
1

Cooperative navigation in robotic swarms
Frederick Ducatelle, Gianni A. Di Caro, Alexander Förster, Michael Bonani, Marco Dorigo, Stéphane Magnenat,
Francesco Mondada, Rehan O’Grady, Carlo Pinciroli, Philippe Rétornaz, Vito Trianni, Luca M. Gambardella

Abstract—We present a cooperative navigation algorithm for
robotic swarms. Its purpose is to let a robot find a given target
robot, while being guided by the other robots of the swarm.
The system is based on wireless communication: the robots
forward messages containing navigation information over the
ad hoc network among them, and the searching robot uses this
information to find its target. We study the algorithm in two
different scenarios. In the first scenario, a single searching robot
needs to find a single target, while all other robots are involved
in tasks of their own. We show that the communication based
navigation system allows the robots of the swarm to guide the
searching robot without the need to adapt their own movements.
In the second scenario, we study collective navigation: all robots
of the swarm need to navigate back and forth between two
targets. We show that in this case, the proposed navigation
algorithm gives rise to synergies in robot navigation, and lets the
swarm self-organize into a robust dynamic structure. This self-
organization improves navigation efficiency, and lets the swarm
find shortest paths in cluttered environments. We test our system
both in simulation and on real robots.

I. INTRODUCTION

In this paper, we study cooperative navigation in swarm
robotics. In general, robot navigation is the task of finding
a collision-free path for a robotic system between one state
and another [1]. For autonomous mobile robots, this usually
involves the availability of a map, which can possibly be built
by the robot itself [2]. Sometimes, the use of a map can be
avoided, e.g., by fitting the environment with a network of
communication nodes, which guides the robot [3]. In multi-
robot and swarm systems [4], map-less navigation can be ob-
tained if robots cooperatively help in each other’s navigation.

Most work in the context of cooperative swarm robotics
navigation is based on indirect communication between robots,
and is inspired by the foraging behavior of certain types of ants
in nature [5], [6], [7], [8], [9], [10], [11]. This behavior relies
on stigmergic communication, which is a form of indirect
communication through local modification and sensing of the
environment. Specifically, ants moving between the nest and a
food source leave a chemical substance, called pheromone,
in the environment, which attracts other ants and guides
them to the food. The interesting aspect is that the collective
process of pheromone laying and following reinforces the most
efficient paths, so that eventually the shortest path appears
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as a consequence of the swarm’s collective actions [12],
[13]. This is an example of emergent self-organized behavior,
meaning that the swarm organizes without outside control,
due to local interactions between individual agents [14]. An
important difficulty with the use of this pheromone-based
navigation model in robotics is the practical implementation of
the indirect communication, in terms of a satisfactory artificial
replacement for the chemical pheromone used by ants. Also,
this approach assumes a problem setup where all robots of the
swarm move back and forth between two target locations, and
cannot easily be generalized to other scenarios.

In this work, we propose a new approach for navigation
in swarm robotics, based on direct communication between
robots. We use the following general problem description. The
swarm is deployed in a confined area. A robot S of the swarm
needs to navigate to a given target robot T , which is outside the
range of its sensors and communication devices. T announces
its presence with periodic wireless message broadcasts. We
investigate how S can find T through cooperative support from
the other robots in the swarm. An important aspect is that
these other robots are involved in tasks that are independent
of the navigation of S. They do not adapt their movements to
guide S in its navigation task, but they do offer help through
communication. Note that the presented problem description
is very general. This is because the behavior of the remaining
robots of the swarm does not depend on the navigation of S to
T . In fact, these robots may be involved in any task of their
own, including a different navigation task, to another target
T ′, or even to the same target T . Depending on the behavior
of the different robots, a variety of scenarios can be obtained,
including the earlier cited problem setup where all robots move
back and forth between two targets.

Our algorithm is based on mobile wireless network com-
munication. Each robot A coming in communication range of
a target robot T , and receiving its periodic broadcasts, stores
information about T in a local data structure, which we call
a navigation table. This information consists of a sequence
number, indicating the relative age of the message, and a
distance value, which is an estimate of the navigation distance
to T . As A moves around, it updates the information in its
navigation table, and periodically broadcasts it to neighboring
robots. This way, navigation information can travel through
the (possibly intermittently connected) network formed among
the swarm of robots. A searching robot S receiving new
navigation information from a robot B, compares this new
information to previously received navigation information, and
moves towards B’s location if the new information is better.
This way, S moves from robot to robot towards the target,
somehow similar to how a data packet follows a route through
a mobile ad hoc network (MANET) [15], [16].
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The proposed algorithm is relatively simple, but very pow-
erful and versatile. When applied in different scenarios, it
can give rise to different swarm-level movement patterns,
while each time providing efficient navigation. We study two
scenarios in particular, which we refer to as single robot
navigation and collective navigation.

In the single robot navigation scenario, a single robot S
needs to find a single target robot T , which remains static.
An example application of this scenario could be that T is
indicating a place where a certain task needs to be performed,
and S has the capabilities required for this task. All other
robots of the swarm execute random movements, expressing
that they are involved in other tasks, which are independent
of S’s navigation. The goal is to show that using the proposed
algorithm, they can offer support to S’s navigation without
having to adapt their own movements. We investigate the
performance of the system with varying swarm sizes, envi-
ronments, and random movement patterns. We show that the
approach is efficient, scalable, and robust to robot failures.

The collective navigation problem is essentially the earlier
cited problem setup, frequently studied in swarm robotics,
where all robots of the swarm navigate back and forth between
two targets T and T ′. We show that this problem can also
be tackled using the simple communication based navigation
scheme we propose. Compared to the single robot navigation
problem of the first scenario, we show that collective naviga-
tion gives rise to synergies, improving navigation performance.
In particular, the concurrent execution of communication based
navigation by all robots lets the swarm self-organize, and a
collective movement pattern emerges in the swarm behavior.
This self-organized movement improves navigation efficiency
and is robust with respect to the swarm size. Moreover, it
allows to find shortest paths in cluttered environments. This
means that collective navigation based on our communication-
based system has similar properties to ant-inspired pheromone-
based navigation, while avoiding the problem of how to
implement stigmergic communication. Besides showing a new
approach for collective navigation, this is also an example of
the general applicability of our simple navigation system.

Our system relies on wireless message communication
between robots to find paths for navigation. To make this
approach feasible, we require some specific properties from
the robots’ wireless communication device. First of all, the
device should provide only line-of-sight communication, so
that communication links can be related to obstacle-free paths.
Second, the device should be able to link received messages
to relative position information (angle and distance) about
their sender, so that robots can follow paths detected through
communication. Similar requirements were formulated in [17],
where a network of embedded communication nodes is used
to guide a single robot to a target. Similar to that work, we ad-
dress these requirements using an infrared range-and-bearing
(IrRB) communication system, of which implementations exist
for various robots [18], [19], [20], [21]. While most results
presented in this paper were obtained through simulation, we
present in Section V an implementation of our algorithm on
real robots, using the IrRB system.

The rest of this paper is organized as follows. In Section II,

we describe the communication aided navigation algorithm.
In Section III, we study the working of this algorithm in
the scenario of single robot navigation. In Section IV, we
investigate the scenario of collective navigation: we study how
the system self-organizes, and how it is able to find shortest
paths. After that, in Section V we describe the implementation
of our system on real robots, and in Section VI we discuss
related work. Some of the work presented here appeared earlier
in conference papers [22], [23].

II. COMMUNICATION AIDED NAVIGATION

In this section, we explain the communication aided navi-
gation system. We first describe the details of the algorithm
executed by the robots. Then, we take a look at the swarm as
a whole and explain how the joint execution of the proposed
algorithm by the robots can support effective navigation.

A. The navigation algorithm

The navigation system we propose is loosely based on
routing algorithms used in MANETs. Using wireless commu-
nication, the robots of the swarm form a MANET among them.
The general idea is to build up navigation information through
communication in this MANET, and use it to guide a searching
robot from hop to hop to its target, similar to how routing
information is gathered in a MANET and used to forward data
packets to their destination. All robots in the swarm maintain
a table with navigation information about all known target
robots. The information about a target T contains an estimate
of the navigation distance to T , as well as an indication of
the relative age of the information. Each robot periodically
broadcasts the content of its table to its neighbors, which
update their table based on the received information. This
way, navigation information spreads throughout the swarm
via wireless communication. Robots also update the distance
estimates in their table based on their own movements, using
odometry information. This way, navigation information can
travel between parts of the MANET which are not connected
through wireless communication, by being carried on board of
the mobile robots, as is common in the area of delay tolerant
networking (DTNs) [24], [25]. This is important to let the
algorithm operate both in dense and sparse robot swarms.
To navigate to a given target robot T , a searching robot
S continuously monitors all received navigation information,
and moves each time to the neighbor that sent it the best
information (where the quality of navigation information is
defined based on its distance and age, as explained below).
This way, S moves between the robots of the swarm until it
reaches T . In what follows, we describe different aspects of
this system in detail.

a) Navigation tables and message broadcasts.: The nav-
igation information about a target T present in a robot A’s
navigation table consists of a sequence number s(T ), indicat-
ing the relative age of the information, and a distance d(A, T ),
indicating the distance traveled by the information between
T and A. Since navigation information can only travel via
line-of-sight wireless communication or on board of moving
robots, d(A, T ) is an estimate for the navigation distance
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between A and T . At the start of swarm deployment, all robots
have an empty table. When a robot T becomes a target robot
(i.e., it discovers a target location and starts announcing it), it
puts an entry about itself in its table. In this entry, both the
sequence number s(T ) and the distance d(T, T ) are set to 0.
At periodic intervals, robots broadcast the content of their table
to neighbors. When T broadcasts the information about itself,
it first increases sequence number s(T ) in its table by 1. The
distance d(T, T ) is broadcast without modification. Another
robot A broadcasting information about T does not modify
s(T ), so that the sequence number marks the relative time
when the information left T . The use of sequence numbers to
mark the relative age of messages was inspired by MANET
routing protocols such as DSDV [26]. The size of each robot’s
navigation table, and hence of its update messages, depends
only on the number of targets in the environment. If bandwidth
is limited, robots select a subset of targets to send updates
about, in a round-robin fashion.

b) Processing received broadcasts.: A robot B receiving
a broadcast from A processes the entries for all targets T in
the message. It reads the received sequence number s′(T )
and distance d′(A, T ) from the message. On the basis of
d′(A, T ), it calculates a new estimate for its own distance to
T, d′(B, T ), by adding the distance d(B,A) between itself
and A (as measured at message reception with the IrRB
communication system). Then, B compares the new values,
s′(T ) and d′(B, T ), to the information about T in its own
table, s(T ) and d(B, T ). The new information is considered
better if either s′(T ) > s(T ) (the new information is more
recent), or s′(T ) = s(T ) and d′(B, T ) < d(B, T ) (the
new information indicates a shorter path). In that case, the
information in the table is replaced by the new information.

c) Updating distance estimates.: If B moves around
without receiving new updates about T , the distance d(B, T )
in its table needs to be updated for it to remain an estimate
of the navigation distance to T . Therefore, as B is moving, it
measures its moved distance through odometry, and adds this
to d(B, T ). This way, d(B, T ) grows and remains a measure
of the distance traveled by the navigation information. The
direction of B’s movement is not taken into account, so that
d(B, T ) is not necessarily the shortest distance to T . However,
it is an upper bound of the shortest obstacle-free path (since
B per definition moved over an obstacle-free path). Using
this mechanism, the navigation system can work in sparsely
connected swarms: navigation information can bridge gaps in
network connectivity by traveling on board of moving robots.

d) Using the received messages for navigation.: A
searching robot S moves towards the location of the neighbor
from which it receives the best navigation information about
its target T . The information s(T ) and d(A, T ), received from
a neighbor A, is considered better than the information s′(T )
and d′(B, T ), received from a neighbor B, if s(T ) > s′(T )
(A’s information is more recent), or if s(T ) = s′(T ) and
d(A, T ) < d′(B, T ) (A’s navigation distance to T is less
than B’s). In case A’s information is the best, S stores s(T )
and d(A, T ) as s∗(T ) and d∗(T ) respectively, and also A’s
relative location LA, as measured by the IrRB system at the
moment of message reception. It moves towards LA using

odometry. Note that S does not adapt its goal in case A
moves: only A’s location LA at the moment of reception of
the navigation information is important. Any newly received
navigation information (either from A again, or from another
neighbor) is compared to s∗(T ) and d∗(T ). If the information
received from a neighbor C is better, S moves towards C’s
location LC . This can happen either before S had reached
its previous goal LA, or after that. In the former case, S just
abandons its previous goal in favor of the new one. In the latter
case, S is faced with a period in which it has no direction to
go to (between the arrival at LA and the reception of the new
information). In this case, we consider two possible strategies:
S can either wait statically at LA, or start performing random
movements until new information is received. We refer to
the former strategy as navigation with stopping (NwS), and
to the latter as navigation with random (NwR); we compare
the two strategies in Section III. The repeated moves let S
follow the best navigation information through the network.
When S eventually receives a message directly from T , it
goes straight to T and finishes the search. Finally, we point
out that we let the searching robot S approach any location
(be it that of another robot A or of the target T ) from the right.
This is to avoid collisions head-on between robots (especially
useful when two searchers move towards each other, as in the
scenario of Section IV).

B. The system’s dynamics

The proposed navigation algorithm lets a searching robot S
move towards the location of neighbors that have information
about its target T that is better than what S had previously
received, where “better” information means either more recent
information (higher sequence number), or information that has
traveled over a shorter path from T (lower estimated distance).
Here, we discuss how such moves can bring S closer to T .

The issue is relatively straightforward in scenarios where
robot density is high and the swarm forms a connected
MANET including S and T . In this case, the periodic local
broadcasting of messages by the robots of the swarm lets each
new message from T (each new sequence number) flood the
MANET. Flooding spreads as an expanding ring from T , and
new navigation information reaches S first over the shortest
path through the network. Such flooding mechanisms are the
same as those used by reactive MANET routing algorithms to
define the shortest path for data forwarding (see, e.g. [27]).
Hence, when S moves towards the most recent navigation
information, it follows the shortest path available for data
routing in the MANET. Since T is continuously sending
new messages (with increasing sequence numbers), the path
followed by S is constantly adapted to changes in the MANET
topology. The correspondence between the shortest path for
data routing and the shortest path for navigation depends
on the density and spread of robots in the environment (see
examples in Figure 1).

When we consider scenarios where the robot distribution
is sparser, the MANET formed among the swarm may no
longer be connected. At this point, a new message sent out
by T does not immediately flood throughout the swarm: to
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Fig. 1. Shortest communication path between two robots in a MANET. The area is 20×20 m2, and the communication range is 3 m. The searcher is placed
at the bottom left and the target at the top right. The correspondence with the shortest path for navigation (the straight line) depends on robot placement and
density: we show an example with 80 robots (left) and one with 200 robots (right).

reach disconnected parts of the MANET, a message needs to
be carried there by mobile robots. This means that message
spreading depends on a combination of robot mobility and
message communication. Several studies investigated message
spreading in sparsely connected MANETs [28], [29], [30],
[31], [32]. In case robot density is not extremely sparse, so
that robots can communicate with others relatively frequently,
new messages spread from T in an expanding wave-like
propagation [31], [32]. Such propagation is similar to the form
of spreading obtained through flooding (but slower, as part of
the spreading is based on robots carrying the message away
from T ). As a consequence, if S goes towards the most recent
information (or the information that has traveled the shortest
distance), it moves into the direction of the expanding wave,
and can therefore be expected to make steps in T ’s direction.

In the case of very sparse swarms, robots only occasion-
ally meet each other. In this situation, robot mobility is the
main factor defining information spreading: each robot A that
meets T picks up a new message and carries it around the
environment. If A does not meet any other robot, its sequence
number s(T ) and distance estimate d(A, T ) are defined by
respectively the time when A met T , and the total length of the
movements made by A since then. When S meets A, it moves
towards A if A’s navigation information is better than what S
has received before. Whether this effectively brings S closer
to T depends on the relationship between the time/distance
that A has traveled from T , and its real distance to T . This
obviously depends on the movement patterns followed by A.
Nevertheless, several studies in the MANET literature have
shown that in general, for most reasonable mobility patterns,
there is a positive correlation between the travel time/distance
and the actual distance [33], [34]. This positive correlation has
been used to support message forwarding, e.g., based on node
encounter histories [33], [35].

To investigate more in detail the properties of this corre-
lation and its dependence on the number of robots in the
network, we performed simulation tests considering both one
and multiple moving robots (the specific characteristics of the
robot models and of the simulation environment are discussed
in the next section). In the first set of experiments, we placed a

target robot T in the middle of an uncluttered environment of
20×20 m2, and let a single other robot A move according
to a random direction mobility model (see Section III for
details about the simulator and the mobility model). We did
10 such tests of 10000 s each. At each time step of 0.1 s,
we measured the difference between the sequence number on
board of A and the most recent sequence number sent out by
T . We call this the sequence number gap. It is the relative age
of the information on board of A, and measures the elapsed
time since A last encountered T . We also measured at each
time step the real distance between A and T . In Figure 2,
we plot the average sequence number gap against the real
distance. The graph shows that the sequence number gap is
on average an increasing function of the distance: when A
has a lower sequence number gap, it has a higher probability
of being closer to T . This means that if a searching robot S
moves towards a robot announcing a newer sequence number,
it will, in expected value, move closer to the target. However,
it must be noted that the curve in Figure 2 levels out at high
distances from T ; also, it has a large standard deviation (not
shown here to keep the figure readable). This means that the
information is quite unreliable: many of S’s moves will still
go in a wrong direction. The situation improves dramatically
when we increase the swarm size. We performed the same
tests with 20 randomly moving robots. In this case, we get
in the earlier described situation where the swarm is not ex-
tremely sparse, and information spreads both through mobility
and communication: the robots update each other’s sequence
number when they meet, and new sequence numbers spread
faster through the area, according to a wave-like propagation.
This makes the information much more reliable. As shown
in Figure 2, we get a much smoother, almost linear relation
between the sequence number gap and the distance to T .

We also performed these same experiments using the esti-
mated navigation distance d(A, T ), rather than the sequence
number. This gives very similar behavior, as shown in Figure 2.
This means that both parts of the navigation information,
the sequence number and the estimated navigation distance,
are positively correlated to the actual distance to the target,
and are therefore both useful navigation measures. In our
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Fig. 2. We plot the navigation information (y-axis) against the distance from the target (x-axis): on the left the sequence number gap and on the right the
estimated distance. We plot data for the case of 1 robot and 20 robots. See main text for explanation.

algorithm we use the sequence number and the estimated
distance in combination, because this gives the best results.
One could, however, also use them separately, e.g., to get a
simpler system, which uses less communication bandwidth.

III. SINGLE ROBOT NAVIGATION

In this section, we focus on the single robot navigation
scenario. As explained in Section II, the scenario consists
of a robot S searching for a static target robot T . All other
robots of the swarm are involved in tasks of their own, and
perform movements that are unrelated to the navigation of
S. To obtain such independent movements, we use random
mobility patterns. Using the communication-based navigation
system, the robots of the swarm can support S’s navigation to
T without the need to adapt their own movements.

We investigate the performance of the communication-based
navigation system under varying conditions, using experiments
performed in simulation. In what follows, we first describe the
simulator and the robots we used in these experiments. After
that, we study the system in an uncluttered environment, to
show its basic working. Next, we investigate the influence of
the movement patterns of the robots of the swarm, performing
tests with varying mobility models. Then, we study cluttered
environments, and show that the system can work even in
highly complex environments, such as mazes. Finally, we
investigate situations where two paths of different length are
available, and show that our algorithm has a preference for
the shortest path.

A. The robots and the simulator

All tests presented in this and in the next section are
executed using a simulated model of the foot-bot, a small
ground robot developed within the Swarmanoid project [36]
(http://www.swarmanoid.org) on the basis of the marXbot plat-
form [21]. The tests with real robots, presented in Section V,
use this same robot.

The foot-bot is shown in Figure 3. It has a diameter of about
15 cm and it is about 20 cm high. It moves on the ground using
a combination of tracks and wheels, for increased stability. It is
quite a powerful robot, carrying various sensors and actuators,
including two cameras, a rotating distance scanner, a gripper,

Fig. 3. The foot-bot robot developed within the Swarmanoid project.

etc. For the work presented here, two of these are particularly
relevant: the infrared proximity sensors, and the IrRB module.
The proximity sensors detect obstacles at a range of a few
centimeters. We use them as virtual bumpers, to let robots
turn away from nearby obstacles. The IrRB module [20], [21]
provides local line-of-sight communication. It sends messages
of 10 bytes, and has a capacity of 10 messages per second
(so robots can broadcast an update every 0.1 s). Its maximum
range can be of more than 5 m, but was limited to 3 m here,
in order to be able to do tests in smaller environments.

As simulation tool, we use ARGoS [37], a physics-based
simulator for heterogeneous multi-robot systems. Being devel-
oped within the Swarmanoid project, ARGoS contains reliable
physics models of this robot. It also comes with a middleware
for controlling the real robots, so that any code written for the
simulator can be ported unchanged to the robots.

B. Tests in an uncluttered environment

We use an uncluttered closed area of 20×20 m2. The
robots are placed in the area according to a uniform random
distribution. One of the robots is a target and remains static.
A second robot needs to navigate to this target. The remaining
robots move according to a random direction mobility model
with fixed speed [38]. This model is defined as follows: choose
a direction θ uniformly from ]−π, π], turn towards θ, choose
a time t from an exponential distribution with fixed average
(set to 10 s here), move forward for this time t, and then
repeat this process. We use a forward speed of 0.15 m/s,
both for the searching and the randomly moving robots. We
vary the number of robots in the swarm, from 2 (0 randomly
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moving robots) up to 92 (90 randomly moving). For each data
point, we make 500 independent test runs (this high number
is needed because the random initial positions of searcher and
target induce a high variance). We measure the time between
the start of each test and the moment the searching robot comes
in range of the target.

The results are shown in Figure 4. We compare the two
variants of the navigation system presented in Section II,
navigation with stopping (NwS) and navigation with random
(NwR), which differ in the strategy used by the searching
robot when it does not have any navigation information
(respectively, waiting for new information, or performing a
random movement according to the random direction model).
The results show a large difference in performance between
the two strategies for low numbers of robots. This is because
the communication network is sparse, and navigation infor-
mation spreads slowly from the target, so that the searcher
often falls without information. In the extreme case with 0
randomly moving robots, navigation with stopping can never
reach the target. Navigation with random, on the other hand,
does find the target, through random search. The expected
time for a randomly moving agent to find a static target
within a given environment is normally referred to as the
expected hitting time, ET [39]. For many mobility models,
including the random direction model used here, ET can be
calculated analytically [39]. In our case, ET can be considered
an upper bound for the performance of the navigation with
random strategy. It is interesting to note that even a very low
number of randomly moving robots in the environment gives
an improvement in the navigation delay compared to ET .
This confirms that even in very sparse swarms, the navigation
information on board of randomly moving robots can be useful
to guide the searcher, as explained in Section II-B.

For larger swarm sizes, performance improves for both
strategies. This is on the one hand because the improved
connectivity in the swarm makes the navigation information
more reliable, as pointed out in Section II-B, and on the
other hand because information reaches the searcher more fre-
quently. The latter also means that the searcher finds itself less

often without navigation information, so that the difference
between the two strategies decreases. For the highest numbers
of robots, performance gets close to the time needed to cross
the expected straight line distance between the searcher’s
initial position and the target. This is indicated in Figure 4 as
“Delay navigation shortest path”. This gives a lower bound for
the expected navigation time. The good performance for large
swarm sizes shows both the efficiency and scalability of the
system. It is also interesting to note the graceful degradation of
the system’s performance as the number of robots decreases.
This indicates that the navigation system is robust with respect
to failure or loss of robots in the swarm.

C. Tests with different movement patterns

The performance of our system depends on the movement
patterns of the robots of the swarm: this defines for a large
part how and where navigation information spreads. Here we
carry out experiments in the same uncluttered environment
used in Section III-B, using different mobility models. We
use the random waypoint model (RWP) [40] and the restricted
random waypoint model (RRWP) [41].

Under RWP, each robot randomly chooses a location in the
environment to move to, and chooses a speed. It moves to the
chosen destination with the chosen speed, and then waits there
for a fixed pause time, before choosing a new destination and
speed. RWP has very different statistical properties compared
to the earlier used random direction model [42], [43]. E.g., it
lets robots make longer straight movements (since robots can
choose any location in the area to move to), it leads to a non-
uniform stationary distribution of robots over the area, etc. We
use RWP with a fixed speed of 0.15 m/s and a pause time of
10 s. We vary the swarm size from 2 up to 75. The results
are shown in Figure 5 left. They are very similar to the ones
obtained with random direction movement in Section III-B,
showing that the differences between the mobility models has a
limited impact on the performance of the navigation algorithm.

RRWP is a variation of RWP, in which robots can choose
their destinations only from pre-defined destination areas in the
environment. A fixed roaming probability p defines whether a
robot picks its new destination from its current destination area
or from a different one (roaming). To define the destination
areas, we overlay the environment with a grid of 3×3 cells,
where each cell is a different destination area (so, in our
experiments, each point in the environment is part of exactly
one destination area). We vary p between 10−4 and 1. For
low values of p, robots remain mainly within their cell,
so that we get almost exclusively local robot movements.
In this case, navigation information rarely spreads between
cells by being carried on board of robots, but rather through
communication between robots near the cell boundaries. This
has as a side effect that if one or more cells fall without
robots, information may not be able to travel between target
and searcher for long periods of time. Instead, for high values
of p, robots are forced to leave their cell often, so that they
execute long movements through the environment and bring
navigation information around quickly. We believe that the
different movement patterns obtained this way cover a large
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Fig. 5. Experimental results with different random mobility models for a single searching robot. The left figure refers to the case when the other robots
in the swarm move according to the random waypoint model, and shows the results for an increasing number of robots. The right figure refers to the case
when the other robots move according to the restricted random waypoint model. In this case, a swarm of 25 robots is considered and the results shows the
impact of using different roaming probabilities. In both the two figures, the results for NwS and NwR are reported together with the performance that would
be obtained by following the shortest path.

Fig. 6. Layout of cluttered environments used in our experiments. Left: a
simple environment; right: a maze. The area is 20×20 m2 in both cases.

variety of possible behaviors of the robots of the swarm.
E.g., the different cells may represent different parts of a
factory, where robots perform mainly local movements around
assigned work stations, or they could refer to different areas
in a warehouse, where robots perform long range movements
to bring goods around. We use a swarm with 25 randomly
moving robots, which is a relatively sparse setup, in which
the MANET is normally not connected. The results are shown
in Figure 5. The very bad results for the navigation with
stopping strategy at low values of p are due to the earlier
mentioned effect that cells can fall without robots for a
long time, effectively stopping the spreading of navigation
information. However, for the navigation with random strategy,
these negative effects are rather limited. For larger values of
p, we note that the higher mobility of robots improves the
performance for both algorithms, though, again, the effect
is limited for the navigation with random strategy. We can
conclude from these results that if the situation is such that
information can flow from target to searcher between the
robots, the actual movement patterns of the intermediate nodes
does not matter much.

In the following, all tests are executed with the randomly
moving robots following the random direction mobility model
(see Section III-B).

Fig. 8. Test setup for shortest path testing. The searcher starts from the
bottom (indicated by the red circle). The target is placed above (indicated by
the blue disk). The area is 14×14 m2.

D. Tests in cluttered environments

Since our navigation algorithm looks for obstacle free paths
(see Section II), it deals naturally with cluttered environments.
We did experiments in the two environments shown in Fig-
ure 6. Again, we deploy the swarm according to a uniform
random distribution, and we measure the time needed for
the searcher to reach the target. The results are shown in
Figure 7. As can be expected, navigation delays get higher as
the environment gets more complex, with the highest values
measured in the maze. Also, a larger swarm is needed to
bring this delay down, and the system has more difficulties
to reach the time required to travel over the shortest path.
Nevertheless, we get the same trends in performance as in
uncluttered environments, and with a large enough swarm, the
system guides a searching robot to its target efficiently.

We point out that our navigation system can also deal with
dynamic obstacles. We do not report results here, due to lack
of space, but it is clear that a reactive approach such as the
one presented here has advantages in dynamic environments
compared to, e.g., map based navigation systems.
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Fig. 7. Experimental results in the cluttered environments of Figure 6 for a single searching robot and an increasing number of randomly moving robots.
The left plot refers to Figure 6 (left), and the right one to Figure 6 (right). In both the two figures, the results for NwS and NwR are reported together with
the performance that would be obtained by following the shortest path.

E. Shortest path

In cluttered environments, a searcher may have several
possible paths available to move to its target. Since our
algorithm lets a searcher move in the direction from where
it receives the navigation information that has traveled the
shortest time or the shortest distance (see Section II-B), it
should have a preference for the shortest path. We consider the
scenario of Figure 8 to test this property. The target is placed in
the upper part of the arena, and the searcher in the bottom part.
There are two paths between them: a long one of 24 m, and a
short one of 12 m. We do tests with increasing swarm sizes,
from 3 robots (1 searcher, 1 target and 1 randomly moving
robot) up to 72 (70 randomly moving robots). The results are
shown in Figure 9. We show how often the searcher chooses
the short path (as a fraction of the total number of tests), and
we show the time needed for navigation. The results show
that the navigation algorithm has a clear preference for the
shortest path. Also, this preference leads to lower navigation
delays (for the NwR strategy, we plotted the navigation delay
separately for the tests in which respectively the short or the
long path was chosen).

One striking element in these results is that the probability
of choosing the short path is related to the swarm size, and that
this relationship is different for the two navigation strategies.
To explain this, let us first look at the results for the largest
and smallest swarm sizes. In the scenarios with largest swarm
size (70 randomly moving robots), navigation information
travels primarily through multi-hop message forwarding be-
tween robots. The swarm is well connected, and navigation
information travels equally quickly in all directions from the
target T . Since the distance to be covered is less over the
short path, the information reaches the searcher S faster this
way, letting S prefer the short path. Since S rarely finds itself
without navigation information, the behavior and performance
are identical for both navigation strategies.

The situation is very different for the smallest swarm size
(1 randomly moving robot). Here, navigation information only
travels by being carried on board of the single randomly
moving robot A. Under the navigation with random strategy,
the influence of A is rather limited, and S finds T mainly

p(N,N)=1

0 1 2 i-1 i i+1 N-2 N-1 N

p(i-1,i)

p(i,i-1)

p(1,0)
p(i,i+1)

p(i+1,i)

p(N-2,N-1)

p(N-1,N-2)

p(1,2)

p(2,1)

p(N-1,N)

p(0,0)=1

. . . . . .

Fig. 10. State space representing the movement of the searching robot.

through random search. Under the navigation with stopping
strategy, on the other hand, S moves only when A brings it
a new sequence number. This means that each time A moves
from T to S, S makes a step towards T , where the step size
depends on the communication range. Whether this step is
towards the short or the long path, depends on which path was
used by A to reach S. To analyze this behavior, we model it
as a random walk in a one-dimensional, discrete state space,
as shown in Figure 10: S starts in an initial state i, and moves
in discrete steps either to the left or to the right. The walk
ends when S reaches either state 0 (which means S reached
T over the long path) or state N (S reached T over the short
path). Since we use a communication range of 3 m, we set
N = 24+12

3 = 12 and i = 24
3 = 8. The model shown in

Figure 10 corresponds to a well-known problem in probability
theory, called the gambler’s ruin problem [44]. The probability
for an agent starting in i to end up in N , rather than in 0, is
known to be:

PN (i) =
1 +

∑i
m=2

∏m−1
k=1

p(k,k−1)
p(k,k+1)

1 +
∑N

m=2

∏m−1
k=1

p(k,k−1)
p(k,k+1)

. (1)

We first use this formula to model the behavior of the ran-
domly moving robot A. In this case, the transition probabilities
between states are all equal p(i, i+1) = p(i, i−1) = 0.5,
and equation 1 simplifies to PN (i) = i

N : the probability of
choosing the short path depends linearly on the difference
in path length. This behavior of A can be compared to
the movement of S in the navigation with random strategy
(since S moves mainly randomly), where the fraction of runs
using the short path is 0.67 (a very close fit, given that
i
N = 8

12 ). For the navigation with stopping strategy, the
transition probabilities depend precisely on the probability of
the randomly moving robot A to reach S either over the short
or the long path, so that p(i, i+1) = i

N and p(i, i−1) = 1− i
N .
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Fig. 9. Experimental results in the cluttered environment of Figure 8 for a single searching robot and an increasing number of randomly moving robots. We
show the fraction of runs in which the searcher uses the short path (left), and the average time needed for navigation when taking either the long or the short
path (right). Results are reported for both the NwR and NwS strategies.

Plugging this in equation 1, we get PN (i) = 0.89, which is
very close to the observed performance of 0.92.

Scenarios with intermediate swarm sizes fall in between
these two extremes. We make a distinction between inter-
mediate large swarm sizes (40–60 randomly moving robots)
and intermediate small swarm sizes (5–35 randomly moving
robots). For intermediate large swarm sizes, the performance
of both navigation strategies is identical. This means that S
rarely finds itself without navigation information, which is an
indication that there is usually a connected route between S
and T in the MANET, over which information flows contin-
uously. However, due to the lower robot density compared
to the largest swarm size, network connectivity may be less
than perfect. As a consequence, the connected communication
route sometimes only exists over one of the two navigation
paths, and S may occasionally be attracted towards the long
path. For intermediate small swarm sizes, the performance
differs between the two navigation strategies, indicating that
S regularly finds itself without navigation information. This is
because at low densities, a MANET falls apart into smaller
connected clusters [45], such that information cannot flow
continuously. However, compared to the case of very small
swarm sizes (e.g., the case with only 1 randomly moving
robot), the presence of connected clusters has an important
consequence. It means that whenever S meets a robot with
navigation information, it immediately also finds a number
of other robots with similar information, so that it moves
longer into the same direction before finding itself again
without information. In the context of the state space shown
in Figure 10, this could roughly be modeled by using less
states (because each step of S in a given direction will
normally go on for longer than the communication range).
E.g., if we assume a step size of 6 m, we could use the
same model with N = 6 and i = 4, while keeping the
same transition probabilities of p(i, i+1) = i

N . This gives
a result of PN (i) = 0.81. This preference for the short path is
lower than in the case of the navigation with stopping strategy
with only 1 randomly moving robot (0.89), but higher than
the case of the navigation with random strategy with only 1
randomly moving robot (0.67). This explains why navigation

with random always improves the preference for the short path
with increasing swarm sizes, while navigation with stopping
first decreases this preference, and only later increases it (when
end-to-end connected routes appear).

IV. COLLECTIVE NAVIGATION

In the collective navigation problem. there are two targets
present in the environment, T and T ′, and all robots of the
swarm navigate back and forth between them. As pointed out
in Section I, this is a common task in swarm robotics. To
follow swarm terminology, we refer to the two target locations
as nest and food source. We use only the “navigation with
random” strategy, as this gives the best performance. Our goal
is to show that our communication based navigation algorithm
can also be used in this scenario. However, the observed
performance and properties of robot navigation are different
compared to the single robot navigation scenario, due to the
specific characteristics of the collective navigation scenario.
In particular, the collective execution of the same behavior by
all robots lets the swarm self-organize and show coordinated
behavior. This self-organization improves the performance and
efficiency of navigation.

In what follows, we first investigate the behavior of the
system in uncluttered environments, to study the self-organized
behavior of the swarm. After that, we study the same be-
havior in cluttered environments. Finally, we investigate what
happens when two paths of different lengths are available
between nest and food source: we show that the self-organized
behavior lets the swarm select one of the two paths, with strong
preference for the shortest.

A. Self-organized behavior in an uncluttered environment

We first use the setup shown in Figure 11. Two robots,
indicating the nest and food source, are placed in opposite
corners of the arena, at a distance of about 20 m. All other
robots are placed according to a uniform random distribution.
Half of these robots initially go to the food source, the other
half to the nest. A robot that has reached its target (i.e., food
source or nest) starts moving towards the other target. A robot
is said to have reached a target when it comes within 0.5
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Fig. 11. Setup for collective navigation experiments. The area is 20×20 m2.
The target robots (food and nest) are located in the top-right corner (food
robot, indicated with a big blue disk) and in the bottom-left corner (nest
robot, indicated with a big red circle). Initially, half of the robots (indicated
with circles) go to the nest source, the other half (indicated with disks) go to
the food source.
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Fig. 12. Experimental results for collective navigation in the uncluttered
scenario of Figure 11. The figure reports the observed navigation delays for
an increasing number of robots for the case when all robots in the swarm
go back and forth between nest and food source (collective navigation), and
when only one robot is going back and forth between nest and food, while the
other robots of the swarm move according to the random direction mobility
model (single robot navigation).

m of it. We vary the total number of searching robots in
the swarm from 2 up to 60. We perform 50 independent test
runs of 5000 s for each setup. We measure the average time
needed by robots to move from one target to the other. We
compare to experiments with the same numbers of robots, but
where only one robot is going back and forth between nest and
food source, while the other robots of the swarm are moving
according to the random direction mobility model (as in the
single robot navigation experiments of Section III).

The results of these tests are shown in Figure 12. For
both single robot navigation and collective navigation, per-
formance improves as the number of robots increases, since
navigation information spreads more easily in densely con-
nected swarms (see Section III). However, for the collective
navigation scenario, the performance improves faster (with 30
robots, navigation delay of collective navigation is about half
of that of single robot navigation). This is due to cooperation.
When a robot moving towards the food source (and hence

Fig. 13. Collective navigation after 300 s of simulation: a self-organized
dynamic chain has formed, with part of the robots going to the food source
(red circles) and the others going to the nest source (blue disks).

coming from the nest) and a robot navigating towards the
nest meet, they can give each other navigation information
about their respective targets. Moreover, if a group of robots
moving towards the same target are in communication range
from each other, new information received by any of them
spreads throughout the whole group, and they simultaneously
move in the same direction. These two effects make robots
form clusters moving in opposite directions. When there are
enough robots, such clusters can become large enough to cover
the whole distance between nest and food source. At that point,
the swarm organizes into a stable structure, which we refer to
as a dynamic chain. Figure 13 illustrates this behavior for a
typical run of collective navigation with 40 robots. It is this
behavior which causes the strong improvement in performance
between 20 and 30 robots in Figure 12. For larger swarms (50
and 60 robots), congestion of robots near the target locations
leads to a slight decrease in performance.

The dynamic chain is an example of emergent self-
organized behavior: the swarm shows organization at the
global level that emerges from local interactions between
individual robots. In what follows, we investigate when this
self-organization arises and how stable it is. To do this, we
first need a measure for self-organization. Several authors use
entropy to measure self-organization in the context of swarm
robotics [46], [47]. If X is a random variable which can take
M different states, its entropy H(X) is defined as

H(X) = −
M∑
i=1

pi log2(pi), (2)

where pi is the probability that X is in state i (here, we refer to
Shannon’s information entropy [48]). Strictly speaking, this is
a measure of order (or disorder), rather than self-organization:
the more a system is ordered, the more you can find it in a
limited subset of its possible states, and the lower the entropy.
In principle, self-organization is more than just an increase in
order, and different measures for self-organization have been
proposed [49]. For us, however, it is sufficient to measure
whether there is increased order in the behavior of the robots,
so we stick with entropy.

To calculate the entropy H(X), we need a discrete variable
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Fig. 14. Evolution of the hierarchic social entropy S(R) over the course of
an example test run for 20, 30, and 40 robots

X that characterizes the swarm behavior. In [50], [47] the
authors use the orientation of the robots, discretized into four
bins; the entropy based on this variable indicates to what
extent the robots face the same direction. In our case, this
measure can be used (once the chain is formed, robots face
in similar directions), but it is quite noisy, especially when
there is congestion (robots turn to avoid each other). What we
really want to measure is whether the robots move in a low
number of connected clusters; that is, whether there is order
in their physical locations. To do this, we turn to hierarchic
social entropy [51], which proposes an entropy measure for a
group of robots characterized by a multi-dimensional variable.
In our case, this multi-dimensional variable will be the location
coordinates of each robot. The idea behind hierarchic social
entropy is to first cluster the robots using hierarchic clustering
based on a distance threshold h: a robot is added to a cluster
if it is within distance h from all robots in the cluster. The
division of robots into clusters gives a discrete variable X on
the basis of which entropy is calculated (the clusters form
the M different states for X , and the probabilities pi are
defined by the number of robots in each cluster). Obviously,
X depends on the threshold h: if h = 0, each robot is in a
cluster of its own, and entropy is maximal, while if h = ∞,
all robots fall in a single cluster, and entropy is 0. Therefore,
the notation H(R, h) is used to refer to the entropy of a group
of robots R using clustering distance h. The hierarchic social
entropy S(R) is then defined by integrating H(R, h) over all
values of h:

S(R) =

∞∫
0

H(R, h)dh. (3)

We use S(R) based on the location coordinates of the
robots to analyze the behavior of the swarm. Compared to the
definition of S(R) in [51], we introduce one change, related to
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Fig. 15. Fraction of test runs for collective navigation in which a stable
dynamic chain forms.

the clustering: we use single linkage clustering, which means
that a robot is added to a cluster if it is within distance h
from any robot of that cluster. Single linkage clustering can
find long stretched clusters [52], which enables it to detect the
chaining behavior of the swarm. In Figure 14, we show the
evolution of S(R) over the course of example test runs with
20, 30 and 40 robots; we calculate S(R) at every time-step
of 0.1 s, and average it per 100 s of simulation. When the
robots of the swarm move close together, there is a drop in
entropy. When the dynamic chain forms, entropy stays low for
an extended amount of time. All runs with 20 and 40 robots
display patterns similar to the ones shown here: for 20 robots,
the chain never forms, while for 40 robots it forms quickly
and remains for the whole duration of the simulation. With
30 robots, varying patterns have been observed. In some runs,
including the example here, the chain forms after a while. In
other runs, it does not form. Interestingly, when it does form,
it usually stays for the whole test duration. This suggests that
the chain is stable with respect to perturbations.

In Figure 15, we study the stability of the chain. For
increasing numbers of robots, we perform each time 50 test
runs, and measure in which fraction of those runs a stable
dynamic chain appears. We consider the chain stable if for
the last 1000 s of the test S(R) remains below 0.2. The graph
shows a clear phase transition around 30 robots: with less
robots, the system never self-organizes, with more it always
does. Such phase transitions are typical of self-organizing
systems in physics, and have also been observed in swarm
robotics [46]. They indicate that within a given range of a
control parameter, the self-organizing behavior is robust and
takes place independently of perturbations in the system (e.g.,
loss of robots due to failures, or the arrival of new robots).

Finally, in Figure 16, we show how frequently the targets
are reached by robots. This indicates how many items the
swarm could transport between the two locations. Increasing
the swarm size, one could expect a sub-linear performance im-
provement, because more robots can transport proportionally
more items (linear improvement), but there is also increased
congestion. In our system, increased swarm size also gives
more cooperation, which leads to a super-linear increase in
performance between 10 and 40 robots (dotted lines in the fig-
ure illustrate for each swarm size the extrapolated performance
in case of linear improvement). For more robots, congestion
makes the performance growth decrease.
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Fig. 18. Experimental results in the cluttered environments of Figure 17. The left plot refers to Figure 17 (left), and the right one to Figure 17 (right). The
figures report the observed navigation delays for an increasing number of robots for the case when all robots in the swarm go back and forth between nest
and food source (collective navigation), and when only one robot is going back and forth between nest and food, while the other robots of the swarm move
according to the random direction mobility model (single robot navigation). The NwR strategy has been used in all the reported experiments.
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Fig. 17. Layout of cluttered environments used for collective navigation
experiments. The area is 20×20 m2 in both cases.

B. Cluttered environments

We now deploy our system in the cluttered environments
shown in Figure 17. The nest and food source are placed in
the same locations as in the uncluttered environment, but now
obstacles have been placed between them. We compare again
single robot navigation and collective navigation. We report the
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Fig. 19. Evolution of the hierarchic social entropy S(R) over the course of
an example test run for 40 robots in the environment of Figure 17 (right).

average navigation delay in experiments with varying swarm
sizes in Figure 18. As in the case without obstacles studied
in Section IV-A, collective navigation is more efficient than
single robot navigation. However, as the environment gets
more complex, its advantage gets smaller. This is because
the swarm has more difficulties to form and maintain the
dynamic chain around the obstacles. We illustrate this in
Figure 19, where we show the evolution of the hierarchic
social entropy over time for a typical test run with 40 robots
in the scenario of Figure 17 (right). The entropy is low for
certain stretches of time, indicating that the dynamic chain
is formed, but also goes up again, showing that the chain
gets lost sometimes. These results show that the self-organized
behavior works in the presence of obstacles, but that it has
difficulties when the environment becomes too complex. In
such environments, the navigation algorithm still works, but it
looses the advantage obtained through self-organization, and
the performance becomes comparable to that obtained in single
robot navigation.

C. Shortest path finding

As in the case of single robot navigation, we investigate
the behavior of the system in case two paths of different
length are available between nest and food source. We use
the environment of Figure 8, where we now place a nest and
a food source in the locations that were previously used for
searcher and target. The two locations are connected by a short
path of length ds = 12 and a long path of length dl = 24.
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Fig. 20. Shortest path finding performance in the cluttered environment of
Figure 8. The figure shows the navigation delay versus number of robots for
each individual test, as well as the average per swarm size (25 tests per swarm
size). The choice of path in each test is shown by the point symbols.

We vary the swarm size from 5 to 70 robots, and perform
25 tests of 5000 s for each size. We measure the average time
needed for a robot to navigate between the target locations. We
also observe which path each robot takes to reach its target:
the short or the long one. We combine this per test run, to
calculate the percentage of robots using the short path, ps. If
ps > 66%, we say the swarm uses the short path, if ps < 33%
it uses the long path, and otherwise it uses both.

Figure 20 shows the result of each individual test, as well
as the average per swarm size. As for the case of single robot
navigation, the robots have a preference for the short path.
Also, this preference leads to efficient navigation, as those runs
that use the short path usually experience a lower navigation
delay (with exception for swarm size 70, where congestion
starts to play a major role).

It is interesting to observe the evolution of the preference for
the short path for increasing swarm sizes. For swarm size 5,
the preference for the short path is rather modest; to be precise,
in 67% of the test runs, the swarm uses the short path, which
is comparable to the case of single robot navigation with the
same number of robots (see Section III-E). For 10 robots, the
preference is already much stronger, but it is starting from
swarm size 15 that the results start to look different: in all
runs, all robots always use the short path, and navigation
delay is very low and equal over all runs. This highly efficient
navigation behavior is due to the self-organized formation of
the dynamic chain. On the one hand, we observe here the
same improvement of navigation efficiency as in uncluttered
environments (see Section IV-A). On the other hand, there is
also a second effect, namely that the dynamic chain makes
the collective navigation lock onto one of the paths: once the
swarm forms the chain on one path, it will normally not change
to the other path anymore. Between 15 and 30 robots, there
are enough robots to form the chain over the short path, but
not over the long path. This makes the swarm always choose
the short path. Starting from 35 robots, the chain can also
be formed over the long path (verified in separate tests not
shown here), and we start to observe this from swarm size
40. While the robots’ general preference for the short path

normally makes the chain form there, fluctuations due to the
robots’ random initial distribution, or due to collisions and
congestion, let the chain occasionally choose the long path.
Such amplification of fluctuations is a typical phenomenon in
self-organizing systems in nature [53]. We also conducted tests
moving the targets so as to reduce the difference between ds
and dl (swarm size 50). This led to proportional changes in
the number of runs choosing the short path.

V. IMPLEMENTATION ON REAL ROBOTS

We implemented the communication based navigation sys-
tem on real foot-bots [21]. Since this is the robot used as
model in the simulation experiments, the robot characteristics
(IrRB capacity, robot speed, etc.) are the same as described in
Section III.

In a first experiment, we used an arena of 10×4 m2, which
is largely uncluttered, except for a wall of 1.4 m on the side.
Figure 21 shows a photograph of the arena, as well as an
image of how it was reproduced in simulation. We placed a
source and target robot in this arena, in the locations of the
two robots shown in the figure. Due to the small size of the
arena, we limited the communication range of the IrRB system
to 2.5 m. We carried out tests similar to the ones reported in
Figure 12: we compare single robot navigation (1 searcher,
all other robots perform random movements) and collective
navigation (all robots are searchers) in tests with increasing
swarm sizes (from 1 moving robot, up to 10). For each swarm
size, we run one single long experiment of 30 minutes, in
which the searching robot(s) go back and forth many times.
We also reproduce the same experiments in simulation. We
report the average time needed for navigation between the
source and target. The results are shown in Figure 22. Both in
reality and in simulation, the data show the same trend as in
the earlier results of Figure 12: navigation delay improves with
increasing numbers of robots, but for collective navigation,
there is a faster increase thanks to the chain formation. This
chain formation was also observed visually by us

Moreover, although there are some quantitative differences
between the results from simulation and those with the real
robots, the trends are qualitatively the same, and it can
generally be said that the results from simulation are quite
reliable.

In a second experiment, we did tests similar to the ones
of Section IV-C. We used an arena of 3.10 × 4.35 m2, with
in the middle an obstacle of 0.75 × 1.75 m2. The target and
source were placed on either side of the obstacle, at about
two thirds along the long edge of the arena, such that a
long and a short path were available among them. Figure 23
shows a photograph of the arena, as well as an image of
how it was reproduced in simulation. Due to the small size
of the arena, we restricted the communication range of the
robots to 1.5 m. We ran tests with increasing numbers of
moving robots, from 1 up to 8, for both single robot navigation
and collective navigation, and reproduced the same tests in
simulation. Each test lasted 40 minutes, but for the collective
navigation, we split this up into 4 times 10 minutes. This
is because the chain formation makes the robots’ choice for
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Fig. 21. Arena used in the real robot experiments: photograph (left) and as
reproduced in simulation (right). The photograph was taken from the position
of the camera icon in the right image. In this image, the circle and the disk
symbols indicate respectively the position of food and nest robots.
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Fig. 22. Experimental results for single and collective navigation using
real robots in the scenario of Figure 21 (left). The average navigation delay is
reported for an increasing number of robots. The results obtained in simulation
considering the equivalent scenario of Figure 21 (right) are also reported to
show the good correspondence between simulation and real robot behavior.

either the short or the long path stable for long time, such
that consecutive trips between source and target can not be
considered as independent samples; in single robot navigation,
on the other hand, the correlation between consecutive trips of
the searching robot is limited, such that all trip times gathered
during a single run of 40 minutes can therefore give enough
independent test samples. The results are shown in Figure 24.
We report the average delay needed to move between source
and target, and the fraction of robots following the short
path. The correspondence between simulation and real robots
is good, qualitatively, although quantitatively there are some
differences. The trip time results show that the difference
between single robot and collective navigation is limited in
this case, due to the small arena, which allows less space
to get improved times, and which gives more congestion.
On the other hand, the choice for the shortest path shows a
strong difference between the two navigation scenarios: while
single robot navigation leads to a preference for the short path
that increases linearly with the number of robots, collective
navigation has a faster increasing preference for the short path,
due to the chain formation (compare to Figure 20).

Finally, we point out that in previous work [22], we imple-
mented the navigation algorithm on e-puck robots [54], fitted
with an IrRB communication board [19]. The capacities of

Fig. 23. Arena used in the real robot experiments with obstacle: photograph
(left) and as reproduced in simulation (right). The circle and the disk symbols
in the right image indicate the position of the food and the nest robots.

these robots and their IrRB system are limited compared to
those of the foot-bots: each robot could send only 2 bytes per
second, with significant packet loss, and very noisy range and
bearing estimates. Nevertheless, the navigation system worked
fairly well. We refer to [22], where we report results from these
tests. Finally, in some other tests using the foot-bot robots,
reported in [23], we observed frequent robot failures, and we
tested adding robots to and removing robots from the swarm,
with the navigation algorithm adapting easily to such changes.
All these tests show the general robustness, adaptivity and
scalability of the algorithm.

Videos of these experiments as well as of similar experi-
ments used for the paper [23] can be seen in on-line supporting
material at:
http://www.idsia.ch/∼gianni/IeeeR/videos.html.

VI. RELATED WORK

In this paper, we have presented an algorithm for com-
munication based cooperative navigation in swarm robotics.
The works closest related to ours are situated in the areas of
communication based navigation, and cooperative navigation
in swarm robotics.

Several works are related to ours because of the way they
use communication to guide navigation. One setup that has
been studied extensively over the past few years is to fit the
environment with a network of wireless communication nodes,
which guide a single robot to a target [55], [3]. The commu-
nication nodes may be wireless sensor nodes, which sense
the local environment and take this sensed information into
account when planning a path [56], or sensor-less nodes, which
use only communication for path planning [17]. Many of these
approaches use communication links to define obstacle-free
paths, e.g., using infrared communication [3], so that they can
use network routing algorithms to define navigation paths. An
important difference with our approach is that most of these
works assume that the communication network that guides
the mobile robot is static and embedded in the environment;
they do not foresee the possibility that mobile robots guide
each other’s navigation. Some works do use mobile robots,
e.g., to deploy the static communication nodes [57], or to fill
gaps in the sensor network [58]. The approach closest to ours
is [59], where a navigating robot gets support to move around
obstacles from a few mobile explorer robots, using line-of-
sight communication. Different from our work, however, these
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Fig. 24. Experimental results for single and collective navigation using real robots in the cluttered scenario of Figure 23 (left). In the left figure, the
observed average delay for the navigation between source and target is reported for an increasing number of robots. The right figure shows the fraction of
robots following the short path. The results obtained in simulation considering the equivalent scenario of Figure 23 (right) are also reported to show the good
correspondence between simulation and real robot behavior.

few explorer robots are dedicated to support the single robot’s
navigation task. The authors do not consider the possibility that
a whole swarm of mobile robots guide each other’s navigation,
where each robot may be involved in a task of its own and is
not dedicated to support the navigation of the others.

Within the context of swarm robotics, most work on co-
operative navigation is based on indirect stigmergic commu-
nication [5], [6], [7], [60], [61], [8], [62], [9], [10], [63],
[11], [64], rather than on direct communication as in our
algorithm. This approach is typically inspired by the behavior
of certain types of ants, where individual ants mark their paths
using a chemical substance, called pheromone, and follow
these pheromone trails to find their way between the nest
and a food source [13]. The joint pheromone laying and
following actions of the ants of a colony reinforce the most
efficient paths, and lets the swarm as a whole self-organize
to find shortest paths [12]. An important problem for the
application of such approaches in robotics is how to physically
implement pheromone. A common solution is to mark the
trail with a chain of robots [5], [8], [9], [11]. Compared to
our system, this has the disadvantage that some of the robots
remain static and cannot take part in navigation. Moreover,
the system is vulnerable to failures of robots in the chain,
making it less robust. Other approaches include the use of
alcohol [60], [10], phosphorescent paint [63], or light encoding
of pheromone using an overhead projector [62], [61], which
are interesting, but are rather hard to detect and follow reliably
or to implement in a general context. A general disadvantage
of all these pheromone-inspired swarm navigation algorithms
is that they crucially assume that all robots move between
two targets. Our algorithm can also work in this situation,
with properties that are similar to other swarm navigation
methods; in particular, it lets the swarm self-organize, and
displays emergent shortest path finding behavior, as shown
in Section IV. However, it is also very general and usable
in a wide range of different situations. We have illustrated
the single robot navigation task in Section III, but one can
understand that also many other scenarios could easily be
addressed with this algorithm.

Finally, we describe a number of cooperative swarm nav-

igation algorithms that do not implement pheromone-based
navigation. In [65], the authors propose a method based on
direct communication, partially inspired by the bee waggle
dance: robots inform each other about the way to a target
by exchanging a list of landmarks, in the form of waypoint
coordinates. Like pheromone-based methods, however, also
this approach assumes that all robots of the swarm navigate
back and forth between two targets. Also in [66], robots use
direct communication to help each other navigate between
a nest and a food source. Here, the robots exchange the
estimated position of targets (nest or food source), and a robot
searching a target can move directly towards the indicated
location. However, since the only used navigation information
are target locations, the method would not be able to indicate
obstacle-free paths in cluttered environments. In [47], the
authors address the collective navigation problem with neuro-
evolution. Interestingly, they find a swarm level behavior
that is similar to our dynamic chain, though based on very
different individual robot behavior (using visual feedback,
robots turn around in local dynamic chains; these chains
merge and grow and may eventually include the targets).
However, this behavior was not designed to generalize to
scenarios that are radically different from that for which it
was developed, namely a collective navigation scenario in an
uncluttered environment. Finally, in [67], the authors propose
a navigation method inspired by trophallaxis, which is the
behavior of social insects to pass food to each other. In
this method, the food corresponds to navigation information,
which is exchanged through local direct communication. The
authors evaluate their method in the context of a foraging task
performed by a large swarm of simulated robots. It is not clear
whether this method would be applicable in other contexts,
such as the single robot navigation task, or in small swarms,
and whether it would be usable on real robots.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a navigation system for robotic swarms.
It is a simple and flexible algorithm that can be used in
different contexts. We have first shown how it allows robots of
a swarm to guide a single robot to a target, without the need to
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adapt their own movements. Then, we have investigated how
the system can be used for collective navigation between two
targets, a common task in swarm robotics. We have shown
that cooperation improves navigation performance, and that
when enough robots are present, the swarm self-organizes
into a dynamic structure that supports efficient navigation
and is robust to perturbations and robot failures. Moreover,
we have shown that collective navigation has a preference
for short paths, similar to pheromone mediated navigation in
ant colonies. In tests with real robots, we have shown the
feasibility of the approach.

In future work, we will first investigate the performance of
the current system in more complex scenarios. We will in-
vestigate single robot navigation with different, realistic robot
movement patterns, and study the dynamic chain behavior
in complex cluttered environments. Also, we will perform
more extensive tests with real robots to confirm all results
from simulation. After that, we will integrate this system in
other scenarios of swarm deployment, e.g., where the swarm
performs tasks in service of humans. Many such scenarios
require navigation. Moreover, the swarm communication we
use for navigation can be extended to carry more information,
e.g., for task allocation, planning, etc.
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