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Abstract—In this paper, the problem of blind channel estima-
tion under orthogonal space–time block coded (OSTBC) transmis-
sions is solved by minimizing some distance measure between the
theoretical and estimated correlation matrices of the observations.
Specifically, the minimization of the Euclidean distance and the
Kullback–Leibler divergence leads, respectively, to the Euclidean
correlation matching (ECM) and Kullback correlation matching
(KCM) criteria. The proposed techniques exploit the knowledge of
the source correlation matrix to unambiguously recover the mul-
tiple-input multiple-output (MIMO) channel. Furthermore, due to
the orthogonality properties of OSTBCs, both the ECM and KCM
criteria result in closed form solutions. In particular, the channel
estimate is given by the principal eigenvector of a matrix, which
is obtained from the estimated correlation matrix of the observa-
tions modified by the code matrices and a set of weights. In the
ECM case, the weights are fixed and equal to the eigenvalues of
the source correlation matrix, whereas the KCM weights depend
on both the signal-to-noise ratio (SNR) and the source eigenvalues.
Additionally, we show that the proposed approaches are equiva-
lent in the low SNR regime, whereas in the high SNR regime the
KCM criterion is asymptotically equivalent to the relaxed blind
maximum-likelihood (ML) decoder. Finally, the performance of
the proposed criteria is illustrated by means of some numerical ex-
amples.

Index Terms—Blind channel estimation, correlation matching,
information geometry, Kullback–Leibler divergence, max-
imum-likelihood (ML), orthogonal space–time block coding
(OSTBC).

I. INTRODUCTION

I N the last years, OSTBC [1], [2] has emerged as one of
the most promising techniques to exploit spatial diversity in

MIMO systems [3], [4]. Specifically, if the channel is perfectly
known at the receiver, OSTBC provides full diversity and re-
duces the complexity of the optimal maximum-likelihood (ML)
decoder to a simple linear receiver followed by a symbol by
symbol detector. However, in a practical scenario, the channel
state information (CSI) is usually obtained through the transmis-
sion of a pilot sequence [5], which incurs in a penalty in terms
of bandwidth efficiency. In order to avoid this penalty, several
blind channel estimation and decoding techniques have been
recently proposed [6]–[13]. These techniques, which are able
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to avoid the 3-dB penalty associated to differential approaches
[14]–[18], can be divided into two groups. On one hand, some
approaches exploit the finite alphabet of the sources for ob-
taining exact or approximated solutions to the optimal blind
ML decoder [6]–[8], which translates into algorithms depen-
dent on the specific signal constellation and with a relatively
high computational complexity. On the other hand, the criteria
solely based on the second-order statistics (SOS) of the obser-
vations [9]–[13] are independent of the signal constellation and
result in low-complexity algorithms. However, in some practical
cases, including the Alamouti code [1] and most of the mul-
tiple-input single-output (MISO) cases, the channel can not be
unambiguously identified [19]–[21] without assuming some ad-
ditional property, such as the transmission of correlated or lin-
early precoded sources [10].

In this paper, we propose two new blind OSTBC channel
estimation techniques which are able to exploit the previous
knowledge of the source correlation matrix.1 Both techniques
are based on the general idea of correlation matching, which
amounts to minimize the divergence between the theoretical
and finite sample estimate of the correlation matrix associated
to the received signals. In particular, we consider two different
measures of divergence, namely, the Euclidean distance and the
Kullback–Leibler divergence, which lead to the Euclidean cor-
relation matching (ECM) and Kullback correlation matching
(KCM) criteria, respectively. The ECM criterion has been previ-
ously applied to other blind channel estimation and equalization
problems [22]–[24], and KCM, which can be considered as the
basis of information geometry [25], is closely related to the ML
estimation problem [26]–[29]. However, in general both criteria
result in nonlinear optimization problems, which must be solved
by means of numerical methods.

Unlike most of the blind channel estimation problems
[22]–[24], we show that for blind OSTBC channel estimation
both the ECM and KCM criteria yield closed-form solutions.
Concretely, in both cases the channel estimate is given by the
principal eigenvector of a matrix, which is obtained from the
correlation matrix of the observations, the OSTBC code ma-
trices, and a set of weights. The ECM weights are directly given
by the eigenvalues of the source correlation matrix, whereas the
KCM weights also depend on the signal-to-noise ratio (SNR).
This permits a straightforward interpretation of the proposed
techniques. On one hand, in the case of white sources, both
criteria reduce to the relaxed blind ML decoder [7], [10]. On
the other hand, regardless of the source correlation matrix, the
KCM technique reduces to the ECM criterion in the low SNR

1Although the proposed techniques are not strictly blind due to the assumption
of a known source correlation matrix. We refer to them as blind methods to point
out that they do not require the transmission of any pilot sequence.
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regime, and to the relaxed blind ML decoder in the high SNR
case. In other words, the KCM technique uses the most reliable
information, i.e., in the low SNR regime the channel estimate
is extracted from the previous knowledge of the source corre-
lation matrix, whereas for high SNRs, the channel information
is recovered, almost exclusively, from the congruence between
the observations and the OSTBC data model.

The structure of the paper is as follows. In Section II, the
OSTBC data model and its main properties are summarized. A
brief review of previous approaches to blind OSTBC channel
estimation is presented in Section III. The ECM and KCM tech-
niques for the blind extraction of the channel, up to a real scalar,
are presented in Section IV. Although this is the key point in the
blind channel estimation process, in Section V, it is shown that
the ECM and KCM criteria also provide estimates of the channel
energy and noise variance. The main properties of the proposed
criteria, and their relationship with other approaches are sum-
marized in Section VI. Finally, the performance of the proposed
techniques is illustrated in Section VII by means of some nu-
merical examples, and the main conclusions of the paper are
summarized in Section VIII.

II. SOME BACKGROUND ON OSTBCS

Notation

1) Vectors/Matrices: Throughout this paper, we will use
bold-faced upper case letters to denote matrices, e.g., , with
elements ; bold-faced lower case letters for column vector,
e.g., , and light-face lower case letters for scalar quantities.
The superscripts and denote transpose and Hermitian,
respectively. The real and imaginary parts will be denoted
as and , and superscript will denote estimated
matrices, vectors or scalars. The trace, Frobenius norm and
column-wise vectorized version of a matrix will be denoted
as , and , respectively. The diagonal matrix
obtained from the elements of a vector is denoted as .
We use and to denote that is
a complex or real matrix of dimension . Finally, the
identity matrix of dimensions will be denoted as ,
will denote the zero matrix of the required dimensions, and
will denote the expectation operator.

2) MIMO Parameters: In this paper, a flat-fading MIMO
system with transmit and receive antennas is assumed.
The complex channel matrix will be written as

...
. . .

...

where is the channel energy, is the normal-
ized (to ) MIMO channel, and denotes the channel
response between the th transmit and the th receive antennas.

Additionally, the complex noise at the receive antennas is con-
sidered independent and identically distributed (i.i.d.) Gaussian
with variance .

A. Data Model for STBCs

Let us consider a linear space–time block code (STBC) trans-
mitting symbols during time slots with antennas at the
transmitter side. The transmission rate is defined as ,
and the number of real symbols transmitted in each block is

for real codes
for complex codes.

For a STBC, the th block of data can be expressed as

where contains the real infor-
mation symbols transmitted in the th block, and ,

, are the code matrices. In the case of real STBCs,
the transmitted matrix and the code matrices are
real.

The complex signal at the receive antennas can be written
as

(1)

where is the white Gaussian complex noise with
variance , and

represent the composite effect of the MIMO channel and the
STBC code. Here, we must note that the data model in (1)
can be seen as a particular case of a complex system with
a noncircular (improper) source [30]–[33]. Furthermore, in
Section II-C it will be shown that we can assume, without loss
of generality, a diagonal correlation matrix .
Thus, in order to exploit the fact that a set of real infor-
mation symbols are observed through a complex equivalent
channel given by , we define the real vector

, and rewrite (1) in
terms of real variables as

(2)

where is defined analogously to and can
be seen as the equivalent channel, whose th column is
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given by , with

,

and

. . .
...

...
. . .

. . .

If the MIMO channel is known at the receiver, the coherent
ML decoder minimizes the following cost function [34]

subject to the constraint that the elements of belong to a
finite set . Unfortunately, in a general case this is a NP-hard
problem and optimal algorithms to solve it, such as sphere de-
coding, can be computationally expensive [35]–[38].

B. OSTBC Properties

In the OSTBC case, the equivalent channel matrix
satisfies

(3)

which allows us to reduce the complexity of the ML receiver to
find the closest symbols to the estimated signal

i.e., the optimal receiver reduces to a matched filter followed by
a symbol by symbol detector.

The necessary and sufficient conditions to satisfy (3) can be
found in [34]. Specifically, the code matrices must satisfy, for

,

,
, (4)

and it is straightforward to prove that the above condition also
holds for the code matrices with real elements

.

Finally, the following properties are direct consequences of
(3) and (4).

Property 1: The transmitted signals using an OSTBC satisfy
.

Remark 1: Considering a source correlation matrix
, Property 1 implies that the energy transmitted by

each antenna over the channel uses is , and the total
transmitted power per channel use is

Furthermore, the signal power at the receiver is ,
which yields a received SNR

SNR

Property 2: Given the OSTBC code matrices ,
, and an orthogonal matrix with

elements , the matrices

define a new OSTBC with the same parameters , and .
Remark 2: Considering the eigenvalue decomposition

(with an orthogonal matrix), Property 2 allows us
to rewrite the data model in (2) as

where is the equivalent channel of a
modified OSTBC, and is a rotated informa-
tion vector with . Thus, assuming that the
correlation matrix is a priori known, we can easily obtain
the modified code matrices (as well as their extended ver-
sions and ). Therefore, from now on we will assume,
without loss of generality, known and diagonal correlation ma-
trices with elements in its
diagonal.

Finally, it should be noted that can differ from a scaled
version of the identity matrix due to three different reasons.

1) The information symbols can be correlated due to the spe-
cific type of modulation format (duobinary signaling tech-
niques for instance), or due to the channel encoder [39].

2) The power imbalance among the different information
symbols can be a consequence of the specific OSTBC
design [40], [41].

3) As will be shown in Section III, the sources could have
been linearly precoded [10] in order to avoid the indetermi-
nacies associated to some OSTBCs, such as the Alamouti
code [1].
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III. PREVIOUS WORKS ON BLIND

OSTBC CHANNEL ESTIMATION

In the last years, several blind and semiblind techniques
for channel estimation under STBC transmissions have been
proposed [6]–[13]. These techniques can be divided into two
groups, depending on whether they try to approximate the
optimal joint estimator of the channel and sources [6]–[8], or
they are solely based on the second-order statistics (SOS) of
the observations [9]–[13]. The main advantage of SOS-based
techniques resides in their independence of the specific signal
constellation and reduced computational complexity. In this
section, we review the basic approaches to blind OSTBC
channel estimation, pointing out their main properties and
drawbacks.

A. Relaxed Blind ML Decoder (Subspace Method)

In order to simplify the blind channel estimation problem,
previous works [7], [9]–[13] have suggested to relax the finite-
alphabet constraint on the information symbols. Thus, assuming
that the MIMO channel remains constant during the transmis-
sion of OSTBC data blocks, the relaxed blind ML decoder
[7], [10] amounts to minimize

(5)
and its solution can be directly obtained as the principal
eigenvector of the matrix

where is the finite sample estimate of the correlation matrix
of the observations , i.e.,

Obviously, the above criterion is affected by a real scale factor
in the channel and signal estimates, which can be considered
as a minor problem easy to solve in a later step. However, in
some practical scenarios, which include the well-known Alam-
outi code [1] and most of the MISO cases, the relaxed blind ML
decoder is affected by additional indeterminacies, which pre-
clude the unambiguous blind recovery of the MIMO channel
[20]. In particular, the identifiability problems are due to the ex-
istence of a not null subspace of spurious channels
and symbol sequences satisfying

(6)

which, from a practical point of view, translates into a multi-
plicity of the largest eigenvalue of .

Finally, we must point out that (5) is solely based on the con-
gruence between the estimates ( and ) and the obser-

vations . Therefore, in the absence of noise, and assuming
that (6) is only satisfied by the true channel and symbol se-
quence, the channel can be exactly recovered by means of the
relaxed blind ML decoder with a finite sample size. In the con-
text of blind identification this is known as the finite sample con-
vergence property [42], and any method satisfying this property
is referred to as deterministic.

B. Weighted Version of the Relaxed Blind ML Decoder

In order to remove the indeterminacies pointed out in the pre-
vious subsection, in [10] the authors propose a linear precoding
approach, which introduces a correlation on the information
symbols, and leads to a weighted version of the relaxed blind
ML estimator. Specifically, the normalized channel estimate is
obtained as the eigenvector associated to the largest eigenvalue
of

(7)

where the weights are free parameters to
be selected by the user. Furthermore, given a correlation matrix

such that one of its eigenvalues has multiplicity one, we
could identify the associated eigenvector in the cor-
relation matrix , and unambiguously extract the channel as

.
Unlike the unweighted version, (7) is based on the source

correlation matrix . Therefore, although this technique
is able to recover the channel regardless of which OSTBC is
used, i.e., even when there exists spurious solutions of (6), it
is affected by a noise floor due to the difference between the
theoretical correlation matrix , and its finite sample version.2

C. Channel Energy and Noise Variance Estimation

As previously pointed out, the above criteria only recover the
channel up to a real scalar. However, the analysis of the eigen-
values of provides the following esti-
mates of the channel energy3 and noise variance

(8)

where we are assuming that the noise subspace is not null, i.e.,
, which is satisfied for all the OSTBCs excluding

the MISO Alamouti case [1].

IV. BLIND OSTBC CHANNEL ESTIMATION THROUGH

CORRELATION MATCHING

In this work, we propose two new SOS-based blind channel
estimation techniques that exploit our knowledge about the

2Obviously, the noise floor decreases with the number of observations� .
3See [10] for an alternative estimator based on an estimate of the normalized

channel.
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source correlation matrix . The proposed correlation
matching criteria aim at adjusting the theoretical correlation
matrix of the observations

(9)

which depends on the parameters , and ; and its finite
sample estimate .

Different measures of the divergence between the two corre-
lation matrices yield different criteria. Specifically, the use of
the Euclidean distance leads to the ECM criterion, whereas the
use of the Kullback–Leibler divergence between Gaussian pdfs
provides the KCM criterion. In other estimation scenarios, both
criteria result in nonlinear optimization problems, which must
be solved by means of numerical methods. However, due to the
orthogonality property in (3), both correlation matching criteria
lead to closed-form channel estimates, which are obtained by
solving an eigenvalue (EV) problem.

The key point in the channel estimation process consists in
the estimate of the normalized channel , whereas the estimate
of the channel energy only translates into a scale factor in the
recovered signals. Therefore, the estimation of and will
be relegated to Section V, and here we will focus on the blind
estimation of the normalized channel .

A. Euclidean Correlation Matching

The classical correlation matching criterion for parameter es-
timation is based on the minimization of the Euclidean distance
between the theoretical and estimated SOS of the observations.
Under mild assumptions [22], [23], [43], this criterion provides,
asymptotically as , the unbiased estimator with min-
imum variance [22], [23], [43]. However, although ECM has
been successfully applied to blind channel estimation and equal-
ization problems [22]–[24], it usually results in nonlinear opti-
mization problems, which have to be solved by means of nu-
merical methods.

Omitting, for notational simplicity, the dependence w.r.t.
and , the ECM criterion amounts to solve the following opti-
mization problem,

which can be rewritten as

(10)

Let us now analyze separately the terms into the brackets in
(10). By using the property we obtain

Furthermore, taking into account the orthogonality of the equiv-
alent channel matrix (see (3)), we can write

Thus, the ECM criterion reduces to

where

(11)

and we have defined
.
Here, we must note that in the above equation only the first

term depends on , and therefore the ECM criterion amounts
to maximize . Now, taking into

account that the th column of is given by , we can
write

where

can be seen as a modified correlation matrix [44], [45], and the
weights are directly given by the source eigenvalues, i.e.,

. Thus, since , the ECM estimate is
obtained by solving the EV problem

(12)

where is the largest eigenvalue of .

B. Kullback Correlation Matching

In this subsection, we consider a different measure of the
divergence between two correlation matrices. Specifically, we
minimize the Kullback–Leibler divergence between the empir-
ical and theoretical pdfs of the ob-
servations, which is closely related to the notion of informa-
tion geometry [25] and to the ML estimation of the parameters
[25]–[27].
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Omitting, for notational simplicity, the dependence w.r.t.
and , the Kullback–Leibler divergence is defined as

and in the case of Gaussian distributed observations it reduces
to [27]

Based on the previous definitions, the proposed KCM crite-
rion amounts to solve the following optimization problem

(13)
which reduces to the ML estimator under Gaussian distributed
nuisance parameters [26], [28]. Although the Gaussian as-
sumption is only strictly correct in the asymptotic cases of

or independent sources, it has been recently proven
[29] that, under multilevel constellations, (13) provides (asymp-
totically as ) the optimum second-order estimator [28].

In order to simplify (13), let us introduce the following
lemmas:

Lemma 1: Under OSTBC transmissions, the inverse of the
theoretical correlation matrix is given by

(14)
where , and

(15)

Proof: From (9), and taking into account (3), we can write

where is the orthogonal complement of and we
have used . Thus,
the inverse is

and rewriting ,
we obtain (14), where

is a diagonal matrix defined by the weights in (15).
Lemma 2: Under OSTBC transmissions, the determinant of

the theoretical correlation matrix is given by

Proof: The proof follows directly from the product of the
eigenvalues of [see (9)].

Now, applying the results of Lemmas 1 and 2, the criterion in
(13) can be rewritten as

where

(16)

Analogously to the ECM case, (16) only depends on
through the term , which can
be rewritten as

where

and the weights are given by (15). Finally, the KCM es-

timate of is obtained as the eigenvector associated to
the largest eigenvalue of

V. CHANNEL ENERGY AND NOISE VARIANCE ESTIMATION

Although the estimation of the channel energy and noise
variance can be considered as a secondary problem, the
weights of the KCM estimate depend on the ratio . In this
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section, we obtain the estimates of and under the ECM
and KCM criteria.

A. ECM Estimates

In order to find the ECM estimates of and , and fol-
lowing the derivation in Section IV-A, we obtain the optimiza-
tion problem

Equating to zero the derivative of w.r.t. and the
following system of linear equations is obtained

(17)

(18)

whose solutions are given by

(19)

(20)

As can be seen, the estimates of the channel energy and
noise variance only depend on the normalized channel through
the term , which is independent of and . There-
fore, the exact ECM solution for the joint estimate of ,

and can be obtained by first solving the EV in (12)
and then substituting in (19) and (20) by its estimate

.
Finally, we must point out that the necessary and sufficient

condition for the solvability of the linear system given by (17)
and (18) is

and it is easy to prove that

where the equality is satisfied iff

In other words, the linear system in (17) and (18) is always
solvable with the only exception of transmitting a white source

by means of the complex Alamouti code
[1], and receiving with only one receive antenna.

Clearly, this is a very special case for which

B. KCM Estimates

Analogously to the ECM case, the KCM estimates of and
are obtained as

Thus, defining as the th element along
the diagonal of , and after some tedious but
straightforward algebra, we obtain the following system of non-
linear equations

(21)

(22)

which can be seen as the equivalent to the linear system in (17)
and (18). Specifically, taking into account that , the
right hand side term in (17) can be rewritten as

which is analogous to (21), i.e., both estimates can be seen as the
ratio between weighted versions (with weights or )
of the total received and transmitted signal energy.

On the other hand, unlike the estimate in (8), which is solely
based on the noise subspace of , the ECM and KCM (18)
and (22) can be easily interpreted as an average of the received
noise energy over the receive antennas and channel uses,
i.e., they take into account both the signal and noise subspaces.
Furthermore, in the asymptotic case of , we have

, and the term in (22) can
be rewritten as

which shows the equivalence between (22) and (18).
Finally, we must point out that, unlike the ECM case, the es-

timates of , and are coupled through the weights ,
and the exact KCM solutions should be obtained by means of
an iterative technique. However, in Section VII, it is shown, by
means of numerical examples, that the estimates of using ei-
ther the exact or estimated ratios are practically identical.
Therefore, from a practical point of view we propose to obtain

using the subspace or ECM estimates of and , and
then solve the nonlinear system in (21) and (22) by means of a
few iterations.
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VI. ANALYSIS OF THE PROPOSED TECHNIQUES AND

FURTHER DISCUSSION

The proposed ECM and KCM criteria, as well as the relaxed
blind ML decoder and its weighted version, lead to similar EV
problems, which only differ in the selection of the weights ,

or . The analysis of these weights help us to estab-
lish clear relationships among the four different approaches to
blind OSTBC channel estimation. The main conclusions of this
analysis can be summarized as follows.

• In the case of equal power and uncorrelated sources (
, ), the ECM, the KCM and the relaxed blind ML

decoder are equivalent. Therefore, they are affected by the
same ambiguity problems [see (6)].

• Both the ECM and KCM matrices and can be
viewed as particular cases of in (7). Therefore, the pro-
posed methods provide two different criteria for the selec-
tion of the weights and shed some light into how to choose
the optimal weights for the linear precoding technique pro-
posed in [10].

• As previously pointed out, the KCM weights do not
only depend on the source eigenvalues, but also on ,
which is proportional to the instantaneous signal to noise
ratio. Thus, the behavior of the KCM solution can be easily
interpreted.
— In the low SNR regime, and the KCM cri-

terion is equivalent to the ECM method, i.e., both tech-
niques try to extract the channel state information from
the prior knowledge of .

— In the high SNR regime, the KCM criterion is asymp-
totically equivalent to the relaxed blind ML decoder
( , ). Roughly speaking, this
means that, instead of exploiting the information about
the source correlation matrix (which is inaccurate due
to the finite number of observations), the channel is
(almost) exclusively extracted from the congruence
between the observations and the OSTBC data model.

• Due to the asymptotic equivalence (for ) between the
KCM approach and the relaxed blind ML decoder, the per-
formance of the KCM technique in the high SNR regime
can be summarized as follows.
— In the identifiable case4 [19], [20], the KCM technique

is able to exactly recover the MIMO channel. Unlike the
weighted version of the relaxed blind ML decoder and
the ECM criterion, it is not affected by the noise floor
due to the difference between the theoretical source cor-
relation matrix and its finite sample
version

— In the nonidentifiable case, the KCM criterion will re-
move the ambiguity by exploiting the knowledge of the
source correlation matrix .5 Thus, unlike the relaxed

4We refer to the identifiable case when (6) is only satisfied by scaled versions
of the actual MIMO channel.

5Note that, as shown in the simulations section, the small differences in the
weights � still avoid the identifiability problem pointed out in (6).

blind ML decoder, the KCM criterion will be able to
unambiguously recover the channel. Furthermore, al-
though the differences between theoretical and empir-
ical matrices now provoke the above referred noise floor
problem, it will be shown by means of simulations that,
in general, the noise floor in the KCM case is lower than
that of the ECM approach.

• Finally, in [44], it has been shown that the weighted ma-
trix can be interpreted as a modified correlation matrix,
and therefore the blind channel estimation criterion can
be reformulated as a principal component analysis (PCA)
problem [46]. Thus, in [44] and [45] we have proposed
adaptive blind channel estimation algorithms based on the
direct application of the well-known Oja’s rule [47].

VII. SIMULATION RESULTS

In this section, the performance of the proposed techniques
is illustrated by means of some numerical examples. In all the
cases the information symbols belong to a QPSK constellation
( are BPSK signals) and they are transmitted with unit
power by channel use ), which implies an instan-
taneous signal to noise ratio SNR . The
MIMO channel follows a Rayleigh distribution, i.e., each el-
ement is a complex Gaussian random variable with zero
mean and unit variance. Therefore, the average SNR is defined
as SNR .

The performance of the ECM and KCM approaches has been
evaluated with the well known Alamouti code [1] and with the
complex OSTBC proposed in [40] (see also [41, Ch. 3]), whose
parameters are and ( and

). This code was designed to provide better peak to
average power ratio (PAR) than that of the conventional designs
for [34], and its transmission matrix is given by

(23)

where, omitting the temporal index

For this code, it has been proven in [41, Ch. 4] that, in order
to optimize the bit error rate (BER) under QPSK constellations
and Rayleigh channels, the source correlation matrix should be

i.e., the energy of the first complex symbol is three times higher
than that of the three remaining symbols. As follows from the

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 25, 2008 at 11:32 from IEEE Xplore.  Restrictions apply.



5958 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 12, DECEMBER 2008

Fig. 1. Analysis of the KCM criterion with the OSTBC of [40], � � � and
� � �. a) Evolution of the ratio � �� with the instantaneous SNR.
b) MSE in the channel estimate for different ratios � �� , � � ��.

Fig. 2. MSE in the estimate of the normalized channel. Nonidentifiable case
(complex OSTBC in (23), � � �, � � �).

ECM and KCM techniques, this suggests the use of only two
different weights, i.e., in all the cases (ECM, KCM, and the
weighted version of the relaxed blind ML decoder) we fixed

A. Complex OSTBC With and

In the first set of experiments we consider the complex
OSTBC in (23). Here, we must point out that in the MISO case

this code is affected by the indeterminacy pointed
out in (6), i.e., the channel can not be unambiguously recovered
exclusively from the congruence between the observations and
the OSTBC data model.

The results of the first experiment can be seen in Fig. 1(a),
which shows the evolution of the ratio with the
instantaneous SNR. As can be seen, this value ranges from 1/3
(low SNR ), which is equivalent to the ECM approach, to 1

Fig. 3. BER after decoding. Nonidentifiable case (complex OSTBC in (23),
� � �, � � �).

(high SNR ), which matches the relaxed blind ML decoder.
Additionally, Fig. 1(b) represents the MSE in the estimate of
as a function of the ratio , where we can see that the min-
imum MSE is obtained with the value provided
by the KCM criterion.

In the second example, the ECM and KCM techniques have
been compared with the ML receiver with perfect channel
state information (CSI) and the relaxed blind ML decoder. The
performance of the KCM approach has been evaluated with the
exact knowledge of the ratio and with its estimate based
on the subspace method,6 obtaining almost identical results.
Fig. 2 shows the mean square error (MSE) in the channel
estimate for different numbers of available blocks at the
receiver. As can be seen, the relaxed blind ML decoder is not
able to recover the channel, whereas the ECM and KCM ap-
proaches are affected by a noise floor, which rapidly decreases
with , due to the difference between the theoretical and em-
pirical source correlation matrices. On the other hand, since the
KCM wisely combines the prior information about the source
correlation with the congruence between the observations and
the data model, its noise floor is lower than that of the ECM
criterion.

Finally, Fig. 3 shows the BER after blind channel estimation
and decoding, where we can see that, for a moderate number
of available blocks at the receiver and practical SNR (or BER)
values, the performance of the proposed blind schemes is very
close to that of the receiver with perfect CSI, avoiding the 3-dB
penalty associated to differential or training-based approaches
with one block of pilots. Furthermore, we must point out that in
a practical scenario, the noise floor in the previous figures could
be easily avoided by refining the channel estimates using the
decoded symbols as training sequences.

B. Complex OSTBC With and

In this subsection we present the results obtained, for the com-
plex OSTBC in (23), with receive antennas. Unlike the
previous case, when the number of receive antennas is ,

6Similar results have been obtained with the ECM estimate of ��� .
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Fig. 4. MSE in the estimate of the normalized channel. Identifiable case (com-
plex OSTBC in (23), � � �, � � �).

Fig. 5. BER after decoding �� � ���. Identifiable case (complex OSTBC in
(23), � � �, � � �).

Fig. 6. MSE in the estimate of the normalized channel. Alamouti code with
� � � � �.

Fig. 7. BER after decoding. Alamouti code with � � � � �.

it can be proven that the channel can be unambiguously recov-
ered by means of the relaxed blind ML decoder [19], [20], i.e.,
the equality in (6) is only satisfied by scaled versions of the true
MIMO channel. The MSE in the channel estimate and the BER
after decoding are shown in Figs. 4 and 5, where we can see
that the KCM approach, which is asymptotically equivalent to
the relaxed blind ML decoder, is not affected by the noise floor.

C. Alamouti Code With

In the final set of examples, the proposed techniques have
been evaluated for the Alamouti code [1] with receive
antennas. As previously pointed out, the Alamouti code does
not allow the unambiguous recovery of the channel without ex-
ploiting the correlation or other properties of the sources. Here,
in order to avoid the ambiguity problems we have linearly pre-
coded the sources to obtain the following source correlation ma-
trix

i.e., the first BPSK symbol is transmitted with four times more
power than the remaining ones. The results are shown in Figs. 6
and 7, where we can see that, for this particular source corre-
lation matrix, the ECM and KCM approaches provide almost
identical results.

Finally, the ECM and KCM estimates of the channel energy
and noise variance have been compared with those of the
subspace-based approach summarized in Section III-A. In
particular, the KCM technique is initialized with the estimate
of provided by the subspace method, which is used to
obtain , and and have been estimated by means
of only three iterations of the expressions in (21) and (22).
The results are shown in Fig. 8, where we can see that the best
results are provided by the KCM technique. Specifically, in the
low SNR regime the best estimates are obtained by the ECM
and KCM approaches, which exploit the prior knowledge of
the correlation matrix . On the other hand, in the high SNR
regime, the ECM technique is affected by a noise floor, which
is avoided by the KCM and subspace methods. In summary, the
KCM estimates of the noise variance and channel norm exploit
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Fig. 8. Performance of the proposed techniques in the Alamouti case, � �

� � �, � � ��. a) MSE in the estimate of
�
� b) MSE in the estimate of

the noise variance � .

all the information provided by the matrix , which translates
into more accurate results than those of the subspace-based
approach.

VIII. CONCLUSION

In this paper, the correlation matching criterion has been ap-
plied to the problem of blind channel estimation under orthog-
onal space–time block coded (OSTBC) transmissions. The pro-
posed techniques are based on the minimization of the diver-
gence between the theoretical and estimated correlation ma-
trices of the observations. In particular, we have considered the
Euclidean distance and the Kullback–Leibler divergence, which
lead, respectively, to the Euclidean (ECM) and Kullback cor-
relation matching (KCM) approaches. Interestingly, due to the
particular OSTBC structure, the solutions of both criteria can be
obtained in closed form, and the channel estimate is obtained as
the solution of an eigenvalue problem, which is formed from
the correlation matrix of the observations modified by the code
matrices and a set of weights. In general, the KCM technique,
whose weights depend on the SNR, outperforms the ECM ap-
proach, which has fixed weights. Finally, it has also been proven
that, in the low and high SNR cases, the KCM method is asymp-
totically equivalent to the ECM criterion and the relaxed blind
ML decoder, respectively.
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