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day and frequency of use). The overall experience can be
analyzed and measured by QoE related parameters which
quantify the user’s overall satisfaction about a service [2] [3].
Quality of Service (QoS) related measurements only measure
performance aspects of a physical system, with main focus
on telecommunications services. Measuring QoS parameters is
straightforward since objective, explicit technological methods
can be used, whereas measuring and understanding QoE
requires a multi-disciplinary and multi-technological approach.
The added dimension of depth in 3D viewing influences
several perceptual attributes such as overall image quality,
depth perception, naturalness, presence, visual comfort, etc.
For instance, an increased binocular disparity enhances the
depth perception of viewers, although in extreme cases this can
lead to eye fatigue as well. Therefore, the overall enjoyment
of the 3D application could be hindered by the eye strain
experienced by the end user. The influence of these attributes
on the overall experience of 3D video streaming users is yet to
be investigated. Figure 2 outlines a comparison between QoE
and QoS.

Fig. 2. Quality of Experience vs. Quality of Service.

C. 3D video artifacts

The different processing steps along the end-to-end 3D
video chain introduce image artifacts which may affect 3D
perception and the overall experience of viewers [1]. Even
though much attention has been paid into analyzing and
mitigating the effects of 3D image/video capture, processing,
rendering and display techniques, the effects of artifacts in-
troduced by the transmission system have not received much
attention compared to the 2D image/video counterpart. Some
of these artifacts influence the overall image quality, for
instance blurriness, luminance and contrast levels, similar as in
2D image/video. The effect of transmission over band-limited
and unreliable communication channels (such as wireless
channels) can be much worse for 3D video than for 2D video,
due to the presence in the first case of two channels (i.e.,
stereoscopic 3D video) that can be impaired in a different way;
as a consequence the 3D reconstruction in the human visual
system may be affected. Some networks introduce factors
directly related to temporal domain de-synchronization issues.

For instance delay in one view could lead to temporal de-
synchronization and this can lead to reduced comfort in 3D
viewing.

The methods employed to mitigate these artifacts (e.g.,
error concealment) need to be carefully designed to suit 3D
video applications. The simple application of 2D image/video
methods would not work effectively in this case, as discussed
in [4] for different error concealment algorithms for 3D
video transmission errors. In [4] it is observed that is some
cases switching back to the 2D video mode is preferred to
applying 2D error concealment methods separately for left
and right views to recover missing image information during
transmission. There could be added implications introduced
by these artifacts into our HVS. Therefore artifacts caused as
a result of 3D video streaming can be clearly appreciated only
by understanding how our HVS perceives different 3D video
artifacts.

1) Binocular vision: The HVS is capable of aligning and
fusing two slightly different views fed into the left and
right eyes and hence of perceiving the depth of the scene.
Both binocular and monocular cues assist our HVS to per-
ceive different depth planes of image objects [5]. Binocular
disparity is the major cue used by the HVS to identify
the relative depth of objects. Other monocular depth cues
include perspective, occlusions, motion parallax, etc. ( [5]).
During 3D video streaming, one view or both views could be
badly affected by channel impairments (e.g., bit errors and
packet losses caused by adverse channel conditions, delay,
jitter). For instance, frame freezing mechanisms employed to
tackle missing frames caused by transmission errors or delay
could lead to temporal de-synchronization where one eye sees
delayed content compared to the other eye. There are two
implications associated to the case where one view is affected
by transmission impairments:

• Binocular suppression
• Binocular rivalry

Our HVS is still capable to align and fuse stereoscopic content
if one view is affected by artifacts due to compression, trans-
mission, and rendering. Binocular suppression theory suggests
that in these situations the overall perception is usually driven
by the quality of the best view (i.e., left or right view), at
least if the quality of the worst view is above a threshold
value. However this capability is limited and studies show
that additional cognitive load is necessary to fuse these views
[6]. Increased cognitive load leads to visual fatigue and eye
strain and prevents users from watching 3D content for a long
time. This directly affects user perception and QoE. If one
of the views is extremely altered by the transmission system,
the HVS will not be able to fuse the affected views, and this
causes binocular rivalry. This has detrimental effects on the
final QoE perceived by the end user. Recent studies on 3D
video transmission [4] have found that binocular rivalry is
causing the overall perception to be affected and this effect
prevails over the effect of binocular suppression. To avoid
the detrimental effect of binocular rivalry, the transmission
system could be designed appropriately taking this issue into
account. For instance, the transmission system parameters can
be updated “on the fly” to obtain 3D views with minimum
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distortions, according to the feedback on the measure of 3D
video quality at the receiver-side. In case of low quality due to
different errors in the two views, if the received quality of one
of the views is significantly low, the transmission system could
be informed to allocate more resources to the worse view or to
increase the error protection level for that 3D video channel
to mitigate the quality loss in the future. This increases the
opportunity to fuse the 3D video content more effectively and
improve the final QoE of users. The next section of this article
discusses in detail how we can measure 3D video quality.

II. MEASURING 3D VIDEO QUALITY

Immersive video quality evaluation is a hot topic among
researchers and developers at present, due to its complex
nature and to the unavailability of an accurate objective quality
metric for 3D video. 3D perception can be associated with
several perceptual attributes such as “overall image quality”,
“depth perception”, “naturalness”, “presence”, “comfort”, etc.
Currently, 3D quality evaluation studies focus only on one
specific aspect such as overall quality, depth perception or
visual comfort. A detailed analysis is necessary to study
how these 3D percepts influence the overall perceived 3D
image/video quality in general (i.e., 3D QoE). For instance,
these attributes can be in conflict (e.g., increased disparity
can cause eye fatigue), resulting in affected user experience.
Mostly, appreciation oriented psychophysical experiments are
conducted to measure and quantify 3D perceptual attributes.
At present, electro-physiological devices are also being used
to record user’s overall excitement about a 3D service.

A few standards define subjective quality evaluation proce-
dures for 3D video (e.g., ITU-R BT1438, ITU-R BT500-12
and ITU-T P.910). However, these procedures are not compe-
tent enough to measure 3D QoE parameters and show several
limitations; for instance these are not able to measure the
combined effect of different perceptual attributes. Current stan-
dardization activities on 3D quality evaluation are discussed in
Subsection IV.A. Subjective quality evaluation studies under
different system parameter changes have been reported in a
number of studies [7]. However, these studies are limited to
certain types of image artifacts (e.g., compression artifacts)
and have limited usage in practical applications. Furthermore,
subjective quality evaluation requires time, effort, controlled
test environments, money, human observers, etc. and cannot
be deployed in a live environment where quality is measured
“on the fly”.

Objective quality evaluation methods for 3D video are also
emerging to provide accurate results in comparison to the qual-
ity ratings achieved with subjective tests [8]. The performance
of these metrics is most of the time an approximation of the
results of subjective quality assessments. 3D objective quality
metrics are designed to account for both disparity and texture
related artifacts based on extracted image features. The final
score should therefore reflect the quality degradation in terms
of both 2D image and depth perception. It is important to
have a reliable ground truth 3D dataset to evaluate and verify
the performance of emerging 3D objective metrics. These
metrics need to be verified and validated using sequences

with different characteristics and under different environmental
settings. Studies have also found out that there is a high
correlation between subjective ratings and individual objective
quality ratings of 3D video components (e.g., average PSNR
and SSIM of left and right video or colour and depth video)
[9]. For instance, depth perception is highly correlated to the
average PSNR of the rendered left and right image sequences
[9]. This could be due to the loss of correspondence between
left and right objects and reduction of monocular depth cues
as a result of compression and transmission errors. This
means that we could use individual objective quality measures
of different 3D video components to predict the true user
perception in place of subjective quality evaluation, through a
suitable approximation derived based on correlation analysis.
However, with some 3D source representations such as the
colour and depth map 3D image format, it may be difficult
to derive a direct relationship between objective measures
and subjective quality ratings. For instance, the objective
quality of the depth map may have a very weak correlation
on its own with the overall subjective quality, because the
depth map is used for projecting the corresponding colour
image into 3D coordinates and it is not directly viewed by
the end users. Individual quality ratings of left and right
views may not always account for depth reproduction of
the scene. Therefore, the next phase of 3D objective quality
metrics includes a methodology to quantify the effect of
binocular disparity of 3D scenes in addition to a conventional
image/video quality assessment methodology. For instance in
[8], in addition to image quality artifacts, disparity distortion
measures were also incorporated to evaluate the overall 3D
video quality. The article showed improved performance over
the method which does not account for the correspondence
information of stereoscopic views. The latest 3D image/video
quality metrics evaluate depth reproduction in addition to
usual image artifacts (such as blockiness) using specific image
features (e.g., edge, disparity and structural information of
stereoscopic images) which are important for the HVS in both
2D and 3D viewing. For instance the method proposed in [10]
shows high correlation values with subjective quality results
(Mean Opinion Score, MOS): the correlation coefficient with
subjective quality ratings is as high as 0.95; this outperforms
the method based on 2D image quality + disparity [8] and
other conventional 2D quality metrics separately applied to
left and right views (see Table I). The reported performance
figures in Table I are obtained using the same 3D dataset.
These observations confirm that accurate 3D image quality
metrics should be designed to also consider binocular dis-
parity distortions. All the methods described above are Full-
Reference (FR) methods and need the original 3D image
sequence to measure the quality by comparison, hence they
are not suitable for the evaluation of the quality “on the fly”
in real-time transmission applications such as interactive 3D
video streaming. In this case the solution is to use Reduced-
Reference (RR) or No-Reference (NR) metrics which do not
require the original image for quality assessment, but either no
information (NR) or just some side-information about it (RR)
requiring few bits for its transmission. Most of the NR metrics
are designed specifically for a known set of artifacts (e.g.,
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JPEG compression) and cannot be deployed in a more general
scenario. In case of RR metrics, side-information is generated
from features extracted from the original 3D image sequence
and sent to the receiver-side to measure 3D video quality.
Since the reference side-information has to be transmitted over
the channel, either in-band or on a dedicated connection, the
overhead should be kept at a minimum level. The next section
describes how we could measure 3D video quality “on the fly”
using RR and NR methods and provides a brief description of
the existing methods.

TABLE I
CORRELATION BETWEEN OBJECTIVE 3D IMAGE/VIDEO QUALITY

MEASURE AND SUBJECTIVE QUALITY

Method CC SSE RMSE
SSIM (Structural SIMilarity) 0.837 0.965 0.159
VQM (Video Quality Metric) 0.932 0.423 0.106
Proposed in [8]: 2D image quality + Disparity 0.901 0.608 0.126
Proposed in [10] 0.947 0.341 0.095

III. REAL-TIME 3D VIDEO QUALITY EVALUATION
STRATEGIES

The measured image quality at the receiver-side can be used
as feedback information to update system parameters “on the
fly” in a “QoE-aware” system design approach [11] [2]. How-
ever, measuring 3D video quality in real time is a challenge
mainly due to the complex nature of 3D video quality and
also the fact that the amount of side-information to be sent to
measure the quality with RR methods is larger compared to 2D
image/video applications. The emerging RR and NR quality
evaluation methods are based on image features associated to
the characteristics of the HVS. Some of these features are
related to image perception (e.g., luminance, contrast) and
some are related to depth perception (e.g., disparity, structural
correlations). An appropriate selection of these features is
crucial to design an effective 3D image/video quality assess-
ment method. The selected features should be able to quantify
image and depth perception related artifacts with a minimum
overhead. If the overhead is significant, the feasibility of
deploying the designed RR method is reduced. Figure 3 shows
how the extracted edge information is employed to measure
3D video quality in the RR method proposed in [12]. In this
method, luminance and contrast details of the original and
distorted images are utilized to count for conventional image
artifacts, whereas edge information based structural correlation
is employed to measure the structural/disparity degradation
of the 3D scene, which is directly affecting rendering using
colour plus depth map based 3D video. In order to reduce
the overhead for side-information (i.e., extracted features of
the reference image) lossless compression mechanisms can be
deployed for its compression. An extra effort should be also
made to send the side-information without corruption using a
dedicated channel or highly protected forward channel. Visual
attention models could also be utilized to find 3D image/video
features which attract significant attention during 3D viewing.
However, a direct relationship between visual attention and
image perception for 3D images and video is yet to be found.

NR methods are the most suitable for real-time 3D video
applications since these do not consume any bandwidth for the
transmission of side information. However, their performance
and application domain is limited since they rely solely on
the received 3D image/video sequence and other contextual
information (e.g., Hybrid-NR methods: packet loss rate, bit-
error rate). It may be impossible to count for all the artifacts
imposed along the end to end 3D video chain without referring
to the original image sequence. This is why most of the
proposed NR metrics are limited to a specific set of artifacts
[13].

Table II reports a few existing NR and RR quality metrics
for 3D image/video. This table explains which image features
are used to measure the overall perception and how much the
different metrics are correlated with subjective quality scores
(i.e., MOS) and with existing Full-Reference methods. It can
be observed that most of these methods show a high degree of
correlation with subjective MOS and Full-reference methods.
However, these metrics are focused on one or two specific 3D
perceptual attributes. The combined effect of these perceptual
attributes which is directly related to user 3D QoE has not been
addressed to date. The methods in [14] and [13] are evaluated
using the same image database whereas others are evaluated
using different data sets. Since some of these metrics, e.g.,
NR metrics ( [13] and [15]) are designed for a particular
types of image artifacts (e.g., JPEG compression), it is not
always possible to compare the performance of a NR metric
with another objective quality model in a common dataset.
On the other hand, due to the overhead associated with RR
metrics compared to zero overhead for NR metrics, the usage
and advantages of these methods are significantly different. In
addition, due to some practical reasons (intellectual property
rights, different source 3D video formats, e.g., colour +
depth vs. left and right images, unavailability of ground truth
depth maps, etc.), it is not always feasible to compare the
performance of two different 3D quality evaluation algorithms
in a common dataset. The lack of reliable and comprehensive
3D image/video databases is another major challenge faced
by researchers and developers, making difficult to effectively
compare the performance of emerging objective and subjective
quality evaluation methods with that of the existing methods.

IV. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

The possibility to measure 3D image/video quality in real
time, as requested by 3D video applications, is hindered by
several issues. The major challenge is how we could measure
the effect of all perceptual attributes (e.g., depth, presence,
naturalness, etc.) associated with 3D viewing. The lack of
availability of common 3D image/video databases is also
detrimental for the advance in this discipline. The following
paragraphs briefly discuss these challenges and possible solu-
tions foreseen.

A. Measurement of different 3D perceptual attributes

Even though emerging 3D quality evaluation methods accu-
rately predict a given quality attribute, the relationship among
these perception attributes has not be thoroughly studied. The
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TABLE II
NR AND RR METHODS FOR 3D IMAGE/VIDEO

Quality Metric Method
(NR or
RR)

Artifacts Features used to measure image arti-
facts (IA) and disparity (D)

CC ROCC OR RMSE

Cyclop [14] RR JPEG symmetric and asymmetric
coding artifacts

IA: Contrast sensitivity (spatial fre-
quency and orientation); D: coher-
ence of cyclopean images

0.981 0.950 0.050 -

Sazzad et al.
[13]

NR JPEG symmetric and asymmetric
coding artifacts

IA: Blockiness and zero crossing of
edge, flat and texture areas; D : aver-
age zero crossing of plane and non-
plane areas

0.960 0.920 0.069 -

Solh et al. [15] NR Depth map and colored video
compression, depth estimation
(stereo matching), and depth
from 2D to 3D conversion

IA D: Temporal outliers (TO), tem-
poral inconsistencies (TI), and spatial
outliers (SO) using ideal depth esti-
mate for each pixel

0.916 0.1003 0.8 1.686

Hewage & Mar-
tini [12]

RR H264 compression and random
packet losses

IA: Luminance, structure and con-
trast D : edge based structural cor-
relation

Colour: 0.9273
(vs. FR); Depth:
0.9795 (vs. FR)

Colour:
0.0110 (vs.
FR); Depth:
0.0064 (vs.
FR)

Fig. 3. Reduced reference edge based 3D video quality metric [12].

combined effect directly affects user experience and can be
measured using emerging QoE indices. Therefore the current
need is to understand how 3D audio/image processing and
transmission artifacts affect the overall experience of the user,
then identify audio, image and contextual features which can
be used to quantify the overall effect on user experience.
On the other hand, it is necessary to understand how the
HVS perceives these 3D artifacts. For instance, there could be
conflicts based on whether binocular suppression or binocular
rivalry is taking place based on the artifacts in question. These
aspects need extended attention in order to measure the overall
experience of 3D viewing.

In order to enable a unified approach to 3D objective quality
subjective quality evaluation studies, standardization of these
procedures are necessary. Several standardization activities are
being carried out by VQEG, ITU (Recommendations: ITU-T
P- and J-series), European Broadcasting Union EBU (3D-TV
Group) and other Standards Developing Organizations (SDOs)
in relation to 3D video subjective and objective quality evalu-

ations. Currently, the Video Quality Expert Group (VQEG)
is working (3DTV project) on creating a ground truth 3D
video dataset (GroTruQoE dataset) using the pair-comparison
method. This ground truth database will then be used to
evaluate other time-efficient 3D subjective quality evaluation
methodologies and objective quality models. In addition, the
project also addresses the objective quality assessment of 3D
video, with the plan to evaluate 3D quality of experience
in relation to the visual quality, depth quality and visual
comfort dimensions. Most of these findings are reported to
objective and subjective 3D video quality studies in ITU-T
Study Groups (SG) 9 and 12. EBU is also working on 3D
video production, formats and sequence properties for 3D-
TV Broadcasting applications (e.g., EBU Recommendation R
135).

B. Lack of 3D image/video databases

There are several image/video quality databases for conven-
tional 2D image/video artifacts, although only a few have been
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reported for 3D image/video artifacts. This prevents developers
from using a common dataset to evaluate the performance
of their metrics. Table III shows some of the reported 3D
image/video databases in the literature. The amount of artifacts
considered in these databases is limited. Most of them do not
consider artifacts which could be introduced during transmis-
sion. Therefore it is a responsibility of the research community
to produce comprehensive 3D video datasets covering a range
of image and transmission artifacts and make available the
developed 3D image/video dataset publicly.

C. Visual attention models to develop RR and NR quality
metrics

The attention of users during 3D viewing can be influenced
by several factors including spatial/temporal frequencies, depth
cues, conflicting depth cues, etc. The studies on visual atten-
tion in 2D/3D images found out that the behaviour of viewers
during 2D viewing and 3D viewing is not always identical
(e.g., centre bias vs. depth bias). These observations are
tightly linked with the way we perceive 3D video. Therefore,
effective 3D video quality evaluation and 3D QoE enhance-
ment schemes could be designed based on these observations.
There are still unanswered questions such as whether quality
assessment is analogous to attentional quality assessment and
also how attention mechanisms could be properly integrated
into design of QoE assessment methodologies. A thorough
study has not been conducted to date in order to identify the
relationship between 3D image/video attention models and 3D
image/video quality evaluation.

Similar to the integrated model described above, attentive
areas identified by visual attention studies can be utilized
to extract image features which can be used to design No-
Reference (NR) and Reduced-Reference (RR) quality metrics
for real-time 3D video application (see Fig. ??). Furthermore,
since visual attention models can predict the highly attentive
areas of an image or video, these can be integrated into
source and channel coding at the sender side. Emerging 3D
saliency models incorporate 2D image, depth and motion
information which can be applied to 3D video sequences.
Most of the reported 3D saliency models are extensions of
2D visual saliency models by incorporating depth information.
Table IV summarises a few 3D saliency models reported
in the literature. There are two main types of depth inte-
grated saliency models, namely: Depth weighted 3D saliency
model and Depth saliency model based methods. The depth
weighted saliency models weight the 2D saliency map based
on depth information. In depth saliency models, the predicted
3D saliency map is derived based on the chosen weights for
2D and depth saliency maps.

V. CONCLUSION

We presented the main concepts for the assessment of the
Quality of Experience for 3D video streaming, highlighting
the most recent achievements and current challenges. Studies
on the human visual system together with the development
of mathematical models will enable advances in this area,
together with the availability of 3D video databases for the
comparison of results among different research teams.
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TABLE III
AVAILABLE 3D IMAGE/VIDEO DATABASES

3D image/video database Creator Artifacts
Mobile 3D video database University of Tam-

pere and Nokia
Crosstalk, blocking, colour mismatch
and bleeding, packet losses for low-
resolution video (only impaired se-
quences, no MOS values provided).

IRCCyN 3D image database University of Nantes JPEG, J2K, upsample/downsample,
etc.

EPFL databases for images/videos EPFL Different camera distances
Kingston University video
database

Kingston University-
London

Packet losses

NAMA3DS1-COSPAD1 University of Nantes H.264 and JPEG2000 compression ar-
tifacts

RMIT3DV RMIT University Uncompressed HD 3D video

TABLE IV
3D IMAGE/VIDEO VISUAL ATTENTION MODELS

3D visual attention model Creator Model type and considered image fea-
tures

J. Wang, M.P. Da Silva, P. Le
Callet, V. Ricordel. (2013)

University of Nantes 2D + Depth saliency (using both cur-
rent and prior image information), mo-
tion information is not taken into ac-
count

Y. Zhang, G. Jiang, M. Yu, K.
Chen (2010)

Ningbo University 2D + Depth + Motion

E. Potapova, M. Zillich, M.
Vincze (2011)

Vienna University of
Technology

2D + Depth saliency (based on surface
height and relative surface orientation)

N. Ouerhani, H. Hugli (2010) Neuchatel University 2D + scene depth
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