
RECOGNIZING COORDINATED MULTI-OBJECT ACTIVITIES USING A DYNAMIC EVENT
ENSEMBLE MODEL

Ruonan Li and Rama Chellappa

Center for Automation Research, University of Maryland, College Park, MD 20742, USA

ABSTRACT

While video-based activity analysis and recognition has received

broad attention, existing body of work mostly deals with single ob-

ject/person case. Modeling involving multiple objects and recogni-

tion of coordinated group activities, present in a variety of applica-

tions such as surveillance, sports, biological records, and so on, is

the main focus of this paper. Unlike earlier attempts which model

the complex spatial temporal constraints among different activities

of multiple objects with a parametric Bayesian network, we propose

a dynamic ’event ensemble’ framework as a data-driven strategy to

characterize the group motion pattern without employing any spe-

cific domain knowledge. In particular, we exploit the Riemannian

geometric property of the set of ensemble description functions and

develop a compact representation for group activities on the ensem-

ble manifold. An appropriate classifier on the manifold is then de-

signed for recognizing new activities. Experiments on football play

recognition demonstrate the effectiveness of the framework.

Index Terms— Video Analysis, Activity Recognition

1. INTRODUCTION

This work deals with modeling and recognition of coordinated group
activities involving multiple objects from videos. Human activity

analysis and classification has been studied for nearly two decades

[1, 2], focusing on single object cases. Activities of multiple objects

exist widely in surveillance applications, sports, biological observa-

tion records, and consequently modeling and analysis of multi-object

activities will be of use in these applications. In a less complex sce-

nario, the individuals undergo structurally fixed motion[3] or follow

similar dynamics or trajectories[4]. However, more meaningful and

interesting semantics may be extracted for coordinated activities in-

volving multiple objects. In other words, the individual objects will

have distinctive and varying motion patterns but the group collec-

tively demonstrates an underlying activity with an explicit semantic

identity. A most illustrative example is a football game, in which we

would like to recognize the strategy used rather than players’ indi-

vidual movements.

A group activity usually occurs according to a planned goal. The

action of each object, meanwhile, is also the result of interactions

with and response to the motion of other objects. The collabora-

tion and interaction visually appear as a temporally constrained co-
occurrences of individual motion primitives. In other words, a group

activity is a collection of single-object activities occurring simulta-

neously or in a particular temporal order. Modeling and recogni-

tion of the temporal relationship (i.e. the group activity pattern) has

been mostly handled using a Bayesian net framework[5, 6, 7, 8, 9].

Bayesian formulation, though successfully applied to modeling ac-

tivities of a single object or motion, has some drawbacks while deal-

ing with multi-object activities. To completely characterize the role

of individual objects, their action primitives, interactions, and over-

all plan, the complexity of the network turns out to be prohibitively

high. This inherent difficulty manifested itself in previous works

(e.g. [6]), where individual objects’ ID’s, roles and their individual

action primitives were pre-labeled. Indeed, simultaneous recogni-

tion of individual actions and group activity pattern is intensive and

prohibitive in some sense. Compared to the size of the state space

and feature space of the network, the training data is insufficient

most of the time. Thus not only the probabilistic dependence might

very possibly be ’over-fitted’, but also necessary priors are hard to

learn from available data.

The work most similar to ours [6] designed large connected

Bayesian networks for football play recognition. In contrast, we are

exploring a ’data-driven’ approach. Specifically, we regard a multi-

object activity as a dynamically evolving ensemble of events. By an

event we mean a trajectory or motion segment of a single object. In-

stead of identifying objects, we treat the events non-discriminatively

as an event ensemble. However, we do learn an event vocabulary,

which classifies events into different ’words’. Then for each time

instant, we construct a word-space co-occurrence function, which

characterizes the spatial distribution of different event words. The

most desirable feature is that once given a proper Riemannian metric,

the set of co-occurrence functions becomes exactly a Riemannian

manifold. A group activity, i.e., a dynamic event ensemble, conse-

quently becomes an evolution process on this manifold. The tempo-

ral relationship, which determines the activity pattern, is described

by the evolving path of the co-occurrence function on the manifold.

Eventually, modeling and recognition of coordinated group activity

is achieved by statistical learning and inference on the manifold. The

approach does not assume or pursue any causal structure and depen-

dence of features and states of various levels.

2. LEARNING AN EVENT VOCABULARY

Although in some cases identifying the role of an object (e.g. the

quarterback in a football play) is of help in predicting the group
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intention, a non-discriminative scenario is more common for more

general group activities, and thus more flexible and extendable. On

the other hand, the event, i.e. the motion of an individual object can

also be interpreted at different levels. Here we take the point tra-

jectories, although body part movement or appearance can also be

incorporated to provide a more powerful representation.

In this work, we assume that trajectories of individual ob-

jects are available, and denote a particular one as Xt, t ∈ T =

{t0, t1, · · · , tf}. We do not pre-label the trajectories, but will clus-

ter them in an unsupervised manner. To obtain trajectories we may

need to employ a multi-object tracking module, but in this work we

assume that such tracks are already obtained.

The collection of trajectory segments is to be evaluated in a pair-

wise manner to define a (dis)similarity index between every pair.

The trajectories collected may take place with different starting times

and locations, but the shape of the curves are actually the same,

representing the same event primitive. Therefore, a temporal and

spatial alignment of the trajectory is necessary. With one trajectory

Xt defined above and another trajectory defined as Ys, s ∈ S =

{s0, s1, · · · , sg} we define the aligned trajectories with respect to

Y as

X ′
t,T = Xt+t0+T − Xt0+T , t ∈ T′ = {0, 1, 2, · · · , tf − t0 − T}

where T = 0, 1, 2, · · · , Tmax and

Y ′
s = Ys+s0 − Ys0 , s ∈ S′ = {0, 1, 2, · · · , sg − s0}

By this temporal and spatial shifting, we pick up a subsegment of X

and relocate it as well as Y at the S-T origin. In the same way the

aligned trajectories X ′′
t and Y ′′

s,S are also obtained.

The spatial-temporal alignment enables us to shift the primitive

pair by controlling T and S for the best match. Under a fixed T , a

straightforward dissimilarity measure between X and Y can be

d̃X �→Y (T ) =
1

|T′ ∩ S′|
X

r∈T′∩S′
||X ′

r,T − Y ′
r ||

where |.| denotes cardinality. By dividing the total distance or X ′

and Y ′ by the cardinality of T′ ∩ S′, we get an average dissimilar-

ity measure between X and Y . However, by only considering the

points in T′ ∩S′ we also achieve robustness toward fragmented tra-

jectories. Practically we may be unable to locate each object at every

instant. By ignoring the time instants not shared by both trajectories,

we are able to keep a lower dissimilarity between two similar but

fragmented primitives. Similarly, under a fixed S, dissimilarity of Y

and X is obtainable as d̃Y �→X(S).

A by-product of ignoring the unshared time instants is that we

may achieve a lower dissimilarity for a trajectory pair with less tem-

poral overlap, though they may be actually very dissimilar. In fact,

as the amount of overlap between the two increases, the confidence

we have about the dissimilarity measure increases. Therefore, it is

necessary to weight the above measure with a normalizing factor,

resulting in the following confidence-weighted measure

d̂X �→Y (T ) = d̃X �→Y (T ) exp(1 − |T′ ∩ S′|
|T| )

and the corresponding d̂Y �→X(S). It can be seen that as the overlap

between the two trajectories increases, the weight is reduced, and

consequently we are more confident about the dissimilarity measure.

Finally, to look for the best match between any primitive pair

with varied S and T , the ultimate pairwise dissimilarity measure is

taken as

d(X, Y ) = min{min
T

d̂X �→Y (T ), min
S

d̂Y �→X(S)}

which will be fed to the unsupervised clustering procedure.

We only take into account the path distance in the above treat-

ment. As mentioned before, the first and second order derivatives of

X and Y and so on may be strong features to describe the event

primitives, and accordingly the above distance can be easily ex-

tended to include more features. Another possible approach is to

employ a time warping when comparing two trajectories as reported

in [10]. Here we assume that an event is not a static but a time-
indexed piece of trajectory, meaning that two events are different

when they are executed with varied rate. Consequently time warping

is not performed. An acceleration and a deceleration, for example,

though along the same route within the same time, are not regarded

as the same in our treatment.

To obtain a vocabulary for the event primitives, we recursively

cluster all training trajectories into subsets, each of which is identi-

fied as an event word and those in the subset are treated as instances

of the same word. Starting from pairwise dissimilarity, we employ

the multiple-pass quadratic programming strategy in [11]. Its advan-

tages over spectral clustering (e.g. Ncut [12]) are that it does not

suffer from unstable eigenvector problem; and can automatically de-

termine the best vocabulary size. In addition, a simple optimization

algorithm is available for it.

3. DYNAMIC EVENT ENSEMBLE AS AN EVOLUTION
PROCESS ON MANIFOLD

With a learned vocabulary of all possible event primitives, a coor-

dinated group activity is essentially an ensemble of event ’words’

dynamically evolving with time. Meanwhile, individual events may

occur at different spatial locations, and different spatial configura-

tions and distribution of event words will imply different activity

types. Therefore, a group activity is completely characterized by a

time series of event word distribution.

The spatial co-occurrence function f(w, Ω; t) at time t is de-

fined as the occurrence intensity of event w ∈ {1, 2, · · · , W} in a

spatial kernel Ω ∈ Q ⊆ (Ωp, Ωq), where
Q

is the set of indices of

all spatial kernels which cover the entire spatial range of possible oc-

currence. Occurrence intensity may be interpreted in different ways,

and here we regard the total counts of the occurrences of an event w

in the kernel Ω as the occurrence intensity. A co-occurrence func-

tion corresponds to a possible spatial event distribution. However,

for a fixed group size, the set of all co-occurrence functions is not an

Euclidean space. One may want to expand the set to account for the

varying group size. Nevertheless, this is contradictory to the notion

that a change in group size normally indicates an activity boundary,

meaning, an addition or deletion of an object terminates the ongoing

3542



activity and initialize a new one. Thus, we address the coherent ac-

tivity pattern rather than change detection, and limit our attention to

activities involving a fixed number of objects.

The non-Euclidean property of set of co-occurrence functions

must be accounted for in mathematical formulation and learning. We

first apply a normalization step to get a normalized co-occurrence

function

G(w, Ω; t) =
(f(w, Ω; t))

1
2

(
PW

w=1

R Ωq

Ωp
f(w, Ω; t)dΩ)

1
2

and the set of normalized co-occurrence function becomes a Rie-

mannian manifold. For any two elements g1, g2 in the tangent space

TG at G, the Riemannian metric is defined as

< g1, g2 >�
WX

w=1

Z Ωq

Ωp

g1(w, Ω; t)g2(w, Ω; t)dΩ

A related but simpler case was detailed recently in [13]. For clarity

we call this manifold the event ensemble manifold. With the above

defined Riemannian metric, the basic geometry of the event ensem-

ble manifold is straightforward (we omit these discussions due to

page limitation), and serves as powerful tools for learning and infer-

ence.

A single spatial co-occurrence function is a ’holistic’ but static

description of event ensemble, not taking temporal evolution or time

constraint into account. However, the coordinated group activity is

essentially a dynamic ensemble of events, and it is this temporal pro-

cess that critically determines the specific semantic pattern. There-

fore, time-series modeling is a natural and necessary step towards

group activity characterization. The time sequence of co-occurrence

functions, nevertheless, is not a sequence in Euclidean space, where

we have rich and powerful tools on hand.

Let us denote G(w, Ω; t) by G(t) from now on for simplicity,

and keep in mind that as t varies G(t) is an evolving process. How-

ever, beyond this we can hardly make any stronger assumptions. In

this case, to find a proper quantitative feature for each group activity

pattern we are going to use the activity characteristic curve defined

as

C(t) = E(G(t))

which is nothing but the mean value curve for the evolution process

G(t). With multiple training sequences for the same type of group

activity, we are always able to find the mean sequence without ad-

ditional assumptions, though the mean should be obtained from an

average on the manifold rather than in Euclidean space. It can be

expected that different activity characteristic curve corresponding to

different activities will be located distinctively on the event ensem-

ble manifold, therefore providing us the capability to classify a new

sequence.

The activity characteristic curve C(t), i.e. the expectation curve

on the manifold is explicitly defined as

C(t) = arg min
G

E(d2(G, G(t)))

according to [14], where d is the intrinsic distance on the manifold

induced by the Riemannian metric rather than the usual Euclidean

distance ||G − G(t)||. If there exists a probability density function

p(G(t)) for G(t), then we have

C(t) = arg min
G

Z
M

d2(G, G(t))p(G(t))dM

where dM (t) can be thought as a ’patch’ of the manifold. Note

that the integration is performed on the manifold only. Since we

do not make more assumptions about p, practically we estimate the

density function by kernel method using a set of training samples

{(Gi(t), ti)}i

p(G(t)) =

P
i K(d2(G(t), Gi), t − ti)

k(t)

For simplicity we make use of the Nadaraya-Watson kernel [15][16]so

that K can be separated into a temporal factor and a spatial kernel

p(G(t)) =

P
i KHs(d2(G(t), Gi))KHt(t − ti)

k(t)

where Hs and Ht are the spatial and temporal kernel bandwidths

respectively.

To perform the above minimization we adopt the general the-

ory presented in [14] to our specific event ensemble manifold. By

finding the mean co-occurrence function C(t) at all t, we eventually

obtain the activity characteristic curve for each group activity.

4. NACC CLASSIFIER FOR NEW ACTIVITY

With c types of group activities represented as {Ci(t)}i=1,2,··· ,c, we

are in a position to categorize a new incoming activity into one of

these classes. The classification is straightforwardly achieved in two

steps. In the first step, we should identify each of the event primitives

in the incoming video as one of the event words. Then we construct

the evolving event co-occurrence function sequence D(t) and clas-

sify it into one of the activity types. For the former, we label a new

event as the word with which it shares the most similarity defined in

Section 2. For the latter we use the Nearest Activity Characteristic

Curve (NACC) classifier as

Activity(D(t)) = arg min
j

X
t

d(D(t), Cj(t))

The classifier looks for the activity type with minimum manifold dis-

tance from the one in the testing video clip. Also, the classifier can

be interpreted as a correlator, which picks up the maximum mani-

fold correlation as the recognition result. In the language of signal

processing, this can be viewed as matched filtering on a manifold.

5. EXPERIMENT

The learning and recognition framework described above has been

implemented on a collection of NCAA football games. In the videos

of the games, the play types have been annotated, the time span for

each play is marked by an experienced football player, and tracks

for each player are also marked. Apparently, once a reliable multi-

object tracking module is available, it can be incorporated. Here we
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Table 1. Confusion matrix of play recognition on real data: H,P,R,S,

and T stand for HITCH, POWO, REDHAG, STRCH, and TSMIKE

respectively.(%)

H P R S T

H 72.2 7.4 13.7 0.0 6.7

P 3.6 64.3 0.7 22.9 8.5

R 2.5 1.1 92.8 1.6 2.0

S 3.3 5.3 0.9 82.2 8.3

T 3.7 0.0 9.0 0.0 87.3

use manual labeling to focus on activity pattern analysis. Even so,

incomplete trajectories occur commonly when players are occluded

or move beyond camera range. To account for zooming and panning

effects and get trajectories in field coordinates, a geometric transfor-

mation determined by locating the field landmarks is applied to all

points in each frame.

From more than hundreds of play samples we select five play

types, including HITCH, POWO, REDHAG, STRCH and TSMIKE,

each of which contains enough samples. Learning and then classi-

fication algorithms are run multiple times, each run using a random

division of sample collection into training and testing sets. For the

same play with different formations, a separate activity characteristic

curve is learned for each formation. The missing trajectory effect is

exactly handled with the proposed pairwise similarity measure. The

average confusion matrix is shown in Table 1, indicating the percent-

age by which a specific play type is recognized as itself/another.

An average correct recognition rate of 80% is observed from the

confusion matrix. The fully quantitative comparison with previous

work, especially [6], is difficult due to a completely different frame-

work, unavailability of implementation details, as well as different

dataset being used. However, qualitatively it is seen from Figure 13

in [6] that we achieve a recognition performance no worse than [6] .

Note that the previous work uses parametric Bayesian network mod-

eling with explicit domain knowledge about football game incorpo-

rated. In contrast, the event ensemble model in this paper works

autonomously and is directly extendable to other coordinated group

activities.

The main computational load comes from generating the pair-

wise similarity matrix together with new event categorization. The

vocabulary discovery and activity characteristic curve learning con-

verge quickly in several iterations.

6. CONCLUSIONS

In this work we recognize a coordinated multi-object activity using

a dynamic event ensemble framework. We first iteratively learn a

vocabulary for single-object motion (event) patterns with pairwise

relationship tailored to account for non-robust feature extraction.

Then naturally from the Riemannian property of the set of all co-

occurrence functions (spatial event distributions) we look into this

event ensemble manifold consisting of event words, and find a com-

pact representative subset (curve) for each group activity type. By

eventually representing group activities as the characteristic curves,

we exploit the metric on the manifold and develop manifolded-

nearest-neighbor classifier to recognize new activities.
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