
Design for Scalability in Enterprise SSDs

Arash Tavakkol†, Mohammad Arjomand†, and Hamid Sarbazi-Azad†‡

†HPCAN Lab, Computer Engineering Department, Sharif University of Technology, Tehran, Iran
‡School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

{tavakkol,arjomand}@ce.sharif.edu, azad@{sharif.edu,ipm.ir}

ABSTRACT

Solid State Drives (SSDs) have recently emerged as a high
speed random access alternative to classical magnetic disks.
To date, SSD designs have been largely based on multi-
channel bus architecture that confronts serious scalability
problems in high-end enterprise SSDs with dozens of flash
memory chips and a gigabyte host interface. This forces the
community to rapidly change the bus-based inter-flash stan-
dards to respond to ever increasing application demands. In
this paper, we first give a deep look at how different flash
parameters and SSD internal designs affect the actual per-
formance and scalability of the conventional architecture.
Our experiments show that SSD performance improvement
through either enhancing intra-chip parallelism or increas-
ing the number of flash units is limited by frequent con-
tentions occurred on the shared channels. Our discussion
will be followed up by presenting and evaluating a network-
based protocol adopted for flash communications in SSDs
that addresses design constraints of the multi-channel bus
architecture. This protocol leverages the properties of inter-
connection networks to attain a high performance SSD. Fur-
ther, we will show and discuss that using this communica-
tion paradigm not only helps to obtain better SSD backend
latency and throughput, but also to lower the variance of re-
sponse time compared to the conventional designs. In addi-
tion, greater number of flash chips can be added with much
less concerns on board-level signal integrity challenges in-
cluding channels’ maximum capacitive load, output drivers’
slew rate, and impedance control.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—mass stor-
age; D.4.2 [Operating Systems]: Storage Management—
secondary storage; B.4.3 [Input/Output and Data Com-
munications]: Interconnections—topology

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628098 .

Keywords
NAND flash memory; I/O Interface; Solid State Drive; In-
terconnection Network

1. INTRODUCTION
Enterprise applications are among the most costly work-

loads today in terms of IT infrastructure and resources,
due to the complexities involved in running these systems
and their huge storage requirements. An enterprise storage
must meet capacity, performance, and reliability require-
ments, while minimizing the cost. Therefore, today’s stor-
age systems are steadily marching towards using Solid State
Drives (SSDs), mainly because of their higher performance
and lower power consumption compared to magnetic disks.

To enhance the overall performance and capacity, SSDs
employ a multi-chip architecture where tens of flash memory
chips are used. For generic SSDs, the overall bandwidth is
usually bounded by the host interface, e.g., SCSI, PATA and
SATA. Thus, multiple flash chips in the SSD usually share
channels or buses to connect to the controller where chan-
nels are arranged in a way that their collective bandwidth
matches the host interface bandwidth [8, 30, 48]. High-end
SSDs in enterprise servers, on the other side, have a gigabyte
host interface [48]. A straightforward approach to gain this
bandwidth in the backend is to design for maximum paral-
lelism by using dedicated channels for each flash chip [31,
44]. This increases the complexity of flash controller and
needs to utilize hardware accelerators [26] or hierarchal con-
trollers [26] for high performance design. Hence, current
enterprise SSDs tend to use more channels (yet relatively
moderate values), e.g., 8 to 32 channels in PMC NVMe con-
trollers [41, 42, 43], 8 channels in Marvell 88NV9145 fam-
ily [35] and SandForce SF-2000 family [45].

In this paper, we focus on scalability analysis of the en-
terprise SSDs. Scalability in enterprise systems is usually
achieved by adding more flash memory chips to a channel
and render multiple chips busy by exploiting striping alloca-
tion [34, 48]. Despite its advantages, the scalability of this
design is in jeopardy: although the bus concept is well un-
derstood and is easy to employ, it quickly becomes a commu-
nication bottleneck in a heavily-loaded channel. Therefore,
electrical properties like slew rate and duty cycle distortion
does not allow attaching more than a few chips to a chan-
nel, for example ONFI 3.2 allows to attach up to 8 flash
units working at at maximum bandwidth of 533 MB/s [7].
As more flash chips are attached to the channel, the power
usage and latency per communication event grow due to
the larger collective capacitive load. Thus, scalability be-

comes an important concern in today’s SSDs and flash stan-
dardization work groups are steadily seeking for solutions
to enhance the properties of bus-based communication for
more and more available bandwidth. This way, from 2008,
we have seen successive introduction of the communication
standards to enhance 50 MB/s bandwidth in conventional
SDR to 533 MB/s in NV-DDR2 or Toggle DDR [5, 7]. This
transfer rate cannot be achieved easily and designers must
follow specific rules to keep good behavior in signal integrity
such as On-Die Termination (ODT), differential clocks, and
short channel wires [20, 49].

To cope with this issue, Tavakkol et al. [50] suggested
to leverage a network-based controller-to-flash communica-
tion structure. Their proposal, named as Network-on-SSD
(NoSSD), gives higher performance, larger bandwidth, more
scalability, and better reliability with least concern about
signal distribution problems. In other words, NoSSD is an
interconnection network between flashes and the controller
that pipelines the global wires, so that their electrical prop-
erties are improved and well controlled. These controlled
electrical parameters, finally, enable the use of signaling cir-
cuits that can largely reduce communication propagation
latency and increase the working frequency with much less
concerns on the signal integrity. More importantly, sharing
communication resources among many I/O requests makes
more efficient use of the resources: when one set of flash
memory chips are idle, others can continue using network re-
sources. Unfortunately, Tavakkol’s study suffers form lack of
key design considerations, especially those related to the im-
plementation details of network routers and a realistic mes-
saging protocol for a practical model of NoSSD. In this paper
and after our detailed scalability analysis, we will go over the
proper choices for NoSSD routers’ configuration along with
details of the messaging protocol to conduct flash command
execution using underlying network infrastructure.

To summarize, this paper has two novel contributions: 1)
we extensively analyze the opportunities to scale SSD stor-
age subsystem by examining effects of different flash param-
eters/structures and multi-channel architecture of SSDs. To
the best of our knowledge, such a study is not accomplished
in the past and our results will highlight the inefficiency
sources of SSD scalability. 2) The proper configuration of the
NoSSD routers is described based on board-level inter-flash
communication requirements. Different NoSSD design rules,
including packet prioritization policy, packet injection pol-
icy for controller, and controller to network communication
placement are investigated to help achieving higher perfor-
mance results. Finally, a messaging protocol is proposed to
efficiently conduct NAND flash command execution through
NoSSD. We hope that our findings help the academic and
industrial communities to revise inter-flash communications
when thinking about high performance enterprise SSDs.

2. BACKGROUND
In this section, we describe the internal architecture of a

standard enterprise SSD and summarize the structural char-
acteristics of NAND flash as storage medium.

2.1 The NAND Flash: Organization and Op-
eration

In a NAND flash, the unit of read and program (write)
operations is one page of data but latency asymmetry is ob-
served when a page is read or programmed; we can read

NAND Flash Chip

Communication
Interface

Die 1

P
la

n
e

1

P
la

n
e

2

P
la

n
e

3

P
la

n
e

4 Page 1
. . .

Page 64

Block 1

Data Reg.

Cache Reg.

Plane

FTL

Embedded
Processor

DRAM

FC
C

Address Reg.

Command Reg.
Die 2

P
la

n
e

1

P
la

n
e

2

P
la

n
e

3

P
la

n
e

4

Address Reg.

Command Reg.

Multiplexed Interface Page 1
. . .

Page 64

Block 4096

FC
C

Address Mapping
Garbage Collection
Wear Leveling

H
os

t
In

te
rf

ac
e ASIC/FPGA

Figure 1: The internal architecture of enterprise SSDs and
the structure of NAND flash memory chips.

any page in a NAND flash, but we must perform an erase
operation before programming data to a page. The erase
operation is performed at the granularity of a block consist-
ing multiple adjacent pages. Regarding bit density of a cell,
single level cell (SLC) and multi level cell (MLC) are two
types of NAND flash. The capacity of MLC flash doubles
that of SLC type, but SLC flash enjoys lower operational
latency and higher endurance.

Figure 1 shows the general organization of a flash mem-
ory chip. Within a chip, one or more dies share a single
multiplexed interface. Each die can be selected individu-
ally and execute a command independent of others, which
improves the overall throughput. Using a shared interface
by all dies leads to a reduction in I/O bus complexity, but
increases contention between requests. A die is typically
composed of two or more planes, the smallest units to serve
an I/O request. In fact, each plane has a separate wordline
for accessing the flash memory pages, which results in an
important consequence that multiple requests can be served
simultaneously in different planes. However, to this end, the
requests must adhere to the rules of multi-plane commands:
the pages executing a multi-plane read/program operation
must have the same die, block and page addresses; and the
blocks executing a multi-plane erase operation must have
the same die and block addresses. In addition to multi-plane
commands, most of NAND flash memory chips provide other
types of advanced commands to support die interleaving and
copy-back execution. Interleaved commands provide paral-
lelism within a chip, and copy-back commands enable a page
to be copied within a plane without utilizing communication
channels.

2.2 Enterprise SSD Internals
Our discussion is based on the architecture of standard

enterprise SSDs, widely used in similar studies [17, 18, 38,
44, 48]. Variations of this architecture have been adopted in
modern high-end enterprise SSDs, e.g., Fusion-io ioDrive2
Duo [18] and Intel910 series [26]. In enterprise SSDs, PCI
Express is usually used as the host interface, where links
provide a total bandwidth of 3.2-4 GB/s to exploit tens of
flash chips in parallel [17, 48].

The high-level view of a multi-channel enterprise SSD is
shown in Figure 1. The SSD uses a FPGA or ASIC be-
tween the PCI Express interface and flash channels to im-
plement flash translation layer (FTL) and flash channel con-
trollers (FCCs). FCCs are independently integrated into
the FPGA/ASIC for each channel to maximize parallelism.
Each FCC consists of a control logic, two independent buffers
for read and write, and a NAND interface. There are usually
tens of flash memory chips on the board and the controller is
equipped with a large amount of RAM to keep FTL mapping

information or behave as a cache buffer. FTL is responsible
for following tasks:
Address mapping. To emulate disk functionalities, FTL
translates the host logical page addresses to internal physi-
cal page addresses through an address mapping policy.
Garbage collection (GC). The erase-before-write prop-
erty and block-level erasure hinder in-place update of the
page data, and hence the SSD controller uses a page inval-
idation mechanism in conjunction with an out-of-place up-
date policy. This policy necessitates erase operation when
device runs out of clean pages. A process called garbage col-
lector is then triggered which selects a candidate block and
rewrites its valid page into a free block and finally erases it.
The garbage collection is very costly due to the required pro-
gram/erase operations. To remedy this problem, FTL tries
to keep user-visible capacity to a fraction of total physical
pages, called over-provisioning, below which garbage collec-
tion is performed aggressively. The over-provisioning is typ-
ically expressed in terms of spare factor which is the ratio
of added space to the total storage space [54]. Beside this
mechanism, modern FTLs may trigger garbage collection
process sooner, when SSD is idle and the number of free
pages in a flash chip is low (known as background GC).
Wear leveling. Wear-out is one of the most oft-cited con-
cerns about flash memory which causes physical damages to
the cells and is not reversible. The datasheet of a flash chip
reports a number of 1–100K erase cycles a block can undergo
before it becomes unreliable. To this end, FTLs usually use
caching, rescheduling, and uniformly distributing the writes
to mitigate quick wear-out [11, 12].

3. EXPERIMENTAL METHODOLOGY
We perform discrete-event trace-driven simulation of en-

terprise SSDs with different communication models using
SSDsim [24] augmented with Xmulator [4] interconnection
network simulator. Although there are few famous SSD
simulators, such as Microsoft SSD model for DiskSim [9],
none of them provide a reasonable implementation of the
controller-to-flash-chips communication model. However, SS-
DSim precisely implements ONFI signaling model and its
accuracy has been verified using hardware prototyping [24].
Figure 2 depicts a logical view of our simulation method-
ology. SSDsim gets disk traces as the input workload and
is capable of simulating all components shown in Figure 1,
including FTL functionsalities and buffer management al-
gorithms at FCC. Once a request is scheduled at a FCC,
Xmulator is invoked. Xmulator is a parameterized intercon-
nection network simulator that reports network latency and
throughput estimations. Finally, the estimated communica-
tion latency and operation latency are sent back to SSDsim
for future scheduling.
Enterprise SSD System. We model 1–2 TB enterprise
SSDs detailed in Table 1, each with a spare factor of 30% 1.
As a high-end storage system, the configurations considered
here have 8 or 4 independent channels each supporting 8 or
16 flash chips, respectively.
Controller Model. The simulated SSD controller runs a
fully dynamic page level FTL [19], where a logical page ad-
dress is not translated to a pre-determined plane by default.

1In lifetime-critical enterprise applications, higher spare fac-
tor limits are desired. For instance, Intel 910 series has a
raw capacity of 1792 GB and user visible capacity of 800 GB
(55% spare factor).

Workload	Requests Transfer	info
&

Command	Info

Delaytransfer+Delayexecution
Command

InfoDelayExecution

XmulatorSSDsim
Host	Interface
FTL
FCC,
DRAM,	...

Communication	Model

Statistics
Flash

Chip	Model

Figure 2: Simulation methodology.

Table 1: Main characteristics of simulated SSDs.

Multi channel SSD
8 Channels, 8 Flash Chips per Channel, Channel Width = 8 bit,
NAND Interface Transfer Delay = 5 ns (ONFI NV-DDR), Page Allo-
cation Strategy = Dynamic, Spare Factor = 30%

NAND flash (Micron [37])
Page Size = 4 kB, Metadata Size = 224 B, Block Size = 128
pages, 2 Planes per Die, 8 Dies per Flash Chip, Flash Chip Ca-
pacity = 32 GB, Read Latency = 35 µs, Program Latency=350 µs,
Erase Latency=1.5 ms

Instead, FTL assigns a logical page to any free physical page
of the entire SSD in a round-robin fashion, balancing the
load and better exploiting the parallelism of the SSD ar-
chitecture. A dynamic mapping strategy provides superior
performance improvement in comparison with static map-
ping strategies [51]. Besides, FTL triggers the background
GC process when the ratio of free pages within a plane drops
below 40%. For the flash chips, we use the timing and or-
ganization characteristics of a real 256 Gbit (32 GB) SLC
NAND product [37], summarized in Table 1.
Shared Channel Model.To exactly model the timing and
strength of the NAND drivers located at FCCs of the shared
channels, we use the nominal resistance and capacitance op-
tions of the considered flash product (given in [37]).
Workloads. Table 2 shows the selected real workloads
from standard benchmark suits, reflecting high-end enter-
prise environments. TPCC [52] and TPCE [53] workloads
are two groups of benchmark programs reflecting On-Line
Transaction Processing (OLTP) applications, collected by
Microsoft [1]. Two other OLTP traces, namely Financial1
and Financial2, were collected at two large financial institu-
tions [3]. Exchange workload was collected on a Microsoft
Exchange 2007 SP1 mail server for 5000 corporate users [1].
MSN traces were collected on an enterprise file server [2].
MSRC workloads were collected at Microsoft Research Cam-
bridge data center servers previously characterized in [39].
WebSearch was collected from a popular internet search en-
gine [3]. We also use a set of synthetic traces created by
DiskSim’s trace generator [9], to provide better understand-
ing of the proposed communication infrastructure, .
Metrics. Our main performance metrics for the enterprise
SSD evaluations are average response time and maximum
IOPS. The response time is defined as the time elapsed from
the arrival of a host I/O request until the response is sent
back via SSD’s host interface. For maximum IOPS calcula-
tion, we count the number of accomplished I/O operations
in the unit of time when SSD is under full stress condition.
To reach this condition, we ignore the inter-arrival time of
I/O events and successively service them when there is at
least one free slot in the host interface queue.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1*

usr-0
usr-1*

usr-2*

web
stg-0

stg-1*

prxy-0

prxy-1

No
rm

ali
ze

d M
ax

im
um

 IO
PS

2KB 4KB 8KB 16KB

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1*

usr-0
usr-1*

usr-2*

web
stg-0

stg-1*

prxy-0

prxy-1

No
rm

ali
ze

d R
es

po
ns

e T
im

e

2KB 4KB 8KB 16KB

Figure 3: SSD performance vs. page size for different workloads. The results are normalized to those of 1 kB page size,
except for workloads tagged with star (*) that saturate SSD in small page sizes because of their high rate of I/O requests (cf.
Table 2). The figure shows how the employment of page size larger than 4 kB degrades the overall performance of SSD.

Table 2: Characteristics of the evaluated I/O workloads.

Trace Read Req. Sizea Inter Workload Description

Ratio Mean/Mode Arrv.b

tpcc 0.67 8.2 / 8 0.29 Microsoft TPC-C (OLTP)
tpce 0.94 8.1 / 8 0.45 Microsoft TPC-E (OLTP)
fin1 0.23 3.4 / 3 8.19 Financial1 (OLTP)
fin2 0.82 2.4 / 0.5 11.08 Financial2 (OLTP)
exch 0.28 15.9 / 8 1.05 Microsoft Exchange server
msnfs 0.67 10.1 / 8 0.51 MSN storage file sever
ts 0.18 9 / 4 387.95 Terminal server at MSRC
src-0 0.11 7.2 / 4 448.63 Source control 2-0 at MSRC
src-1 0.98 59.3 / 64 1044.68 Source control 2-1 at MSRC
src-2 0.3 56.3 / 64 547.66 Source control 2-2 at MSRC
mds-0 0.12 9.2 / 4 499.41 Media server 0 at MSRC
mds-1 0.93 56.8 / 64 366.46 Media server 1 at MSRC
usr-0 0.4 22.7 / 4 270.25 User home dirs 0 at MSRC
usr-1 0.91 49.5 / 64 13.36 User home dirs 1 at MSRC
usr-2 0.81 43.8 / 64 57.22 User home dirs 2 at MSRC
web 0.99 15.2 / 8 2.99 WebSearch
stg-0 0.64 40.8 / 64 297.79 Web staging 0 at MSRC
stg-1 0.15 11.6 / 4 275.27 Web staging 1 at MSRC
prxy-0 0.03 4.8 / 1 48.16 Web proxy 0 at MSRC
prxy-1 0.65 12.6 / 8 3.58 Web proxy 1 at MSRC,
synth 0,0.5,1.0 0.5 to 1024 1.00 Synthetic, from DiskSim
a Kilobytes b Milliseconds

4. MULTI-CHANNEL SSD SCALABILITY
During last two decades, the improvements in flash mem-

ory technology have led to different effects on storage de-
vices: bit density increases, but other important features
including performance, lifetime, and energy are drastically
reduced. On the other hand, the SSD vendors strive to
provide higher capacity products while keeping their perfor-
mance at a reasonable level [20, 49]. Accordingly, scaling
the SSD capacity necessitates proper scaling of I/O perfor-
mance to keep flash memory utilization at the highest level.
SSD scalability is always a matter of debate and recently
attracted interests in academic and industry [14, 20, 21, 49].

The SSD storage hierarchy consists of four levels: 1) plane,
2) die, 3) chip, and 4) channel, and any attempt to scale SSD
should target increasing capacity at one or more of them. In
this section, we discuss SSD scalability behavior with respect
to increasing storage capacity at each level. To elucidate
how much performance improvement is due to the higher
capacity or parallelism and how much is the contribution of
process technology, we assume a fixed feature size (20 nm)
and focus on SSD scalability.

4.1 Increasing Plane Capacity
The finest way to increase plane capacity is page size

expansion by embedding more memory cells or increasing

bit storage density of each cell. NAND flash is subject to
wear-out failure and requires some types of ECCs to achieve
a certain level of reliability. Thus, as the page size in-
creases, a strong ECC is required that imposes consider-
able latency overheads to read and program operations. On
the other side, increasing bit density to two or more bits
per cell significantly reduces read/program performance be-
cause of slow circuit-level mechanisms required for correct
detection/adjustment of memory cell’s voltage level. For in-
stance, Grupp et al. showed that density increase from 1 to
3 bits/cell will result in a performance degradation factor of
3–10 for I/O requests [21].

At architecture level, page size expansion has advantages
and disadvantages. Larger page size results in lower number
of executed operations, as on each access a large amount
of data chunks are brought in or out. However, this per-
formance enhancement is saturating and will be increased
up to a point that the unit of host I/O requests equals the
NAND flash memory page size. Increasing page size be-
yond this threshold is not beneficial and even can result in
declined performance due to the partially-updated pages.
Partial updates require read-modify-write operations (read-
ing the stored page content, transferring to the controller,
and merging with the updated data) and increase the chip-
waiting time as the controller should wait for a busy chip
to become idle in order to read a page. In addition to the
above disadvantage, the transfer time of page data increases
proportional to the page size. For read operations, this is
extremely challenging since transfer time is close to the com-
mand execution time and this overhead may diminish the
savings in number of executed commands [49].

Figure 3 illustrates the effects of page size on the perfor-
mance of a SSD with configuration mentioned in Section 3.
The results are normalized to those of 1 kB page size, ex-
cept for the workloads where internal SSD traffic load sat-
urates for small page sizes; in these cases (marked with *),
the smallest page size (>1 kB) with unsaturated results is
used for normalization. In general, the maximum SSD IOPS
stops increasing at 4 kB page size and then starts decreasing
owing to higher transfer time of a huge page and frequent
partial updates. To have a better understanding, Table 3
reports the ratio of partial updates, average read/program
operation count per I/O request and average internal trans-
fer size for different pages sizes. The results confirm the
increasing/decreasing trend of IOPS in Figure 3. We see
that ratio of partial updates and resultant average transfer
size sharply increase as page size exceeds 4 kB. So, the per-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1*

usr-0
usr-1*

usr-2*

web
stg-0

stg-1*

prxy-0

prxy-1

No
rm

ali
ze

d M
ax

im
um

 IO
PS

2Planes 4Planes 6Planes 8Planes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1*

usr-0
usr-1*

usr-2*

web
stg-0

stg-1*

prxy-0

prxy-1

No
rm

ali
ze

d R
es

po
ns

e T
im

e

2Planes 4Planes 6Planes 8Planes

Figure 4: SSD performance vs. number of planes per die for different workloads. While the IOPS of target SSD remains
roughly constant, response time increases in 6 or 8 planes per die.

formance improvement due to reduction in the number of
I/O operations is not large enough to mitigate the perfor-
mance loss of the increased partial updates and transfer size.
We observed a similar behavior for SSD’s response time, and
depending on the application, the response time steadily in-
creases from 2 kB page size to 4 kB, 8 kB or 16 kB. In sum,
scaling SSD’s capacity at finest granularity (page size) seems
to result in lower I/O traffic, but significantly suffers from
partial update and transfer size overheads.

We can also enlarge plane size by embedding more data
pages. As a plane is the smallest unit to process a page
request and has no means for internal parallelism, adding
pages to a plane gives no performance gain if it does not
increase bit-line latency. Therefore, this approach does not
brings better capacity and performance for scalable design.

4.2 Increasing Die Capacity
We can increase SSD capacity by adding more planes to a

die and expect that plane-level parallelism helps us to stripe
requests for better performance. In theory this is correct,
but extreme use of plane-level parallelism confronts seri-
ous limitations in practice: 1) As described in Section 2,
plane-level commands have to be applied at the same page
address of planes within a die. Then, finding requests in
the controller queues that can be handled at same addresses
of planes in a die is not always successful; 2) The alloca-
tion scheme has significant impact on the chance of finding
multi-plane commands. Hu et al. [25] showed that the static
allocation with channels/dies striping in priority and the dy-
namic allocation give best performance results for current
SSDs. However, both schemes reduce the chance of execut-
ing multi-plane commands. Indeed, they empirically showed
that when dynamic allocation scheme is employed in a multi-
channel SSD, multi-plane commands are not required since
the exploration of channel-level and chip-level parallelism
alone can deal with majority of the requests. Then, reorder-
ing, rescheduling and classification algorithms, like PAQ [27]
or the proposed schemes in [10, 40], have a very low chance
to find multi-plane commands.

To explore the effect of plane-level parallelism on SSD
performance, we assumed a maximum of 8 planes per die
and conducted simulations for a SSD with configuration
in Section 3. The experiments are for dynamic allocation
scheme [25] and PAQ scheduling [27]. Figure 4 demonstrates
the maximum IOPS and average response time for evaluated
workloads normalized to the configuration with 1 plane per
die. The results confirm that adding planes to a die may im-
prove IOPS since the average number of executed operations
per die can be increased through multi-plane commands.

Table 3: The effect of pages size increase on the executed
commands in SSD evaluated in Figure 3.

Page Size (kB) 1 2 4 8 16
Partial Update Ratio 0.02 0.06 0.09 0.21 0.30
ReadOp/Req.a 16.1 8.4 4.4 2.7 2.1
ProgramOp/Req.a 21.6 11.1 5.8 3.3 2.4

Xfer/Req. (kB)b 37.7 39.0 40.8 48.0 72.0
a Read/program operation count per I/O request
b Internal transfer size per I/O request (kB)

Nevertheless, the improvement rate is almost negligible for
half of the workloads and it usually remains unchanged for
the die size of ≥ 4 planes. Figure 4 also shows that im-
proving plane-level parallelism generally increases the aver-
age response time. Even though there are exceptions, this
trend can be justified by the interactions between dynamic
page allocation scheme and multi-plane command execu-
tion [25]. We conclude that having 2 or 4 planes per die
is the most proper design choice for majority of workloads,
beyond which performance can be degraded substantially.

Based on the above discussions on capacity increment at
plane-level and die-level, we should say that intra-die scaling
approaches are all limited by performance requirements of
enterprise SSDs. Accordingly, the inevitable solution is to
employ more dies or chips to increase capacity while fulfilling
performance demands through die interleaving, flash chip
pipelining, and channel striping by proper page allocation
strategies [28, 49]. State-of-the-art enterprise SSD products
follow the same approach to achieve true scalability [18, 26].

4.3 Increasing Flash Chip Capacity
One may consider increasing chip capacity by adding more

dies and hence improving the chance for interleaving com-
mand execution to concurrently read, program, and erase
pages and blocks of different dies. Moreover, interleaving
provides an opportunity to overlap data transfer to a die
with command execution of other dies within the same chip.
Figure 5 shows this fact by giving the percentage of time that
a flash chip spends in either of the following four states:
1. Exclusive transfer: one die is transferring data while oth-
ers are waiting for data transfer or are idle.

2. Overlapped transfer and command execution: some dies
are executing command and some are transferring data.
The remaining dies are idle.

3. Exclusive command execution: one or multiple dies are
executing commands while others (if any) are idle.

4. Idle: all dies are idle.

0%

20%

40%

60%

80%

100%

12468

Av
er

ag
e P

er
ce

nt
 of

 T
im

e

tpcc
tpce

fin1
fin2

exch
m
snfs

ts src-0
src-1

src-2
m
ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

No
rm

ali
ze

d M
ax

im
um

 IO
PS

tpcc
tpce

fin1
fin2

Exclusive Transfer
Overlapped Transfer & Execution

Exclusive Execution

Figure 5: Average percent of time that each flash chip
spends in data transfer or execution states. For each work-
load, number of dies per chip is set to 1, 2, 4, 6, and 8 from
left to right.

In this experiment, we use the SSD configuration in Ta-
ble 3 and varying number of dies per flash chip from 1 to 8.
The figure shows that the time percentage that a flash chip
exclusively transfers data to/from a die remains nearly con-
stant regardless of the number of dies and workload. This
is because of the technique used to conduct die interleaved
commands which issues a command when all dies within the
flash chip are idle [25]. In addition, data or command in-
formation transfer is triggered at the same time but in a
sequential order. Data transfer and command execution of
multiple dies within a flash chip can be more overlapped as
die-level parallelism increases. Nevertheless, it stops after
some level of parallelism above which it is not practically
possible to improve chance of overlapping. The reason is
that dies within a chip maximally utilize the available band-
width for the chip and percentage of time, in which at least
one die is transferring data, becomes nearly fixed (exclusive
transfer + overlapped transfer and command execution in
Figure 5).

Therefore the overall disk throughput is expected to im-
prove as the die-level parallelism increases, but it stops im-
proving after a certain level of parallelism. Figure 6 reports
the maximum IOPS and average response time for different
number of dies per flash chip. The results are given for 2 dies
to 8 dies per chip configurations, normalized to the results
for the configuration with 1 die. We remark that dynamic
allocation strategy prefers to execute interleaved commands
for higher die utilization, leading to higher throughput but
in cost of worse response time [25]. Then, increasing flash
chip capacity by means of excessive die interleaving is not
a proper solution and is inherently limited by the channel
bandwidth.

4.4 Increasing Number of Flash Chips
The primary option to increase SSD’s capacity is to em-

ploy more flash memory chips. Today’s state-of-the-art en-
terprise SSDs consist of more than 30 flash memory chips
arranged on single-layer or multi-layer boards [18, 23, 26].
In a multi-channel configuration, more flash memory chips
can be added either by enhancing channel-level parallelism
(i.e., more shared channels) or by increasing chip-level par-
allelism (more flash chips sharing a channel). Increasing
channel-level parallelism can be used to maximize indepen-
dent connections to the controller, thereby minimizing the
total cost of data and command transfer, performancewise.
As stated in Section 2.2, FCCs of enterprise SSDs are usually
dedicated to channels and are all embedded into the same
FPGA/ASIC controller chip. Therefore, adding more chan-

nels necessitates rethinking of the controller logic and pin
assignment that is costly. This is why 8-channel controller
is a common configuration in many current products [35, 45]
and adding more channels requires some hardware acceler-
ators or special design techniques to drive huge number of
resources [42, 43].

Added flash chips can be assigned to channels and ex-
pect that chip-level parallelism helps us to freely distribute
read/program operations. The greater the number of con-
nected flash chips to a shared channel, the higher capacitive
load on the bus and lower performance. So, SSD standards
like ONFI are always putting strict constraints on maxi-
mum load of a channel in order to deliver highest bandwidth.
For example, ONFI 3.2 [7] allows maximum capacitance of
32.7 pF for I/O pins to guarantee 533 MB/s transfer rate
when 8 flash chips are connected to a channel.

4.5 Summary
Despite the fact that increasing the number of functional

units (chips or dies) is an inevitable approach to achieve ca-
pacity scaling, our analysis in last two subsections indicate
that the limited bandwidth of channels is a potential show-
stopper to attain scalability goals. To this end, researchers
and manufacturers look for flexible and high performance
ways to cope with this problem. Some vendors such as In-
tel [26] and Fusion-io [18] use a high-level solution in which a
set of small-sized SSD modules in conjunction with a front-
end request distributor are used to produce a high-capacity
product. The front-end chip may be a RAID controller or
just a simple bridge. The 800 GB version of Intel 910 Se-
ries is a well-known example in this line which constitutes
an on-chip PCIe-to-SAS bridge together with four 200 GB
SSD modules each containing its own ASIC controller [26].
Even though such solution keeps the flash channel interface
unchanged, it dramatically increases the cost of SSD con-
troller due to the additional front-end logic and per module
controller. Moreover, the number of failure points are in-
creased in SSD and a single failure of a small-sized module
brings the whole array down. Some vendors pay the extra
cost and capacity penalties of RAID1 or RAID5 to alleviate
this problem while others provide each module as an inde-
pendent disk, i.e., there is no a single disk and customer
must relay on software RAID techniques to achieve a single
volume.

On the contrary, changing the flash communication inter-
face may be a reasonable solution to alleviate bandwidth
constraints of multi-channel bus structure. Using a shared
and segmented network communication structure is a straight-
forward and promising alternative. For instance, HLNAND
introduced a fully-packetized command and address format
to enable connecting flash chips to the controller through a
daisy-ring topology [46] or hierarchical ring topology [20].
Recently, Tavakkol et al. proposed a more generic and reg-
ular network-based design paradigm, namely Network-on-
SSD (NoSSD) [50], which showed significant performance
over conventional designs. In a similar manner, we suggest
to use such a network-based solution and extend the pre-
liminary NoSSD model for building large-scale SSDs. In the
next section, we go over the details of NoSSD architecture
and support it with messaging and communication protocols
for inter-flash SSD communications.

 0

 0.5

 1

 1.5

 2

 2.5

 3

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1*

usr-0
usr-1*

usr-2*

web
stg-0

stg-1*

prxy-0

prxy-1

No
rm

ali
ze

d M
ax

im
um

 IO
PS

2 Dies 4 Dies 6 Dies 8 Dies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1*

usr-0
usr-1*

usr-2*

web
stg-0

stg-1*

prxy-0

prxy-1

No
rm

ali
ze

d R
es

po
ns

e T
im

e

2 Dies 4 Dies 6 Dies 8 Dies

Figure 6: SSD performance vs. number of dies per flash chip for different workloads. While the IOPS remains a constant at
highly-loaded channels, response time drastically increases (between 10% to 40% for various configurations).

5. INTER-FLASH NETWORKING
Network-on-SSD consists of routing nodes and communi-

cation links to connect adjacent flash chips following some
specific topology. NoSSD is inspired by the proven concepts
and techniques from on-chip and off-chip interconnection
networks in multiprocessors [15]. NoSSD is different from
layered communication abstraction models and is orthog-
onal to flash-related command execution and communica-
tion decoupling techniques. In this section, we first present
a component-based view of NoSSD and introduce the ba-
sic building blocks of a typical NoSSD. Then, we look at
system-level architectural issues relevant to NoSSD design
and enterprise storage.

5.1 A Simple NoSSD Example
Figure 7 shows a sample NoSSD structured as a grid sup-

porting controller-to-flash-chips communications. Instead of
the shared and dedicated channels, a more general scheme
is adopted, employing a grid of routing elements spread out
among flash memory chips, interconnected by communica-
tion links. At the first glance, a tree-like network seems
great due to higher traffic rate at the controller side. How-
ever, this topology provides less inter-node route parallelism
compared to grid topology in addition to other design con-
straints that lead us to use grid topology: 1) in dynamic
page mapping, where a logical page address has the highest
freedom to be mapped at any flash chip/die/plane, garbage
collection needs page movement between flash chips. The
grid topology greatly helps in this issue by providing some
direct paths between chips that does not necessarily pass
through FCC; 2) special FCC to network connection meth-
ods (see Section 5.4), that decrease the average FCC to flash
chips distance, best suite the grid topology; 3) FCC can use
higher number of regularly-patterned connections to the net-
work since the pin-out/logic complexity of NoSSD is greatly
simplified in grid network compared to bus and tree.

We adopt a simplified perspective where NoSSD contains
the following fundamental components.
Flash memory network adapters. They implement the
interface by which a flash memory chip connects to NoSSD.
Due to structural differences between network transmission
unit (i.e., packet) and NAND flash memory command ex-
ecution data (i.e., page or command), the network adapter
should manipulate and arrange data for both sides. A good
network adapter must provide a low latency path to the net-
work while incurring no cost to commodity NAND flash.
Routers. They route data based on a chosen protocol and
flow control scheme. Details of the input-buffered router el-

FTL

Embedded
Processor

DRAM

 Address Mapping
 Garbage Collection
 Wear Leveling
 Packetization

H
o

st
 I

n
te

rf
a

ce ASIC/FPGA

Internal
Flash

Memory
Hierarchy

Input Buffer
Routing Logic
Channel Arbiter
Flow Control
Crossbar Switch

EJE

INJ

EJE: Ejection ChannelINJ: Injection Channel

F
la

sh
 C

o
n

tr
o

l
L

o
g

ic

N
et

w
o

rk
 A

d
a

b
te

r

F
C

C
F

C
C

F
C

C

4

4

Figure 7: Topological illustration of NoSSD.

4 bits4 bits

8 bits
1

2

3

5

512

. . .

4

4
bits

4
bits

8
bits

1

2
3

5

8

. . .

4
Command

AddressCommand
Address

Source
Address

Sequence No
Packet TypeDie ID

Destination Address

4 bits4 bits

8 bits

1

2
3
4 Source Address

Sequence No
Packet TypeDie ID

Destination Address

Destination Address

Payload (Address, Data, Meta)

Payload (Address, Data, Meta)

Source Address

Sequence No

Packet TypeDie ID
4 bits4 bits

8 bits
1

2

3

4

Destination Address

Source Address

Packet TypeDie ID
4 bits4 bits

8 bits
1

2

3

5

512

. . .

4

Destination Address

Command Address

Command Address

Source Address

Packet TypeDie ID

(a) 4 flits

4 bits4 bits

8 bits
1

2

3

5

512

. . .

4

4
bits

4
bits

8
bits

1

2
3

5

8

. . .

4
Command

AddressCommand
Address

Source
Address

Sequence No
Packet TypeDie ID

Destination Address

4 bits4 bits

8 bits

1

2
3
4 Source Address

Sequence No
Packet TypeDie ID

Destination Address

Destination Address

Payload (Address, Data, Meta)

Payload (Address, Data, Meta)

Source Address

Sequence No

Packet TypeDie ID
4 bits4 bits

8 bits
1

2

3

4

Destination Address

Source Address

Packet TypeDie ID
4 bits4 bits

8 bits
1

2

3

5

8

. . .

4

Destination Address

Command Address

Command Address

Source Address

Packet TypeDie ID

(b) 8 flits

4 bits4 bits

8 bits
1

2

3

5

512

. . .

4

4
bits

4
bits

8
bits

1

2
3

5

8

. . .

4
Command

AddressCommand
Address

Source
Address

Sequence No
Packet TypeDie ID

Destination Address

4 bits4 bits

8 bits

1

2
3
4 Source Address

Sequence No
Packet TypeDie ID

Destination Address

Destination Address

Payload (Address, Data, Meta)

Payload (Address, Data, Meta)

Source Address

Sequence No

Packet TypeDie ID
4 bits4 bits

8 bits
1

2

3

4

Destination Address

Source Address

Packet TypeDie ID
4 bits4 bits

8 bits
1

2

3

5

512

. . .

4

Destination Address

Command Address

Command Address

Source Address

Packet TypeDie ID

(c) 512 flits

Figure 8: Packet format for different packet types in Table 4.

ement alongside flash memory logic are shown in Figure 7.
We suggest to use 4 injection/ejection channels per router
to reduce waiting time of the sent/arrived packets.
Links. They connect the routers and flash controller and
provide the raw bandwidth. To maintain the wiring costs
low and alleviate pin-out constraint, links are bidirectional.
FCC (redesigned). Shared-buffer interfaces are used to
connect SSD controller to NoSSD. These interfaces are tuned
to the messaging protocol and flow control scheme. In fact,
FCC simply emulates network adapter functionalities.

Figure 7 shows a high-level view of the NoSSD. To realize
NoSSD, detailed messaging protocol, flow control and routing
mechanism and controller placement must be considered.

5.2 Packet Format and Messaging Protocol
As described above, the network adapter decouples the

flash chip and the controller from NoSSD. In other words,
network adapter handles encapsulation of NAND flash mes-
sages, generated by either the controller or flash chips, for
the routing strategy. A NAND flash message consists of
command, data, and metadata that is broken into packets
for transmission over NoSSD. At the lowest transmission
level (i.e., link), the basic datagram are flits (atomic flow
control units forming a packet). In NoSSD, we assume that
flit is the minimum size of datagram that can be transmit-
ted in one link transaction; it is set to 8 bits for our NoSSD
model in Section 6.

Figure 8 shows the packet formats of NoSSD consisting of

Erase

trouting
Inject Packet 1

Erase Ack trouting
PCKDPK DPK

Erase Request

Inject Packet 1Message Creation PCK

Program

trouting
Inject Packet 9Inject Packet 1

Program Request trouting
PCK DPKDPK

Program Ack

Inject Packet 1Message Creation PCK

Read

trouting
Read Command Execution Inject Packet 9Inject Packet 1

Read Response trouting
PCKDPK DPK

Read Request

Inject Packet 1Message Creation PCK

Program Command Execution

Erase Command Execution

PCK: Packetization DPK: Depacketization

Figure 9: NoSSD messaging protocol for basic NAND flash operations.

Table 4: Binary encoding and length of packet types. The
reserved binary codes are for advanced commands.

Type Code Len. Type Code Len.
Read Req. 0000 8 Erase Req. 0100 8
Read Resp. 0001 512 Erase Ack. 0101 4
Program Req. 0010 512 Reserved 1xxx x
Program Ack. 0011 4

header flits followed by payloads. The header part includes
source and destination addresses and packet sequence num-
ber. Two additional 4-bit units are used to identify the type
of a packet and ID number of the target die. The binary
encoding of the packet types is presented in Table 4 based
on which packet length is also determined. Each packet be-
longing to the same message has the same ID number to
differentiate it from other packets, when it reaches the con-
troller or flash chips. Upon receiving packets at the destina-
tion, the network adapter uses packet sequence number to
depacketize the received command or data.

Figure 9 illustrates the messaging protocol to conduct ba-
sic command execution of the flash chip. To initiate a read
operation, the controller encapsulates the command and tar-
get page address into a message which is then packetized
to a single 8-flit Read Request packet (Figure 8b). Hav-
ing the read command executed, the flash chip produces
a message containing the data and metadata of the read
page. Assuming 4 kB page and 224 B metadata, as con-
sidered in Section 3, this message is sent to the controller
through nine 512-flit Read Response packets (Figure 8c). To
issue a program operation, on the other hand, the controller
generates a message, containing the page address, data, and
metadata, that is broken into nine 512-flit Program Request
packets. Upon finishing program command execution, the
target flash chip generates a short 4-flit Program Ack ac-
knowledge packet (Figure 8a). A similar mechanism is used
during erase operation by a pair of Erase Request and Erase
Ack packets.

5.3 Router Organization and Functionalities
In this section, we describe the router organization of

NoSSD and its corresponding functionalities.
NoSSD Router. Figure 7 clearly specifies the major com-
ponents of a router in NoSSD including buffers, crossbar
switch, routing and arbitration unit, and link controller.
The switch connects the input buffers to output ports, while
routing and arbitration unit implements the algorithm dic-
tating these connections. Moreover, the routing logic is sep-
arately implemented for each input port; so, it can simulta-

neously forward maximum number of flits per input/output
switching pairs to reduce routing delay and enhance commu-
nication bandwidth. Based on this model, NoSSD routers
use a pipelined synchronous architecture while intra-router
data transfer is handled asynchronously using the link con-
troller.
Wormhole NoSSD. In this work, NoSSD utilizes worm-
hole switching mechanism merely for transport of data, and
the routing mechanism for determining the path of data
transport. NoSSD guarantees lossless packet delivery using
wormhole switching which prevents buffer overflow at in-
put/output ports [15]. Wormhole combines packet switching
with the data streaming quality of channel pipeline commu-
nication to attain a minimal packet latency. At each hop,
router looks at the header to determine the proper outpot
port and immediately forwards it; subsequent flits are for-
warded as they arrive. This causes the packet to experience
an extremely reduced amount of network transfer latency
and, as a consequence, the overall NoSSD performance is
improved. When the path is determined, ahead of crossbar
switch, each flit has to wait for availability of free slots in
the next hop buffer and then preempts output channel via
arbitration. At last, flits are transmitted over physical links.
When header reaches the destination, the local ejection port
is allocated for flit-by-flit delivery of the packet to network
adapter.
ON/OFF Flow Control in NoSSD Routers. To ensure
a correct and lossless operation, NoSSD utilizes ON/OFF
wormhole flow control mechanism where each downstream
router uses a status signal to inform the upstream side about
the availability of free buffer slots. While status signal is ON
and there are flits waiting for dispatch, the upstream router
keeps on flit transmission. However, it stops sending flits
upon status turn off since buffer slot shortage will cause
flit loss on the downstream side. In practice, this signal is
turned off when the number of free slots falls below a pre-
determined threshold value. This value should be chosen
to guarantee storage of on-the-fly flits while signal is prop-
agated back to the upstream side. Consequently, there is a
lower limit for the minimum buffer size of each input port
that must be considered during NoSSD design. Regarding
the router model in Section 6, the minimum buffer size is 10
flits based on the rules given in [15].

NoSSD uses bidirectional channels to alleviate pin-out
constraints on both sides of FCC and flash chips. A channel
demands two ON/OFF signals for each direction and a token
signal, namely Transfer Token, is shared between adjacent
routers to manage channel accesses and avoid contentions.
One side is allowed to transfer when the token signal is low

while other side sends flits when Transfer Token is high.
Upon finishing flit transmission, the sender inverts the to-
ken value to grant access permission to the opposite side.

The ON/OFF flow control and wormhole switching guar-
antee in-order delivery of flits within a packet. However,
multi-path and prioritized routing, described in section 5.4,
may cause out-of-order delivery of the packets within a mes-
sage. Nonetheless, the packet sequence number can be sim-
ply used for accurate recovery of the original message.

5.4 NoSSD Design Rules for High Performance
SSDs

Priority-based Transmission. Performance of NoSSD
may suffer from long transmission latency of Read Response
and Write Request packets. In fact, in wormhole switch-
ing, a stalled long packet may cause serious side effects on
the transmission latency of other packets due to blocking
propagation.

To mitigate this shortcoming, NoSSD routers exploit a
packet prioritization scheme for arbitration on the accesses
to output channels. To this end, router micro-architecture is
slightly modified in order to alter the normal FIFO arbitra-
tion policy and give higher priority to some packets (based
on some rules). To explain these rules, we classify packets
into two groups: small packets including Read Request, Pro-
gram Ack, Erase Request and Erase Ack, and large packets
including Read Response and Program Request packets.

Rule 1. Small packets are always handled first. Fol-
lowing this policy, transfer delay of small packets is reduced
but waiting time of large packets is increased. We expect
that the performance improvement achieved by accelerating
the transmission of small packets is large enough to com-
pensate for the latency loss of large packets. This rule does
not result in starvation for large packets since generation of
small packets always depends on NAND flash operation ex-
ecution; hence, generation rate of a burst of small packets is
predictably low.

Rule 2. Transmitting a sequence of large packets
are prioritized. When NoSSD uses XY routing, Read Re-
sponse or Program Request packets of the same message are
always routed on the same path. Therefore, if a large packet
is granted to use a channel, we can keep it for another up-
coming packet (that will be received at the same port and
with same die ID) to be transmitted immediately. Therefore,
read/program data will be always transmitted in chunks that
improve response time. This approach generally differs from
circuit switching since large packets may stall at intermedi-
ate routers when there are many requests in the network.

Traffic-Aware Packet Injection. On write transac-
tions, FTL triggers an allocation process to choose free pages
for data storage. Static allocation tries to uniformly dis-
tribute page writes among flash chips following a predeter-
mined mapping rule; that is target flash chip, die, and plane
address is determined based on logical page address. Dy-
namic allocation, on the other hand, assigns pages dynami-
cally by considering different factors such as idle/busy state
of the channels and flash chips and priority order of paral-
lelism. At the first step, FTL searches for a free physical
channel based on round-robin approach. Next, within the
allocated channel, it assigns a free flash chip and then al-
locates die and plane using the same round-robin method.
Although dynamic allocation provides better performance,
it suffers from degraded random read latency [24]. Actually,

FC
C

FC
C

FC
C

FC
C

FC
C

FC
C

FC
C

FC
C

(a) One Sided

FC
C

FC
C

FC
C

FC
C

FC
C

FC
C

FC
C

FC
C

(b) All Sided

Figure 10: One- vs. all-sided FCC-to-NoSSD connections.

allocations considering write performance and cell wearout
result in a non-uniform distribution of read operations that
may not be tolerable. To relieve read latency degradation,
the controller in the ultimate NoSSD design, is augmented
with a simple traffic-aware injection mechanism. Each FCC
has a counter referring to the number of packets waiting to
be sent. Depending on the counter values, controller chooses
the less-stressed FCC for packet injection.
Controller Placement. The NoSSD design in Figure 7
uses a grid topology and has FCCs positioned near to the
left side of network. However, keeping NoSSD regularity
in mind, there are multiple other ways to connect FCCs
to NoSSD routers. These different configurations of the
FCC-to-NoSSD connection can have a dramatic impact on
the latency and bandwidth characteristics of the network,
especially for grid topology which is not edge symmetric.
Furthermore, by reducing the variance in the number of
hops per request as well as packet latency and channel load,
NoSSD’s performance seems to be less sensitive to the flash
chip on which a page is mapped. In the ultimate NoSSD de-
sign that is evaluated in Section 6, we examine one-sided and
all-sided FCC placement policies, as shown in Figure 10. In
all-sided configuration, we try to provide better and pre-
dictable latency and bandwidth characteristics by evenly
distributing FCCs in all sides of NoSSD (middle of each
side). Please note that the longer wires of all-sided place-
ment still have lower latency with respect to the multi-
channel bus wires since each output driver, either at FCC
or NoSSD side, sees much lower capacitive load.

5.5 Implementation Issues
In a conventional multi-channel architecture, a flash con-

troller consists of two parts: 1) a unit responsible for con-
trolling the sequence of micro-operations required for NAND
flash functionalities and error correction schemes, and 2) a
signaling mechanism for transmitting controller commands
to flash chips. In NoSSD controller, on the other hand,
managing read/write requests are accomplished by the flash
chips themselves. Thus, controller’s functionality is limited
to be the interface logic between the front-end processor and
network substrate. This simplifies controller logic which is
highly desirable in modern SSDs2.

In a NoSSD flash chip, the network adapter, buffer stor-
age, crossbar switch, channel arbiters, and router logic are
the newly added parts. Among the mentioned elements,
buffers occupy most of the router’s area. To mitigate sig-
nal propagation delay and fully utilize channel bandwidth,
we assume buffer depth of 512 flits per input channel which
means a 4 kB buffer space per router. To estimate the area

2Many companies try to embed some memory-related func-
tions (like error correction) into the NAND flashes so that
the controller cost is reduced; an example is Managed NAND
by Micron [36].

Table 5: Characteristics of the simulated NoSSD model.

NoSSD
Channel Width = 8 bit, Inter-router Propagation De-
lay = 5 ns, Pipeline Stages = 3, Pipeline Stage Delay = 5 ns,
Input Buffer Size = 512 flit, Routing Algorithm = XY

overhead of the router, we used Orion 2 [29]. We set process
technology to 32 nm, as it is the smallest available choice in
Orion 2 that matches ever shrinking feature size of NAND
flash memory. The results show that the buffer and crossbar
area is about 0.17 mm2 and 0.03 mm2, respectively, while the
arbitration and routing logics just occupy 0.002 mm2. Next,
we use NVSim [16] to achieve an estimation for the area
of a typical 4 GB NAND flash die with the properties men-
tioned in Table 1. The results show that the die area is
about 72 mm2 and thus a set of 4/8 dies within a 16/32 GB
flash chip occupy 288/576 mm2. In other words, the area
overhead of a NoSSD router is less than 0.1% of the flash
storage area. Please note that due to model limitations, we
ignored some components in each part, i.e., the NAND pe-
ripheral and command control circuits for memory and the
network adapter for NoSSD.

Regarding signaling requirements, NoSSD also simplifies
FCC implementation logic since each communication chan-
nel is managed via 3 control signals regardless of the num-
ber of flash chips. Indeed, FCC in a multi-channel archi-
tecture has to drive tens of control signals that is propor-
tional to the number of dies sharing a channel [25]. In ad-
dition, as mentioned in the NAND flash chip standards [5,
6], SSD designers should care about capacitive and resis-
tive load of a bus channel for reliable and high-performance
transfers [6]. NoSSD, nevertheless, can remove these elec-
trical constraints since each channel is just shared between
two adjacent routers and the global wiring is provided by
(semi-)regular topologies, e.g., mesh (grid) and torus.

6. EVALUATION
To compare NoSSD’s performance against a baseline multi-

channel SSD design, we use the simulation methodology
and flash chip model described in Section 3. For NoSSD,
the flash chips are organized as a grid topology with XY
routing [15]. As an abbreviation, we simply use m×n no-
tation for a grid configuration of m rows and n columns.
The multi-channel SSD structure with same size, m chan-
nels and n flash chips per channel, is denoted with mCnP .
The NoSSD router is the same as model introduced by Dally
and Towles [15] without virtual channel multiplexing. The
router pipeline consists of three stages each with 5 ns la-
tency: 1) buffer write and route computation for header
flits, 2) switch allocation, and 3) switch traversal, followed
by link traversal. Table 5 summarizes the evaluated router
configuration. Please note that, the default packet injection
policy in the FCC is round-robin.

6.1 NoSSD vs Multi-Channel SSD Performance
Figure 11 presents the normalized maximum IOPS and

average response time of real workload traces in 4 × 16 and
8 × 8 NoSSD configurations with respect to the same-sized
multi-channel SSD. We see that NoSSD enhances the max-
imum IOPS by 37%–180% (100%, on average) whereas it
reduces the average and worst-case response time by 22%
and 8%, respectively. In addition, Figure 12 illustrates the

 0

 0.2

 0.4

 0.6

 0.8

 1

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 R
es

p
on

se
 T

im
e

 0

 0.5

 1

 1.5

 2

 2.5

 3

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 M
ax

im
u

m
 IO

P
S

(a) 4×16 vs. 4C16P

 0

 0.2

 0.4

 0.6

 0.8

 1

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 R
es

p
on

se
 T

im
e

 0

 0.5

 1

 1.5

 2

 2.5

 3

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 M
ax

im
u

m
 IO

P
S

(b) 4×16 vs. 4C16P

 0

 0.2

 0.4

 0.6

 0.8

 1

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 R
es

p
on

se
 T

im
e

 0

 0.5

 1

 1.5

 2

 2.5

 3

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 M
ax

im
u

m
 IO

P
S

(c) 8×8 vs. 8C8P

 0

 0.2

 0.4

 0.6

 0.8

 1

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 R
es

p
on

se
 T

im
e

 0

 0.5

 1

 1.5

 2

 2.5

 3

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 M
ax

im
u

m
 IO

P
S

(d) 8×8 vs. 8C8P

Figure 11: Normalized average response time and maximum
IOPS of NoSSD to the multi-channel baseline. MC stands
for multi-channel SSD.

0.2

0.4

0.6

0.8

1.0

0.5 1 2 4 8 16 32 64 128 256 512 1024
M

ax
. T

h
ro

u
gh

p
u

t (
M

eg
a

IO
P

S)
Average IO Request Size (KB)

NoSSD,R=100%
MC,R=100%

NoSSD,R=50%
MC,R=50%

NoSSD,R=0%
MC,R=0%

0.2

0.4

0.6

0.8

1.0

0.5 1 2 4 8 16 32 64 128 256 512 1024

M
ax

. T
h

ro
u

gh
p

u
t (

M
eg

a
IO

P
S)

Average IO Request Size (KB)

NoSSD,R=100%
MC,R=100%

NoSSD,R=50%
MC,R=50%

NoSSD,R=0%
MC,R=0%

(a) 4×16 vs. 4C16P

 0

 0.5

 1

 1.5

 2

0.5 1 2 4 8 16 32 64 128 256 512 1024

R
es

p
on

se
 T

im
e

(m
s)

Average IO Request Size (KB)

NoSSD,R=100%
MC,R=100%

NoSSD,R=50%
MC,R=50%

NoSSD,R=0%
MC,R=0%

 0

 0.5

 1

 1.5

 2

0.5 1 2 4 8 16 32 64 128 256 512 1024

R
es

p
on

se
 T

im
e

(m
s)

Average IO Request Size (KB)

NoSSD,R=100%
MC,R=100%

NoSSD,R=50%
MC,R=50%

NoSSD,R=0%
MC,R=0%

(b) 4×16 vs. 4C16P

100K

200K

300K

400K

500K

0.5 1 2 4 8 16 32 64 128 256 512 1024

M
ax

im
u

m
 IO

P
S

Average IO Request Size (KB)

NoSSD,R=100%
MC,R=100%

NoSSD,R=50%
MC,R=50%

NoSSD,R=0%
MC,R=0%

0.2

0.4

0.6

0.8

1.0

0.5 1 2 4 8 16 32 64 128 256 512 1024

M
ax

. T
h

ro
u

gh
p

u
t (

M
eg

a
IO

P
S)

Average IO Request Size (KB)

NoSSD,R=100%
MC,R=100%

NoSSD,R=50%
MC,R=50%

NoSSD,R=0%
MC,R=0%

(c) 8×8 vs. 8C8P

 0

 0.5

 1

 1.5

 2

0.5 1 2 4 8 16 32 64 128 256 512 1024

R
es

p
on

se
 T

im
e

(m
s)

Average IO Request Size (KB)

NoSSD,R=100%
MC,R=100%

NoSSD,R=50%
MC,R=50%

NoSSD,R=0%
MC,R=0%

 0

 0.5

 1

 1.5

 2

0.5 1 2 4 8 16 32 64 128 256 512 1024

R
es

p
on

se
 T

im
e

(m
s)

Average IO Request Size (KB)

NoSSD,R=100%
MC,R=100%

NoSSD,R=50%
MC,R=50%

NoSSD,R=0%
MC,R=0%

(d) 8×8 vs. 8C8P

Figure 12: Response time and maximum IOPS of NoSSD
and multi-channel baseline under synthetic workloads.

maximum achievable IOPS and average response time of the
NoSSD and multi-channel SSD designs for different request
sizes in synthetic workloads. Regarding the results of both
real and synthetic workloads, we can make the following
conclusions:

• NoSSD achieves much more performance improvement
(compared to the conventional design) when channel-level
parallelism is low. This is primarily due to better uti-
lization of resources in NoSSD by pipelining/parallelizing
requests among routers, while path diversity and round-
robin packet injection collectively provide a substrate to
balance load in the network.

• As the ratio of read requests increases in the workload,
NoSSD achieves higher performance improvement. In fact,
read-oriented workloads are more sensitive to the commu-
nication delays, since the execution time of a read opera-
tion is comparable with controller-to-flash communication
delay.

• NoSSD provides great response time gains when work-
load request size is large. Contrarily, the greatest IOPS
improvement is seen for smaller request sizes.

• By scaling SSD capacity via increasing channel-level par-

 0

 0.2

 0.4

 0.6

 0.8

 1

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 R
es

p
on

se
 T

im
e

(a) Injection policy, 4×16

 0

 0.2

 0.4

 0.6

 0.8

 1

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 R
es

p
on

se
 T

im
e

(b) FCC placement, 4×16

 0

 0.2

 0.4

 0.6

 0.8

 1

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 R
es

p
on

se
 T

im
e

(c) Injection policy, 8×8

 0

 0.2

 0.4

 0.6

 0.8

 1

tpcc
tpce

fin1
fin2

exch
m

snfs

ts src-0
src-1

src-2
m

ds-0

m
ds-1

usr-0
usr-1

usr-2
web

stg-0
stg-1

prxy-0

prxy-1

N
or

m
al

iz
ed

 R
es

p
on

se
 T

im
e

(d) FCC placement, 8×8

Figure 13: The effect of enhancing FCC to NoSSD commu-
nication (a),(c) via traffic-aware injection policy and (b),(d)
via FCC placement.

allelism, the overall performance gain of using NoSSD de-
creases (higher response time and lower IOPS values). Com-
paring results of 4×16 and 8×8 in terms of response time
shows that maximum increase in overall response time is
about 10% for prxy-1. In all other applications, however,
response time increase of high channel-level parallelism is
very small (4%, on average). For maximum IOPS results,
the reason for larger throughput improvement in 4 × 16
NoSSD compared to 8 × 8 NoSSD is two-sided. First, the
dynamic allocation scheme well uses higher channel-level
parallelism in 8C8P baseline and hence NoSSD has less
chance to improve performance. Second, the 4 × 16 con-
figuration roughly doubles the chip-level parallelism and
NoSSD can better pipeline flash operation execution over
adjacent flash chips.

6.2 Performance of Packet Injection Policy and
FCC Placement

So far, we have shown performance improvement results
for NoSSD, without considering design considerations of
packet injection and FCC placement. For the sake of com-
pleteness, Figure 13a and Figure 13c illustrate the response
time of NoSSD with the traffic-aware packet injection policy,
normalized to that of the same size NoSSD with the normal
(round-robin) injection policy. As can be seen, the maxi-
mum performance improvement using this policy is 23% (in
case of src-1 in 8 × 8 NoSSD) while it is negligible in most
of the other workloads. On the average, injection policy
gives an aggregate response time improvement of 7% and
4% for 8× 8 and 4× 16 NoSSDs, respectively. Nevertheless,
we deduce that traffic-aware packet injection policy achieves
better response time improvement for workloads with large
average request sizes (src-1, src-2, mds-1, usr-0, usr-1,
usr-2). The reason is that such workloads considerably
benefit from the path diversity provided by the traffic-aware
injection policy.

Figure 13b and Figure 13d show the response time of 8×8
and 4 × 16 NoSSDs with all-sided FCC placement, normal-
ized to the same-sized NoSSD with one-sided placement. As
the results show, all-sided FCC placement can reduce re-
sponse time by up to 19% (and 5%, on average) for the
evaluated configurations. Again, we can see that NoSSD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CD
F

Response Time (ms)

MC,tpce
NoSSD,tpce

NoSSD-Inj,tpce

MC,stg-0
NoSSD,stg-0

NoSSD-Inj,stg-0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CD
F

Response Time (ms)

MC,tpce
NoSSD,tpce

NoSSD-Inj,tpce

MC,stg-0
NoSSD,stg-0

NoSSD-Inj,stg-0

(a) Read: 4×16 vs. 4C16P

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CD
F

Response Time (ms)

MC,tpce
NoSSD,tpce

NoSSD-Inj,tpce

MC,stg-0
NoSSD,stg-0

NoSSD-Inj,stg-0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CD
F

Response Time (ms)

MC,tpce
NoSSD,tpce

NoSSD-Inj,tpce

MC,stg-0
NoSSD,stg-0

NoSSD-Inj,stg-0

(b) Write: 4×16 vs. 4C16P

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CD
F

Response Time (ms)

MC,tpce
NoSSD,tpce

NoSSD-Inj,tpce

MC,stg-0
NoSSD,stg-0

NoSSD-Inj,stg-0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CD
F

Response Time (ms)

MC,tpce
NoSSD,tpce

NoSSD-Inj,tpce

MC,stg-0
NoSSD,stg-0

NoSSD-Inj,stg-0

(c) Read: 8×8 vs. 8C8P

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CD
F

Response Time (ms)

MC,tpce
NoSSD,tpce

NoSSD-Inj,tpce

MC,stg-0
NoSSD,stg-0

NoSSD-Inj,stg-0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CD
F

Response Time (ms)

MC,tpce
NoSSD,tpce

NoSSD-Inj,tpce

MC,stg-0
NoSSD,stg-0

NoSSD-Inj,stg-0

(d) Write: 8×8 vs. 8C8P

Figure 14: Cumulative distribution function (CDF) of the
read and write response time of the two representative work-
loads, i.e., tpce and stg-0, for NoSSD with normal injection
(NoSSD), NoSSD with traffic-aware injection (NoSSD-Inj)
and multi-channel SSD (MC).

performance is sensitive to the FCC placement when the
average request size of the workload is large.

6.3 Response Time Variation
One of the major challenges with current multi-channel

SSD architectures is their large variance of response time.
This variability is specially harmful for streaming and time-
critical applications where a deterministic response time must
be guaranteed. To mitigate this variation, current enter-
prise SSDs rely on buffering methods and reconfigurable SSD
controllers that result in more complex controller design.
Figure 14 compares the response time variation of NoSSD
and conventional SSDs by plotting the cumulative distribu-
tion function (CDF) of response time values. To increase
readability, we just selected two representative applications
with small request size (tpce) and large request size (stg-
0). We see that the CDF curve of NoSSD sharply rises
for stg-0 (large request sizes better use resource sharing in
NoSSD) and shows a considerable response-time predictabil-
ity thanks to its path diversity and pipelined routing. For
tpce, with small requests, the improvement is marginal.

7. RELATED WORK
Improving SSD performance and scalability for enterprise

systems has been extensively explored in recent years. The
main discussion is that since most of read requests are pro-
cessed synchronously by OLTP and database system, even
a single stall, caused by either slow programs, limited par-
allelism, or path latency of the controller, may considerably
limit the overall SSD throughput [32, 33]. There are many
studies trying to address this issue in high-throughput en-
terprise systems:
Enhancing channel-level parallelism. Enterprise SSD
vendors improve capacity and I/O throughput by increasing
the number of channels and employing suitable page alloca-
tion strategies [24, 34]. Although highly parallel channels re-
lax resource contention, they substantially increase the cost
of controller [31, 44, 48].

Utilizing intra-flash chip parallelism. Alongside channel
level parallelism, FTL management policies can be designed
to fully exploit parallelism provided at other levels of the
SSD architecture [8, 10, 13, 22, 27, 40]. However, such so-
lutions greatly suffer from additional latency and controller
complexity required to attain their goals.
Design customization for enterprise workloads. An
alternative strategy is to customize SSD architecture for ef-
ficient service of the requests in transactional workloads [26,
47, 48]. Similar to other solutions, architecture customiza-
tion generally increases cost complexity of the controller.
Recently, HLNAND proposed a scalable architecture which
is built upon a unique daisy-ring architecture [46] or hi-
erarchical ring topology [20]. In comparison with NoSSD,
HLNAND products provide much less path diversity and
their performance is still restricted by a single FCC at the
controller side while NoSSD shares FCCs to get better per-
formance/reliability. There are other examples of enterprise
SSDs supporting a large number of flash chips at the back-
end. In contrast to NoSSD, these designs rely on hierarchal
controllers (e.g. Intel 910 [26]) or hardware accelerators (e.g.
PMC NVEMC [43]) at the cost of increased complexity and
decreased reliability.

8. CONCLUSION
In this paper, we concentrated on the scalability chal-

lenges of the common enterprise SSD designs based on multi-
channel communication architecture. Based on our evalua-
tion, the intra-die scaling approaches are all prohibited by
the performance requirements of enterprise SSDs. There-
fore, the inevitable solution is to employ more dies in the
design and exploit high-level (i.e., channel and flash chip)
parallelism and request striping to enhance the overall SSD
performance. However, simulation results show that higher
level solutions are also limited by controller complexity and
bus characteristics. Motivated by these observations, we
proposed protocol and configurations for realizing a network-
based communication structure (i.e., NoSSD), to achieve a
high-performance SSD interconnect that is highly scalable
and enjoys design regularity. The simulation results for
NoSSD and its design considerations reveal higher perfor-
mance, larger bandwidth, and more scalability when com-
pared to the conventional design. We believe this paper
is just an initial step in influencing SSD’s scalability using
architectural and interconnect enhancements. Considering
the effect of different functionalities (e.g., garbage collection)
and exploring different network topologies are of future re-
search activities in this line.

9. REFERENCES
[1] Microsoft enterprise traces.

http://iotta.snia.org/traces/list/BlockIO.

[2] Microsoft production server traces.
http://iotta.snia.org/traces/list/BlockIO.

[3] UMass trace repository.
http://traces.cs.umass.edu.

[4] Xmulator simulator. Ver. 6.0.
http://www.xmulator.com/.

[5] JEDEC standard, NAND flash interface
interoperability, Oct 2012.

[6] Open NAND flash interface specification 3.1, Sep 2012.

[7] Open NAND flash interface specification 3.2, Jun
2013.

[8] N. Agrawal et al. Design tradeoffs for SSD
performance. In USENIX ATC’08, pages 57–70, Jun
2008.

[9] J. S. Bucy et al. The DiskSim Simulation
Environment Version 4.0 Reference Manual. Technical
Report CMU-PDL-08-101, Parallel Data Laboratory,
Carnegie Mellon University, May 2008.

[10] A. M. Caulfield et al. Gordon: using flash memory to
build fast, power-efficient clusters for data-intensive
applications. In ASPLOS XIV, pages 217–228, Mar
2009.

[11] L.-P. Chang. On efficient wear leveling for large-scale
flash-memory storage systems. In SAC’07, pages
1126–1130, Mar 2007.

[12] Y.-H. Chang et al. Endurance enhancement of
flash-memory storage systems: an efficient static wear
leveling design. In DAC’07, pages 212–217, Jun 2007.

[13] F. Chen et al. Essential roles of exploiting internal
parallelism of flash memory based solid state drives in
high-speed data processing. In HPCA’11, pages
266–277, Feb 2011.

[14] B. Collins. SAS SSDs - building blocks for
high-performance enterprise storage. In Flash Memory
Summit, Aug 2011.

[15] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003.

[16] X. Dong et al. Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile
memory. IEEE TCAD, 31(7):994–1007, Jul 2012.

[17] K. Eshghi and R. Micheloni. SSD architecture and
PCI Express interface. In Inside Solid State Drives
(SSDs), volume 37 of Springer in Advanced
Microelectronics, pages 19–45. 2013.

[18] Fusion-io, Inc. ioDriveIIDuo data sheet, 2013.

[19] E. Gal and S. Toledo. Algorithms and data structures
for flash memories. ACM Comput. Surv.,
37(2):138–163, Jun 2005.

[20] P. Gillingham et al. 800 MB/s DDR NAND flash
memory multi-chip package with source-synchronous
interface for point-to-point ring topology. IEEE
Access, 1:811–816, 2013.

[21] L. Grupp et al. The bleak future of NAND flash
memory. In FAST’12, pages 17–24, Feb 2012.

[22] L. M. Grupp et al. The harey tortoise: Managing
heterogeneous write performance in SSDs. In USENIX
ATC’13, pages 79–90, Jun 2013.

[23] HGST, a Western Digital company. Ultrastar
SSD800MM, enterprise solid state drives, 2013.

[24] Y. Hu et al. Performance impact and interplay of SSD
parallelism through advanced commands, allocation
strategy and data granularity. In ICS’11, pages
96–107, May-Jun 2011.

[25] Y. Hu et al. Exploring and exploiting the multilevel
parallelism inside SSDs for improved performance and
endurance. IEEE TC, 62(6):1141–1155, Jun 2013.

[26] Intel Corporation. Intel solid-state drive 910 series,
product specification, 2013.

[27] M. Jung et al. Physically addressed queueing (PAQ):

http://iotta.snia.org/traces/list/BlockIO
http://iotta.snia.org/traces/list/BlockIO
http://traces.cs.umass.edu
http://www.xmulator.com/

improving parallelism in solid state disks. In ISCA’12,
pages 404–415, Jun 2012.

[28] M. Jung and M. Kandemir. An evaluation of different
page allocation strategies on high-speed SSDs. In
HotStorage’12, Jun 2012.

[29] A. Kahng et al. Orion 2.0: A fast and accurate noc
power and area model for early-stage design space
exploration. In DATE ’09, pages 423–428, Feb 2009.

[30] J.-U. Kang et al. A multi-channel architecture for
high-performance NAND flash-based storage system.
J. Systems Architecture, 53(9):644–658, Sep 2007.

[31] D. Lavenier et al. Seed-based genomic sequence
comparison using a FPGA/FLASH accelerator. In
FPGA’06, pages 41–48, Dec 2006.

[32] S.-W. Lee et al. A case for flash memory SSD in
enterprise database applications. In SIGMOD’08,
pages 1075–1086, Jun 2008.

[33] S.-W. Lee et al. Advances in flash memory SSD
technology for enterprise database applications. In
SIGMOD’09, pages 863–870, Jun 2009.

[34] S. Liang. Algorithms designs and implementations for
page allocation in SSD firmware and SSD caching in
storage systems. Master’s thesis, Computer Science
and Engineering, The Ohio State University, 2010.

[35] Marvell. Marvell 88NV9145: Native PCIe gen 2.0 x 1
NAND flash controller, 2011.

[36] Micron Technology, Inc. Managed NAND.

[37] Micron Technology, Inc. MT29F256G08AECCB
NAND flash memory, 2010.

[38] Micron Technology, Inc. Micron P420m PCIe SSD
product brief, May 2013.

[39] D. Narayanan et al. Write off-loading: Practical power
management for enterprise storage. ACM Trans.
Storage, 4(3):10:1–10:23, Nov 2008.

[40] C. Park et al. Exploiting internal parallelism of
flash-based SSDs. IEEE CAL, 9(1):9–12, Jan 2010.

[41] PMC-Sierra. 89HF08P08CG3 8-Channel x8 PCIe
Gen3 enterprise NV-DRAM controller, May 2013.

[42] PMC-Sierra. 89HF16P04CG3 16-Channel x4 PCIe
Gen3 enterprise flash controller, May 2013.

[43] PMC-Sierra. 89HF32P08CG3 32-Channel x8 PCIe
Gen3 enterprise flash controller, May 2013.

[44] R. Rivera. Distributed data acquisition and storage
architecture for the SuperNova acceleration probe.
IEEE Trans. Nuc. Sci., 55(1):246–250, Feb 2008.

[45] SandForce. SandForce SF-2000 flash storage
processors, Apr 2013.

[46] R. Schuetz et al. Hyperlink nand flash architecture for
mass storage applications. In NVSMW’07, Aug 2007.

[47] Y. J. Seong et al. Hydra: A block-mapped parallel
flash memory solid-state disk architecture. IEEE TC,
59(7):905–921, Jul 2010.

[48] J.-Y. Shin et al. FTL design exploration in
reconfigurable high-performance SSD for server
applications. In ICS’09, pages 338–349, Jun 2009.

[49] A. Silvagni. NAND DDR interface. In Inside NAND
Flash Memories, pages 161–196. Springer Netherlands,
2010.

[50] A. Tavakkol et al. Network-on-SSD: A scalable and
high-performance communication design paradigm for
SSDs. IEEE CAL, 12(1):5–8, Jan 2013.

[51] A. Tavakkol et al. Unleashing the potentials of
dynamism for page allocation strategies in SSDs. In
SIGMETRICS ’14, pages 551–552, Jun 2014.

[52] Transaction Processing Performance Council (TPC).
TPC benchmarkTM C, standard specification, Feb
2010.

[53] Transaction Processing Performance Council (TPC).
TPC benchmarkTM E, standard specification, 2010.

[54] B. Van Houdt. A mean field model for a class of
garbage collection algorithms in flash-based solid state
drives. In SIGMETRICS’13, Jun 2013.

	Introduction
	Background
	The NAND Flash: Organization and Operation
	Enterprise SSD Internals

	Experimental Methodology
	Multi-Channel SSD Scalability
	Increasing Plane Capacity
	Increasing Die Capacity
	Increasing Flash Chip Capacity
	Increasing Number of Flash Chips
	Summary

	Inter-flash Networking
	A Simple NoSSD Example
	Packet Format and Messaging Protocol
	Router Organization and Functionalities
	NoSSD Design Rules for High Performance SSDs
	Implementation Issues

	Evaluation
	NoSSD vs Multi-Channel SSD Performance
	Performance of Packet Injection Policy and FCC Placement
	Response Time Variation

	Related Work
	Conclusion
	References

