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a b s t r a c t

Pathogenicity of Aspergillus fumigatus is multifactorial. Thus, global studies are essential for the under-
standing of the infection process. Therefore, a data warehouse was established where genome sequence,
transcriptome and proteome data are stored. These data are analyzed for the elucidation of virulence
determinants. The data analysis workflow starts with pre-processing including imputing of missing
values and normalization. Last step is the identification of differentially expressed genes/proteins as
interesting candidates for further analysis, in particular for functional categorization and correlation
ovies studies. Sequence data and other prior knowledge extracted from databases are integrated to support
the inference of gene regulatory networks associated with pathogenicity. This knowledge-assisted data
analysis aims at establishing mathematical models with predictive strength to assist further experimental
work. Recently, first steps were done to extend the integrative data analysis and computational modeling
by evaluating spatio-temporal data (movies) that monitor interactions of A. fumigatus morphotypes (e.g.
conidia) with host immune cells.
ntroduction

‘Systems biology’ is a multidisciplinary research area that com-
ines experimental discovery with mathematical modeling to
ssist the understanding of the dynamic global organization and
unction of a biological system. This emerging research field has
emonstrated the most progress for unicellular microorganisms
uch as Escherichia coli and Saccharomyces cerevisiae. Recently,
mprovement has also been achieved in systems biology of fil-
mentous fungi of molecular biological and industrial interest,
n particular of Aspergillus nidulans (David et al., 2006), A. niger
Andersen et al., 2008), and others (Harris, 2009; Andersen and
ielsen, 2009). The largest reconstruction of a metabolic network

eported for a filamentous fungus was presented for the industrial
orkhorse A. niger comprising 2240 enzymatic reactions (Andersen

t al., 2008). Despite the assumption that there is an overlap in
enes and metabolic reactions between different Aspergillus species
f about 70% (Galagan et al., 2005; Andersen et al., 2008), it can be

xpected that genes and reactions responsible for the pathogenic-
ty differ. Thus, analytical methods, but not the knowledge about

olecular details gained from other filamentous fungi can be trans-
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ferred to the human-pathogenic fungus A. fumigatus. For instance,
the molecular approach to reconstruct the signaling pathways that
control hyphal elongation and branching applied by Meyer et al.
(2009) to A. niger can be used to study the mycelial growth of
pathogenic filamentous fungi such as A. fumigatus.

Currently, systems biological research is more advanced for
bacterial than for fungal infections. In particular, there are very
promising results available from systems biology studies of bac-
terial pathogens such as Escherichia coli (Guthke et al., 2005),
Salmonella typhimurium (Raghunathan et al., 2009), Pseudomonas
aeruginosa (Oberhardt et al., 2008), Mycobacterium tuberculosis
(Raman et al., 2008), Helicobacter pylori (Franke et al., 2008), and
Streptococcus pyogenes (Klenk et al., 2005). Vodovotz et al. (2008)
proposed the term ‘translational systems biology’ for the applica-
tion of systems biological and engineering principles to biological
systems with the primary goal of optimizing clinical practice in sep-
sis treatment. Day et al. (2010) applied this to tuberculosis research.

Host–pathogen systems biology has to model not only the
molecular network in one organism or population, but also the
interaction of the networks of pathogen and host (Franke et al.,
2008). For example, the merging of a viral interactome and the

human interactome has been used to simulate viral infection
(Pelkmans, 2009).

Systems biology of fungal pathogenicity is still in its infancy
(Albrecht et al., 2008a). First steps were taken in systems biological
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http://www.sciencedirect.com/science/journal/14384221
http://www.elsevier.de/ijmm
mailto:reinhard.guthke@hki-jena.de
dx.doi.org/10.1016/j.ijmm.2011.04.014


4 of Me

r
l
(
t

i
s
c
t
t
c
c
(
p

p
T
t
d
a
p
s
t
a
g

i
c
T
p
c
s
f
c
o
c
e
r
i

A

w
o
a
i
2
o
C
m
p
t
i
s
g
s
c
o
w
i

T

g

54 D. Albrecht et al. / International Journal

esearch of infections caused by Candida albicans, in particu-
ar by game theoretic modeling of the host–pathogen interplay
Hummert et al., 2010) and the prediction of multi-agent antifungal
herapies (Jansen et al., 2009).

Researchers are only just starting to understand the complex
nterplay between the host and A. fumigatus at a genome-wide
cale. Since fungal virulence is a multifactorial and complex pro-
ess, holistic approaches such as transcriptomic and proteomic
echnologies seem to be most promising for its elucidation. High-
hroughput analyses allow the discovery-driven identification of
andidate genes or proteins, while also providing the necessary
ontext in which hypothesis-driven findings can be interpreted
Chan, 2006). Thus, systems biology leads to new models, new
redictions, and new experiments to test those (Ideker et al., 2001).

When comparing transcriptomic and proteomic data, often
oor correlation of expression is found (e.g., Jones et al., 2004).
hus, there is apparently no strict linear relationship between
he transcripts and the proteins of a cell. In addition, observed
issimilarities between monitored behavior on transcriptomic
nd proteomic level can show important post-transcriptional or
ost-translational regulatory junctures. Hence, it is clear that tran-
criptomic and proteomic approaches complement each other in
erms of the information produced and their relative advantages
nd disadvantages. So at best, both are used, and data are inte-
rated.

Another approach to observe and document host–pathogen
nteraction during fungal infections is provided by techniques like
onfocal laser scanning microscopy or two-photon microscopy.
hus, images and movies of host immune cells and opposing
athogens are received. These enable researchers to investigate
ellular dynamics and the links between cellular functions and
patio-temporal localization in the living system. The analysis and
eature extraction is complicated by the fact that the data are typi-
ally very noisy (Sage et al., 2005). Many current surveys are based
n the study of a few manually selected particles and thus, are time
onsuming and can produce a strong bias in the analysis (Genevesio
t al., 2006). It is therefore important to develop automatic and
eproducible methods to perform feature extraction and cell track-
ng.

spergillus fumigatus

Around 150–200 fungal species are known to be associated
ith human infections. During the past decades, the incidence

f opportunistic invasive mycoses has risen to a considerable
mount. For example, from 1980 to 1997 there was a dramatic
ncrease in mycoses-associated mortality in the USA (McNeil et al.,
001). Aspergillus species are the second most frequent cause
f nosocomial (i.e., acquired in hospital) fungal infections after
andida species (Perlroth et al., 2007). Invasive aspergillosis is
ostly caused by A. fumigatus, the most important airborne human-

athogenic fungus (Dagenais and Keller, 2009). A. fumigatus is a
hermotolerant species able to grow at up to 55 ◦C and surviv-
ng even up to 70 ◦C. In its natural environment, the fast growing
aprophyte plays an important role in recycling carbon and nitro-
en sources by decaying organic matter. All data obtained so far
uggest that the virulence of A. fumigatus is a multifactorial pro-
ess. Putative virulence determinants include conidial pigments
r intermediates, surface proteins, toxins, allergens, enzymes, cell
all components, nutrient sensing, and adaptation to hypoxia and

ron depletion (Brakhage, 2005).
ranscriptomics and proteomics

Two-channel DNA microarrays and two-dimensional difference
el electrophoresis (DIGE) are common techniques for analyzing
dical Microbiology 301 (2011) 453–459

changes in the regulation of transcripts and proteins of A. fumigatus.
The following sections describe processing, analysis and interrela-
tionship of such data. An analysis workflow (Fig. 1) was applied, for
example, for the analysis of the heat shock response of A. fumigatus
(Albrecht et al., 2010a).

Pre-processing

Raw data from microarrays and 2D gels are images that have
to be transformed into numerical data for further analysis. This
transformation is preferentially done by using commercial soft-
ware packages, such as GenePix (MDS Analytical Technologies) for
two-channel microarrays or DeCyder (GE Healthcare) for DIGE data.
These numerical data can contain several technical errors that have
to be removed before detection of differentially regulated genes or
proteins.

The first step in such pre-processing is imputation of missing
values. Missing values can occur, for example, when the back-
ground noise in a certain part of the image is higher than the
spot intensity in this region. The analysis of 2D gels is addition-
ally hampered by the fact that migration of individual proteins can
differ between gels. Consequently, spots are not always located at
exactly the same position in each gel. Similar spots in different gels
have to be aligned, which can result in unmatched protein spots.
Many methods have already been developed for the imputing of
missing data. One of the most popular approaches is the k-nearest
neighbor (KNN) imputing, which was introduced for microarray
data (Troyanskaya et al., 2001) and which was also utilized for
proteomics data (e.g. by Jung et al., 2006). KNN imputes miss-
ing data of a certain spot by the weighted average of the k most
similar spots, but it is limited to imputing data of spots with few
missing values. The authors of Albrecht et al. (2010b) combined
KNN with the imputation by a minimal value for spots that show
many missing values in replicates of one condition. They compared
this approach for the above-mentioned heat shock DIGE dataset
with several other imputing methods and found that it performs
best.

The next step following imputing of missing values is normaliza-
tion. Normalization methods account for technical bias in the data.
Many normalization methods exist for microarray as well as 2D gel
data. Whenever more than one microarray or gel is investigated,
normalization must be conducted within and between arrays or
gels. For DIGE data, it was shown that the combination of variance
stabilization [VSN (Huber et al., 2002), between gel normaliza-
tion] and local regression [LOESS (Yang et al., 2002), within gel
normalization], two methods developed for microarray data anal-
ysis, performs better that each method alone and also better than
normalization of commercially available software (Albrecht et al.,
2008b).

Results of normalization are ratios for all genes or proteins,
describing their change in expression or abundance, respectively,
between the test conditions and a reference condition. For finding
statistically significant differences, filtering methods are applied.
Filtering of genes or proteins using a fixed fold change thresh-
old followed by Student’s t-test or analysis of variance (ANOVA)
is most often utilized for determining differential expression when
working with data from A. fumigatus. However, ratios can be trans-
formed to Z-scores to be more specific to the particular dataset
(Quackenbush, 2002). Genes or proteins with Z-scores outside the
range of [−1.96, 1.96] are differentially expressed at 95% confi-
dence level. When combining the Z-scores with t-test or ANOVA,

p-values have to be adjusted for multiple testing. Several methods
exist to do such adjustment, the false discovery rate (FDR) cor-
rection of Benjamini and Hochberg (1995) being the most popular
approach.
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Fig. 1. Workflow for pre-processing a

unctional categorization

Pre-processing of 2D gel- and microarray-based studies results
n long lists of differentially regulated proteins or genes, the
iological function of which has to be investigated. There are sev-
ral possibilities to categorize genes/proteins according to their
unction. Three of them are of special importance for research
n A. fumigatus: Kyoto Encyclopedia of Genes and Genomes
KEGG, Kanehisa and Goto, 2000), Gene Ontology (GO, Ashburner
t al., 2000), and Functional Catalogue (FunCat, Ruepp et al.,
004). Another method, using protein domains, is described in
olstencroft et al. (2006).
KEGG is a knowledge base for systematic analysis of gene

unctions, linking genomic information with other functional infor-
ation. It is based on the concept of graphs for representation and
anipulation of various objects from molecular to higher levels.
ll in all, KEGG pathway contains 327 functional categories with
pecial emphasize on metabolism.

The GO project aims at standardizing the representation of genes
nd their products across species and databases. GO is structured
n directed acyclic graphs using 3 subdomains: molecular function,
iological process, and cellular localization. Nodes represent GO
erms, and edges the relationships between the terms.

FunCat is an annotation scheme for the functional description
f proteins from all living beings. It covers few manually anno-
ated organisms like mouse or human. Additionally, all organisms
re annotated, the sequences of which have been stored in NCBI
efSeq (Walter et al., 2009). FunCat exhibits 6 levels of increasing

pecificity and in total includes 1362 functional categories.

Besides the pure enumeration of genes/proteins in categories of
hichever system, an enrichment analysis is advisable. Here, the
umber of genes or proteins from a dataset that fall into the encoun-
alysis of microarray and 2D gel data.

tered categories is compared to the number of genes or proteins
from the whole genome/proteome that fall into the same cate-
gories. By using p-values, the most significant biological functions
or processes in the dataset can be found.

Interrelationship

The whole-genome analysis of data from either transcriptome
or proteome alone is still a reductionistic approach since both are
strongly intertwined. Thus, to get a more holistic view, the use
of information from both is advisable. Therefore, the authors of
Albrecht et al. (2010a) obtained pre-processed transcriptomic data
(Nierman et al., 2005) from the database ArrayExpress (Brazma
et al., 2003). This dataset comprises normalized data of 1926 tran-
scripts that were differentially regulated upon a temperature shift
from 30 to 48 ◦C and, therefore, fitted their proteome dataset. For
half of the 64 significant proteins, the respective transcripts were
also differentially regulated.

A low correlation of transcripts and corresponding proteins has
been reported in the literature (e.g. Greenbaum et al., 2003). For
the temperature shift data of A. fumigatus (Albrecht et al., 2010a),
relationships were examined by Pearson and Spearman correlation.
Many proteins were negatively correlated with their respective
transcript. Only few pairs showed good correlation. Fig. 2 shows
some examples for high positive, low and high negative correlation
of the time courses. Since a protein is most probably not regulated
at exactly the same time point as its transcript, the authors intro-
duced a time delay. Using this approach, all correlations became

much better.

Low correlation between transcriptome and proteome was also
found in a genome-wide analysis of heat shock in an S. cerevisiae
mutant (Jones et al., 2004). This indicates that gene expression
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ig. 2. Example time courses with high negative, high positive, and low correlatio
everal spots for the same protein.

oes not simply flow in a unidirectional manner from transcrip-
ome to proteome. As cells have adopted elaborate regulatory

echanisms at the levels of transcription, post-transcription and
ost-translation, it is found that transcript and protein abundance
easurements often are not concordant.

etwork inference

Genes and proteins carry out their functions within a complex
etwork of interactions, in particular gene regulatory networks,
rotein–protein interaction networks, signaling networks, and
etabolic networks. There are different network model architec-

ures possible (van Someren et al., 2002; Hecker et al., 2009). Due
o the fact that infection is a dynamic process, dynamic modeling
y differential equation systems is preferable as done to model the

mmune response towards bacterial infection (Guthke et al., 2005)
sing the network inference algorithm NetGenerator (Toepfer et al.,
007). The same approach and algorithm have been applied for
odeling the transcriptomic response of A. fumigatus to a tem-

erature shift from 30 to 48 ◦C (Guthke et al., 2007). The gene
xpression time series data were analyzed in 3 steps: First, clus-
ering of time courses of differentially expressed genes; second,
election of cluster-representative genes; third, identification of
he network model structure and parameters. The feature selec-
ion, i.e. the definition of cluster-representative genes, is the critical
tep within this approach of network modeling. In Guthke et al.
2007), this was done by text mining in gene annotations to identify
trings overrepresented in the respective cluster. In an alternative
pproach, the feature selection was performed by gene enrich-
ent analysis based on GO terms. The clusters for sub-strings of

ene descriptions, GO-terms, and representative genes are shown
n Table 1.

The expression profiles of the cluster-representative genes were
imulated by a differential equation system, the structure and
arameters of which were optimized. This procedure was repeated
0,000 times with randomly disturbed input data, and the most
obust network structure was selected. The obtained consensus
etwork structure is shown in Fig. 3. Genes coding for heat shock

roteins are up-regulated transiently, whereas genes coding for
ibosomal proteins are down-regulated transiently. According to
he inferred network, the relaxation of the expression of genes
oding for the heat shock proteins is caused by an influence of the

able 1
obust clusters of gene expression profiles of A. fumigatus after heat shock, their annotati

Kinetics String over-represented
in the gene description

GO-term over-represente
in the gene description

Increasing ‘peroxi’ Peroxisomal part’
Decreasing ‘sterol’ ‘Glucan metabolism’
Maximum ‘heat shock’ Protein folding
Minimum ‘ribosom’ Nuclear part
Fig. 3. Common generalized network structure inferred from gene expression pro-
files monitoring the heat shock.

down-regulated genes coding for membrane and cell wall proteins,
such as erg11. Cell wall or membrane-bound proteins are known
to be primary sensors of environmental stress proteins. The impor-
tance of these proteins in the virulence of pathogenic fungi and their
role in the resistance to antifungal drugs is known. Interestingly, the
gene erg11 (cytochrome P-450 sterol 14-alpha-demethylase) is a
specific target of antifungal triazoles.

Data warehouse

Genome projects, DNA microarray, and proteomics technolo-
gies have increased the amount of generated data from biological
systems. Standardized management of experimental data is a
prerequisite for systems biological research, i.e. for collaboration
between medicine, biology, mathematics, and computer science.
Therefore, the data warehouse OmniFung (www.omnifung.hki-
jena.de) was established to store microarray and 2D gel data from
human-pathogenic fungi (Albrecht et al., 2007). OmniFung is used
as central storage for data from many different research groups.
By this, researchers working in related fields of fungal research
have access to the work of others. This facilitates the sharing of
results and enables researchers to reanalyze data of others with

new techniques or under different points of view.

OmniFung presently contains data from 4 different fungal
species: A. fumigatus, Candida albicans, and C. glabrata are impor-
tant human-pathogenic fungi while Aspergillus nidulans has been

ons and representatives.

d Cluster-representative
genes

Generalized annotation

cat2, fadD35 Oxidative stress response
erg11, matA Cell wall and membrane
hsp30, clpB Chaperones, proteases
rpl3, nip7p Ribosomal protein synthesis

http://www.omnifung.hki-jena.de/
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ncluded as model organism for filamentous fungi. Publicly avail-
ble datasets in OmniFung are accessible without using a login and
assword. Non-public data are in different stages of development
nd are accessible to certain subsets of OmniFung users.

Each dataset in OmniFung contains at least one microarray or
D gel. Each array or gel entry in the database includes an image
nd quantitative data of the spots in the image. OmniFung stores
ranscriptome and proteome data together with extensive experi-

ental annotations, which follow MIAME (Brazma et al., 2001) and
IAPE (Taylor et al., 2007) guidelines. The parameters also serve as
quality measure of a project in OmniFung.

The aim of OmniFung is not only to store data, but also to pro-
ide a platform for analyzing them. Therefore, four data analysis
ools are presently attached to the data warehouse: DIGE analyzer
s the implementation of the pre-processing workflow described
bove. Distance Scan is a tool for prediction of potential functional
ombinations of transcription factor binding sites (TFBSs). Fungi-
un assigns functional annotations to fungal genes or proteins and
onducts enrichment analysis as described above. Survival Anal-
sis was designed to evaluate virulence studies conducted using
urine, egg, or other animal infection models.

mages and movies

There are well established techniques to visualize fungal infec-
ions in hosts, such as confocal laser scanning microscopy and
wo-photon microscopy. The former is used in most microbiology
aboratories, whereas the latter becomes increasingly important
specially for immunologists (Niesner et al., 2008). The majority of
roduced data are images with fluorescently labeled immune cells
nd conidia. Two-photon microscopy has the advantage of imag-
ng in living systems and a better spatial resolution especially in
he three-dimensional case. The emphasis is placed on cell classi-
cation, cell counting, shape and extant measurements, cell–cell
ontacts, phagocytosis events, and, for movies, cell motility and
elocity. However, the image analysis forms the bottleneck in
hese studies. Frequently, images are analyzed manually, including
ounting and tracking, which is very time consuming and error-
rone (Genevesio et al., 2006). Automation of these processes is
he goal of biological image analysis.

Many software packages are written for this purpose. An open
ource software is CellProfiler (Carpenter et al., 2006). It is built on
odules, which can be sequentially applied. It follows a pixel-based

pproach, i.e. individual picture elements (pixel) are examined,
lassified, and potentially merged. CellProfiler was designed for
ommon two-dimensional images and thus has limited support for
ime-lapse and three-dimensional images. Application of CellPro-
ler to fungal infections in human or mice has not been reported
o far.

Another established commercial software with an entirely
ifferent approach is the Definiens Developer XD based on
he Definines Cognition Network Technology®. In contrast to
ixel-based approaches, Definiens does not simply identify the

nteresting objects, but all of the intermediate objects together
ith their interrelationships (context). In this way, a model is built,
hich stores all objects, sub-objects and their semantic relation-

hips hierarchically. The contextual information contained in the
etwork enables the automated extraction of information ana-

ogue to the way a human brain deciphers an image. The network
s described and built via a set of rules which in turn are pro-
rammed using a high level script. An image analysis is designed

n 3 main parts. The first step comprises image enhancement and
oise reduction via different filters. The Gaussian filter and the
edian filter are the most used filtering algorithms in biological

pplications (Soille, 2003). The second and third step, segmentation
Fig. 4. Confocal laser microscope image. Red stained are macrophages, green are
Aspergillus fumigatus conidia. Thin lines represent result of automatically segmented
cells.

and classification, are applied rather alternately than sequentially.
Segmentation, a division of an image into constituent objects, forms
the most vital and most difficult step in an image analysis task
(Wählby et al., 2004). Multiresolution segmentation is a common
method for dividing the background from the objects of interest
(cells) as first step (Bouman and Liu, 1988). Afterwards, all cells have
to be separated from each other. Using the interrelationships and
already gained features, there are a lot of different possibilities to
tackle this task, i.e., different fluorescently labeled objects could be
divided and subsequently classified. Furthermore, a segmentation
of the detected cells into cytoplasm and nucleus or cytoplasm and
phagocytozed conidia is possible. Fig. 3 shows an example image.
After a complete and satisfying image analysis, the resulting fea-
tures, e.g. extent, shape, number of cell types, number of cells per
type, cell velocities, and quantity of cell–cell contacts, are storable
in different formats for modeling of the fungal infection with addi-
tional systems biology tools. The Definiens software is applied to
screenings of different A. fumigatus mutants with respect to diverse
phagocytosis behavior as well as cell-tracking of human immune
cells, e.g. macrophages and neutrophiles, in time-lapse microscopy
images (data not shown).

Conclusions and outlook

Recently, first steps towards a systems biology of Aspergillus
species – in particular those of industrial interest – were made,
including mathematical modeling in genomics, transcriptomics,
proteomics, and metabolomics (Vongsangnak and Nielsen, 2010).
Systems biology of A. fumigatus infection is still in its infancy.
There are first systems biological studies in genomics, transcrip-
tomics, and proteomics of A. fumigatus. Currently, mathematical
modeling of networks in A. fumigatus is limited to small-scale
systems with focused view. The next step will be the develop-
ment of a large-scale genetic network modeling approach that:
(a) integrates multiple distinct sources of measurement data (e.g.

microarray, qRT-PCR, RNA-seq, proteome, protein–protein inter-
action, metabolome, microRNA, ChIP, imaging); (b) integrates
multiple sources of functional data (Gene Ontology, literature min-
ing) and sequence information (TFBS analysis).
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Finally, systems biology of fungal pathogenicity has to include
patial aspects of the host–pathogen interaction. For that level,
patio-temporal data analysis is pivotal and has to be combined
ith genome-wide data analysis. This combination will be most

onveniently realized within the agent-based modeling approach,
here each biological entity is represented as an individual agent.

he agents are equipped with dynamic properties characterizing
heir migration and interaction among each other. These proper-
ies are defined by molecular networks reconstructed from gene
xpression and proteome data (see Fig. 3) as well as by sets of
ules and parameters extracted by context-based image analysis
f spatio-temporal data (see Fig. 4), Next, spatio-temporal data are
sed for model validation. Finally, the dynamic model is applied
o optimally design further experiments forming an iterative cycle
f experimental and theoretical work. The strength of this agent-
ased modeling approach lies in the emergence of collective system
roperties that are not known a priori and, thus, provide this
eneric method with predictive power. The agent-based model-
ng approach is well-established in systems biology (Chavali et al.,
008). The increasing amount of diverse experimental data that
re currently becoming available make it a promising tool to better
nderstand the infection biology of A. fumigatus in the near future.

Ultimately, systems biology of fungal infection aims, first, at
uantitative insights into key mechanisms underlying infection and

mmune responses, second, at developing reliable and predictive
ethods to increase efficiency and productivity for prediction of

ew therapeutic targets, of drug discovery, and, third, at devel-
pment of vaccines and optimized strategies for individualized
herapy (translational systems biology; Vodovotz et al., 2008).
uture advances in understanding as well as prevention and ther-
py of infections caused by A. fumigatus are highly dependent on
ethodological advances and integration of the computational sys-

ems biology community with biologists and clinicians.
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