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ABSTRACT

The Web is a steadily evolving resource comprising much
more than mere HTML pages. With its ever-growing data
sources in a variety of formats, it provides great potential
for knowledge discovery. In this article, we shed light on
some interesting phenomena of the Web: the deep Web,
which surfaces database records as Web pages; the Seman-
tic Web, which defines meaningful data exchange formats;
XML, which has established itself as a lingua franca for
Web data exchange; and domain-specific markup languages,
which are designed based on XML syntax with the goal of
preserving semantics in targeted domains. We detail these
four developments in Web technology, and explain how they
can be used for data mining. Our goal is to show that all
these areas can be as useful for knowledge discovery as the
HTML-based part of the Web.

1. INTRODUCTION

Recent years have seen several new developments in the
realm of the World Wide Web. Many of these developments
are related to improving responses to user queries and dis-
covering knowledge that is useful for user applications. In
this survey article we focus on some major developments,
namely, the deep Web, the Semantic Web, XML (eXtensible
Markup Language) and DSMLs (domain-specific markup
languages). We discuss how each of these four developments
assist in discovering interesting and useful information from
the Web.

The deep Web is the part of the Web that is not stored
as HTML pages, but that is generated on demand from
databases [16; 46; 89]. The Semantic Web [107] is the ex-
tension of the Web that makes data available in semantic
data formats. It incorporates standards such as RDFS [109]
which serve to define and interlink ontologies. XML has be-
come a widely accepted standard in information exchange
because of its self-explanatory tags that allow the storage
of information in semi-structured format [114]. This has led
to research in the field of mining the data represented in
XML [33; 77]. It has also encouraged the development of
DSMLs [44; 99]. These are designed based on the XML syn-
tax and are tailored to specific domains, thus catering to the
needs of targeted user bodies.

This article is motivated by the potential of utilizing these
four developments to improve the user experience of the
Web. As a motivating example, consider the works of the
physicist Albert Einstein. Some data pertaining to his work
cannot be found on the surface Web. Details about co-
authors, e.g., can be found only by posing queries to dis-
cover knowledge from the deep Web. Trivia about Einstein
including his birth details, Nobel Prize information, and so
forth can be better obtained with the help of the Semantic
Web. It uses standards such as RDFS, which add meaning
to the data. XML mining techniques, taking advantage of
underlying semantic and structural information, can be used
to group and search Einstein’s prominent papers on perti-
nent topics and make comparisons between his works and
those of his contemporaries. DSMLs can help to code the
actual content of his formulae and present them in suitable
formats over the Web. This way, they are not treated merely
as pictures, but instead can be queried and used for knowl-
edge discovery in conjunction with mining paradigms. This
example shows how each of these four developments can be
helpful for discovering various forms of interesting informa-
tion across the Web. This article provides a review of the
deep Web, Semantic Web, XML and DSMLs, focusing on
essential concepts, and explaining how these developments
enhance the discovery of useful information.

The rest of this survey article is organized as follows. Sec-
tion 2 describes how knowledge can be discovered from the
deep Web, covering both extensional and intensional ap-
proaches and related topics [83; 23; 113; 22]. Section 3 ex-
plains how the Semantic Web can help retrieve meaningful
information, using RDF, RDFS, OWL, and SPARQL [108;
109; 4; 111; 92]. Section 4 focuses on knowledge discov-
ery from the data stored using XML. We provide insights
on the benefits and challenges that XML mining research
brings and explain how the XML data can be modeled and
mined with a focus on clustering and frequent-pattern min-
ing [2; 53; 62]. Section 5 focuses on domain-specific markup
languages. We explain their usefulness in storing and re-
trieving data within a given domain, and also emphasizing
their significance in data mining and knowledge discovery
[30; 102; 115] along with suitable examples. Section 6 pro-
vides a general outlook and discusses some challenges and
open issues in all these areas. Finally, Section 7 presents the
summary and conclusions.



2. THE DEEP WEB FOR DISCOVERING
HIDDEN KNOWLEDGE

2.1 The Deep Web

The whole content of the Web cannot be reached by just
following hyperlinks. ~ Web-accessible databases such as
weather information services or library catalogs usually need
to be queried by filling in fields of a HTML form. Even when
the information is accessible by following links, it can be
more effective to find it through a (possibly elaborate) Web
form query. The terms hidden Web [83], deep Web [16], in-
visible Web [84] have been used in the literature to describe
more or less the same thing: the part of the Web which is
not accessible through hyperlinks, and that is typically con-
structed from databases. Both terms hidden and invisible
insist on the inaccessibility of this information to search en-
gines, while deep insists on the fact that the information lies
in databases behind forms, and requires deeper crawls than
the usual surface crawls of search engines.

A 2000 study from the company BrightPlanet [16] has had
much impact on the development of research about the deep
Web. This study uses correlation analysis between search re-
sults of different search engines to estimate the size of the
deep Web; they found that it contains between 43,000 and
96,000 Web databases, with around 500 times more content
than the surface Web. In other words, the largest part of
the content present on the Web is not exploitable by clas-
sical search engines. Although this kind of estimation is by
nature quite imprecise, other more recent works [46] confirm
this order of magnitude with another estimation approach
and come up with a number of around 400,000 databases
(this takes into account the growth of the Web between the
times of the two studies). Moreover, even directories that
are specializing in listings databases on the Web—a large
list of these is given in [84]—have poor coverage of the ser-
vices of the deep Web (15% at best, cf. [46]). This is a clear
motivation for designing systems that discover, understand
and integrate deep-Web services.

Though these numbers may be surprising at first, it is easy
to see that there is a lot of content on the deep Web: Yel-
low pages services and other forms of directories (it is likely
that the phone numbers of a given person are available in
deep Web databases, such as a phone company directory,
or an internal directory of some institution, even though
they might not appear on the surface Web), library catalogs,
weather forecast services, geolocalization services, adminis-
trative sources, such as the database of the United States
census bureau, etc. Moreover, there are cases when it makes
sense to access content of the surface Web through services
of the deep Web, to use them in a more semantic way. This
is for instance the case with e-commerce Web sites, which
present their catalogs on the surface Web in order to be in-
dexed by search engines, but allow for fine-tuned querying
when accessed through advanced search forms. This is also
the case if you want to retrieve, say, the names of all co-
authors of Albert Einstein; though all his articles are prob-
ably available on the surface Web, it is much more effective
to ask the corresponding query to a scientific publication
database service like Google Scholar.

The question is, how to benefit from this information. How
to discover it, to index it, and to be able to use it when
answering a user’s query? We focus especially on automatic

approaches for knowledge discovery over the deep Web, with
as little human interaction and supervision as possible.

2.2 Mining the Deep Web

We define here some of the important concepts related to
the deep Web. A response page is a page that is gener-
ated in response to some request, in most cases from data
stored in a database. A query form is a Web page with an
HTML form that, when submitted, triggers the creation of
a response page. A query form consists of multiple fields,
where each field can be filled with either a value from a pre-
defined list or with free text. A Web service, as it is defined
by the World Wide Web consortium, is ”a software system
designed to support interoperable machine-to-machine inter-
action over a network” [112]. Web services are an arguably
rare form of content of the deep Web, and are typically for-
mally described using WSDL, the Web Service Description
Language, a W3C standard. We assume we are mostly in-
terested in deep Web content pertaining to some domain of
interest (e.g., research publications), described by a set of
domain concepts (which can just be strings like “author” or
“publication”, or something more elaborate, e.g., an element
of an ontology, see Section 3).

A survey of a number of systems that deal with services of
the deep Web can be found in [84]. Most current approaches
can be roughly classified into extensional strategies (retriev-
ing information from the deep Web and storing it locally to
process it) and intensional strategies (analyzing services to
understand their structure, store this description, and use it
to forward users’ queries to the services). We discuss next
both approaches, before going into more detail of the indi-
vidual tasks that such systems need to perform.

Extensional Approach. In the extensional approach,
shown in Figure 1, the first step is to discover sources of
the deep Web of interest, say, from a given domain. The
entry point to these sources will typically be an “advanced
search” HTML form. From then, the extensional approach
consists in trying to submit this query form with some sam-
ple words, in order to siphon the entire content of the Web
site, resulting in a large number of result pages. We prob-
ably want to use some kind of bootstrapping, i.e., to start
with a small set of words to enter in the query form, that
might come from some domain knowledge, and then discover
new words from the result pages to query further the form.
Once a sufficient portion of the content of the Web site has
been siphoned, result pages can be indexed and queried as
if there were pages of the surface Web.

One of the first practical works on the deep Web [83] follows
the extensional strategy: HiWe is a general system for repre-
senting forms and mapping their fields to concepts (relying
heavily on human annotation), so as to retrieve result pages
that are cached in a local index. This approach has several
advantages, including a relative domain independence, ef-
fectiveness, and efficiency. By storing deep Web pages like
other regular Web content, this approach also allows search-
ing indiscriminately deep Web and surface Web data. How-
ever, it also poses a considerable load on the source because
it siphons the source entirely. Google has been experiment-
ing with this approach [67] (the authors call it surfacing).
The main challenges raised by the extensional approach are
the following. First, a knowledge discovery system from the
deep Web needs to discover services of interest. Next, it
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Figure 1: The Extensional Approach

needs to select relevant data to submit forms with. Data
found in result pages can be used to bootstrap this siphon-
ing process. And we need the whole process to cover some
large enough portion of the database. Note that the ex-
tensional approach is not always feasible, because it either
imposes a high load in terms of bandwidth and computation
time on Web servers, or requires a very long time to siphon
an entire database (a whole month would be required to re-
trieve ten million Web pages without asking more than one
page every ten seconds). If such an approach were to be-
come commonplace, it is likely that new crawling ethics and
guidelines would have to be agreed upon by Web content
providers and search engines.

Intensional Approach. The intensional approach, shown
in Figure 2, starts as the extensional one by discovering ser-
vices of interest. The result pages are also generated as in
the extensional approach, but much more parsimoniously:
the goal here is not to siphon the entire database, but to re-
trieve enough pages (maybe only one, or a handful of them)
to have enough data for analyzing the structure of these
pages, i.e., analyzing how they are formatted. If a system is
able to analyze both the structure of input forms (to know
which fields represent which concepts), and the structure of
output pages, then it is essentially able to deal with a form
made for human as with a Web service made for machines.
Therefore when a user issues a query relevant to the domain
of the form, this query is translated, rewritten, using the
querying capabilities of the form, and the relevant results
extracted from the result pages are presented to the user.

Extensive research about the intensional indexing of the
deep Web was led by a group at University of Illinois at
Urbana-Champaign, with some external collaborations [23;
113; 22]. Two systems that have been developed in this con-
text are MetaQuerier and WISE-Integrator. The aim is to
discover and integrate sources of the deep Web for query-
ing them in a uniform way. There is a strong focus in these
works on schema matching between different sources. Meta-
Querier [23] uses a holistic approach, that is, matching a
number of different sources at once, rather than pair-wise
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Figure 2: The Intensional Approach

matching. In particular, the global schema is typically not
predefined but derived from clustering of the fields from dif-
ferent sources. This type of work essentially focuses on the
analysis of the syntax of the form and the discovery of con-
cepts in its different fields (some recent works [113; 22] also
deal with the analysis of the result pages).

An intensional approach is obviously more ambitious than
the extensional one. The main issues here are first, as before,
discovering services of the deep Web. Then, we now need to
really understand the structure (and, hopefully, semantics)
of both a Web form and a result page. In the latter case,
we actually want to build, automatically, a wrapper for this
kind of result page. Understanding what inputs a service ex-
pects (form analysis) and what outputs it produces (result
page analysis) may actually not be sufficient. The problem
is that a machine cannot easily know the semantics of a ser-
vice. For example, assume that a service takes as input a
person name and yields as output another person name. Is
it a genealogical service that gives ancestors? A human re-
source service giving supervisors? Therefore, theoretically,
a true semantic analysis of the relations between the input
and output of a service should be performed, but this is a
very deep and complex problem. In some domains of inter-
ests (e.g., scientific publication databases), there are actu-
ally not many semantic ambiguities: a name is usually (but
not always!) the author of a paper and a year the publica-
tion date. Finally, an advantage of an intensional approach
is that it does not impose any high load on Web servers,
since we are only interested in generating result pages that
help us analyzing the structure of the service, and is as such
much more scalable than the extensional one. Then pro-
cessing a user’s query can result in further queries to the
service.

Note that, in contrast with the extensional approach, the
outcome of the intensional one is very different from regular
Web content: it is a semantic description of services, that
can be queried when needed for answering a user’s query.
As such, it relates more to semantically described data in
the spirit of the Semantic Web than to regular Web pages.



2.3 Deep Web Mining: Components

We discuss next the most important steps of both the ex-
tensional and intensional approaches.

Discovery of Services. The first task needed by a knowl-
edge discovery system for the deep Web is to find deep Web
sources of interest. It basically includes crawling the Web
and selecting some HTML forms (deep Web sources might
also be accessible through SOAP Web services, but this is
rare). The problem is, not all forms are entry points to a
deep Web database. We certainly do not want to submit
hotel reservation or mailing list subscription forms, for in-
stance. It is also probably not interesting to see a simple
keyword search interface (say, Google search) over a Web
site or a collection of Web sites as a deep Web source, since
it will only retrieve pages from the surface Web. When we
crawl the Web to discover services, we have to detect services
with side effects to exclude them and it is not easy to do so.
We shall have to rely on heuristics such as avoiding services
requiring the input of an email-address, a credit-card num-
ber, or a password (unless this service has been explicitly
declared by a user of the system). As already mentioned,
we are only interested in services relevant to some domain of
interest. If, for instance, we crawl the Web to discover ser-
vices, we must “focus” the crawl to the domain of interest;
this kind of focused crawling of the Web has been studied
in [19]. An interesting approach to the specific problem of
focused crawling for discovering forms is presented in [9].
The authors combine classical focused-crawling techniques,
with a page classifier for the domain of interest, with two
sources of feedback that help controlling it: a form classifier
that checks whether a form is of interest, and a link classifier
that considers features of the history of the links followed to
get to the current page.

Form Analysis. Although some of the sources of the deep
Web are Web services described in WSDL, these are mi-
nority. Most of the services that can be found on the deep
Web are accessible through an HTML form interface, and
their results are shown as HTML result pages. In order to
both understand and index these services, we need to un-
derstand the structure of form interfaces, that is to map
each field with some concept of the domain of interest. We
assume here that fields can be queried independently from
each other, which is a common (but not always valid) as-
sumption. A number of techniques have been proposed [83;
55; 18; 90], mostly based on the idea of probing. We present
briefly the idea of [90]. This is a two-phase process, the first
phase being quite straightforward. First, we build a tex-
tual context for each field (1abel tag associated to the field,
id or name attributes, all surrounding text). Standard text
preprocessing techniques such as stop-word removal, stem-
ming, etc are applied. The resulting bag of tokens can then
be matched with domain concepts. This straightforward
process gives us candidate annotations, which are usually of
rather good quality (very high recall, high precision), but we
do not stop here. For each candidate annotation with con-
cept ¢ that the system has just obtained, the following steps
are applied. First, the field is probed (and the form sub-
mitted) with some nonsense word, such as the one obtained
when one types randomly on a keyboard. Hopefully, the re-
sult page should be an error page stating that there were no

results to the query. Then, the field is probed with words
that appear in instances of concept ¢ (e.g., last names for
a field expecting a person). The pages obtained by probing
with an instance word are then compared to the error page.
A structural clustering (for instance based on the DOM tree
of the page) can be obtained for that purpose. If enough
result pages that are not similar to the error page are ob-
tained, the result can be confirmed. Experiments show this
confirmation phase improves precision vastly without hurt-
ing recall. In the extensional case, we actually want to sub-
mit the form repetitively, with a huge number of instance
words, in order to generate as many result pages as possi-
ble, and hopefully to cover the whole content of the deep
Web database. We can bootstrap this with just a few ex-
ample words, if we use words found in the result pages (and
especially, frequent words) to submit the form.

Result Page Analysis. In the intensional case, once a form
is understood, the structure of result pages needs to be un-
derstood as well. Typically, result pages present a set of
records with fields, with the same presentation for a given
deep Web database. But this presentation is unknown. It
can be a HTML list, a table or a set of paragraphs sepa-
rated by whitespace. The structure of fields inside this set
of records can also be quite diversified. The goal is to be
able to build wrappers for a given kind of result pages, in a
fully automatic, unsupervised, way. Unsupervised wrapper
induction is a very complex problem. We are just going to
give a sketch of what can be done. We start with example
result pages, that are unlabeled. The main idea is to use
the repetitive structure of these pages to infer a wrapper for
all pages sharing the same structure. Thus, if we detect a
table structure with various number of lines, we might be
able to infer automatically that the records are contained in
the rows of such tables. Systems like RoadRunner [27] or
ExAlg [5] perform this unsupervised wrapper induction by
inferring some regular expression that describes best (and
most concisely) the repetitive structure (e.g., DOM tree)
of a page. This is unfortunately not enough. We do not
want only to know where the data is, but we also want to
label it. Labeled unsupervised wrapper induction is even
harder. A promising idea, developed in [90], is to use a
structural wrapper induction technique in conjunction with
a technique that relies on the content itself. We can use the
domain knowledge to first annotate the original documents
(named entity recognizers can recognize some tokens as a
person name, as a date, etc.), and then use the structure of
the document to generalize the annotation. This is proba-
bly akin to what humans perform when they are presented
with a result page: first, they recognize some known tokens
(person names, dates, things looking like titles), and then
they infer that the person names are thus located in this
particular place on the page, e.g., as hyperlinks inside the
second column of some table.

Scalability. As Web sites can be processed independently
of one another, and each operation (form classification, form
and result page analysis), however costly, only applies to a
small number of pages per site, the intensional approach is
fairly scalable — the number of deep Web sources processed
increases linearly with added computing and network re-
sources. On the other hand, the extensional approach, by



siphoning entire Web databases, is sometimes not usable on
large Web sites.

On the basis of this discussion about the background of
the deep Web and its mining approaches, we can see that
the deep Web does indeed present considerable potential for
knowledge discovery.

3. THE SEMANTIC WEB TO RETRIEVE
MEANINGFUL INFORMATION

Recent years have seen a steady increase of publicly avail-
able data. This includes, for example, government census
data, life science data, scientific publications, user gener-
ated content on social networks or natural language Web
pages. These data are scattered all over the globe, residing
on different servers in a multitude of formats. Some data are
available as HTML or XML files, others as deep Web sites
and again others as downloadable data files. This entails
that an application cannot easily bridge data from different
sources. For example, a library system in Germany cannot
easily access books stored in a French library system, an air-
line booking system cannot interact with an airport shuttle
service, and smart phone is currently not smart enough to
figure out the opening hours of a restaurant.

These barriers amongst data sources gave rise to the idea
of the Semantic Web. The Semantic Web is an evolving ex-
tension of the Web, in which data is made available in stan-
dardized, machine-readable semantic formats. On a more
abstract level, the Semantic Web project aims at defin-
ing the semantics of data and services, at facilitating the
sharing of information across different servers and systems
and, ultimately, at allowing machines to understand and
answer semantic knowledge requests. The project is driven
by the World Wide Web Consortium, in collaboration with
academic and industrial partners. Currently, the Semantic
Web comprises several dozen knowledge bases with billions
of units of knowledge [12]. These include general seman-
tic knowledge bases about the entities of this world (such
as Albert Einstein or the Theory of Relativity) as well as
domain-specific data sources, such as movie collections, bib-
liographies, or geographic databases. All of this data is
available under permissive licenses, and in one standard-
ized format, which makes it particularly interesting for data
mining. This section will introduce the building blocks of
the Semantic Web and then explain how the semantic data
can be mined.

3.1 Building Blocks of the Semantic Web

URIs and Namespaces. For the Semantic Web, the basic
units of knowledge are entities. An entity is an abstract or
concrete thing, whether it exists or not. For example, Al-
bert Einstein, the Theory of Relativity, and the city of Ulm
are all entities. Knowledge bases (KBs) define properties
of entities. For example, a biographical KB may define the
birth date and the profession of Albert Einstein.

The KBs refer to the entities by identifiers. For instance, a
KB might refer to Albert Einstein by the identifier AlbertE-
instein. In order to bridge knowledge across different KBs,
we have to make sure that no two sources use the same iden-
tifier for different entities. This is the purpose of Uniform
Resource Identifiers (URIs). A URI can be understood as
a generalized form of an Internet address. Unlike Internet

addresses, URIs do not have to be accessible on the Internet.
For example, http://biographies.com/AlbertEinstein is
a valid URI, even if it cannot be accessed in a browser.
Since Internet domains are allocated globally and since do-
main owners can assign sub-domains and paths at their own
discretion, a URI used by one KB can be guaranteed to be
different from the URIs used by other KBs. This way, the
domains form disjoint namespaces for URIs. Technically,
a URI is a string that follows a certain syntax specifica-
tion [78]. Since URIs are quite verbose, it is common to
use mamespace prefizes. A namespace prefix is an abbre-
viation for the prefix of a URI. For example, throughout
this article, we will use the string b to abbreviate the URI
prefix http://biographies.com/. Then, instead of writing
http://biographies.com/AlbertEinstein, we can equiva-
lently write b:AlbertEinstein. Such an abbreviated URI
is called a gname. Qnames are a purely notational simplifi-
cation of URIs.

RDF. In order to make knowledge from different KBs inter-
operable, the knowledge has to be represented in one unified
format. This is the purpose of the Resource Description For-
mat (RDF) [108]. RDF is a knowledge representation model
that closely resembles the Entity Relationship model. Each
piece of information is represented as a statement in RDF,
i.e., as a triple of three URIs: a subject, a predicate and an
object. The statement says that the subject and the object
stand in the relation given by the predicate. For example,
the following statement says that Albert Einstein received
the Nobel Prize:
b:AlbertEinstein b:received b:NobelPrize
Relationships (such as b:received) are also entities. They
are identified by URIs and can also be the subject or
the object of a statement. By using URIs, a statement
can easily span entities described in different KBs. For
example, assume that some other KB in the namespace
http://nobelpriset.sv/ defines the entity NobelPrize.
The following statement re-uses the identifier from this KB:
b:AlbertEinstein b:received
http://nobelpriset.sv/NobelPrize

RDF predicates are always binary relationships. Sometimes,
relationships with higher arity are necessary. For example,
to state that Albert Einstein received the Nobel Prize for
the discovery of the photoelectric effect, we would need a
ternary relationship. In RDF, the standard way to represent
these relationships is to introduce a new entity, an event en-
tity. This event entity is then linked by binary relations to
each of the arguments. In the example, we could introduce
an event entity b:e42, and the binary relations b:laureate,
b:prize, and b:discovery). Then, the sample fact can be
represented as:

b:e42 b:laureate b:AlbertEinstein
b:e42 Db:prize b:NobelPrize
b:e42 b:discovery b:PhotoelectricEffect

Standard Vocabulary. By RDF statements, a KB can de-
fine and describe entities, including relationships. Other
KBs can refer to these entities by URIs. In the ideal case,
all KBs would use the same URI for the same entity. In
reality, many KBs define their own URI for an entity. How-
ever, there are a number of standard KBs that provide a



Table 1: Common Namespace Prefixes

rdf: The basic RDF vocabulary (see Section 3.1)
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

rdfs:  RDF Schema vocabulary (see Section 3.1)
http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

owl: Web Ontology Language (see Section 3.1)
http://www.w3.0rg/2002/07/owl#

xsd: Data types
http://www.w3.0rg/2001/XMLSchema#

dc: Dublin Core (predicates for describing documents)
http://purl.org/dc/elements/1.1/

dbp:  The DBpedia ontology (real-world entities)
http://dbpedia.org/resource/

yago: The YAGO ontology (real-world entities)
http://yago-knowledge.org/resource/

foaf: Friend Of A Friend (relationships between people)
http://xmlns.com/foaf/0.1/

cc: Creative Commons (types of licences)
http://creativecommons.org/ns#

standard vocabulary of entities that is often re-used across
KBs. Table 1 lists some of them with their usual namespace
prefixes.

RDFS. Entities with similar properties are grouped in a
class. For example, people involved in physics are grouped
in a class physicist. In RDF, a class is referred to by a
URI and it can appear in statements. For example, to state
that Einstein is a physicist, one would write:

b:AlbertEinstein rdf:type b:physicist
We are using the rdf namespace prefix here to reference
the relationship type that is defined by the RDF stan-
dard vocabulary (see Table 1). The RDF standard vocab-
ulary defines a very limited set of entities. It is extended
by the vocabulary of the Resource Description Framework
Schema (RDFS) [109]. RDFS defines relationships such as
subClass0f and domain, which can be used to state that a
class is a sub-class of another class or that a predicate has
a certain domain, respectively:

b:physicist rdfs:subClass0f b:scientist

b:received rdfs:domain b:person
The hierarchy of classes with their super-classes is called
a tazonomy. RDFS also defines a number of logical en-
tailment rules, which define logical consequences of RDFS
statements.

OWL and Ontologies. To specify consistency of KBs, we
can use the Web Ontology Language OWL [4]. Technically,
OWL is an additional KB that defines a vocabulary of enti-
ties and relationships. To say, e.g., that b:bornInYear is a
many-to-one property, we can use one of the classes defined
in OWL:

b:bornInYear rdf:type owl:FunctionalProperty
OWL also defines the vocabulary for set operations on
classes, restrictions on properties and equivalence of classes.
For example, we can state that the classes of meat and fruit
are disjoint:

b:meat owl:disjointWith b:fruit
The OWL vocabulary comes with a definition of entailment:

Table 2: Some RDF knowledge bases

Name URL Size

Freebase http://wuw.freebase.com 100m
(community collaboration)

DBpedia [6] http://www.dbpedia.org 1b

(from Wikipedia, focus on interlinking)
YAGO [92] http://yago-knowledge.org/resource/ 120m
(from Wikipedia, focus on accuracy)

Bio2RDF  http://www.bio2rdf.org 2.4b
(from biological data sources)

MusicBrainz http://www.musicbrainz.org 23k
(Artists, Songs, Albums)

Geonames http://wuw.geonames.org 93m
(Countries, Cities, Capitals)

DBLP http://dblp.13s.de/d2r/ 28m
(Papers, Authors, Citations)

US Census www.rdfabout.com/demo/census 1b

(Population statistics)

it specifies which statements logically entail which other
statements. It also comes with a definition of inconsistency,
i.e., which statements are contradictory. For example, a
consistent KB cannot contain statements using a functional
predicate with more than one object for a given subject.
There are dozens of large-scale KBs on the Semantic Web.
Table 2 lists some of the largest ones.! In the Semantic Web
world, the word ontology is often used synonymously with
knowledge base. In a stricter sense of the word, ontology
refers to the T-Box of a KB. The T-Box of a KB is the
definition of classes, relations, and constraints, i.e., roughly
the statements with relations from the namespaces of RDFS
and OWL.

3.2 Mining the Semantic Web

RDF Access. The standard way of exchanging RDF data
is by encoding the statements in XML [110]. Since the XML
syntax for RDF is quite verbose, RDF data is often just ex-
pressed as space-separated triples of subject, predicate and
object in plain text. This notation is called Notation 8 and
is used throughout this section.

RDF data can be exposed to other applications either as
downloadable data files or through a dereferencing proto-
col. The latter works as follows: If a semantic URI (such
as http://biographies.com/AlbertEinstein) is accessed,
the server responds with an RDF document about the en-
tity. This way, a semantic application can gather knowledge
about a given entity. Another way to access an RDF knowl-
edge base is through SPARQL. SPARQL is a query language
that is very similar to SQL. Thus, to ask, for example, where
Einstein was born, we can send the following query to a KB

PREFIX b: <http://biographies.com>
SELECT ?x WHERE { b:AlbertEinstein b:bornIn ?x.}

An answer to this query would bind the variable 7x to a
URI. Many KBs offer public SPARQL endpoints.

Ontology Matching. Two KBs can use different URIs to
refer to the same entity. This becomes a problem if knowl-
edge is to be queried or joined across KBs. The Linking

1Some numbers from http://esw.w3.org/topic/TaskForces/
CommunityProjects/LinkingOpenData
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Open Data Project [12] aims to establish links between URIs
that represent the same entity. As we have discussed in [91],
this problem has its roots in the problem of identifying du-
plicate entities, which is also known as record linkage, du-
plicate detection, or co-reference resolution. This problem
has been extensively studied in both database and natural
language processing areas [13; 35]. These approaches are
less applicable in the context of ontologies for two reasons.
First, they do not consider the formal semantics that on-
tologies have (such as the subClassOf taxonomy). Second,
they focus on the alignment of entities and do not deal with
the alignment of relations and classes.

There are a number of surveys and analyses that shed light
on the problem of record linking in ontologies. Halpin
et al. [45] provide a good overview of the problem in general.
They also study difficulties of existing sameAs-links. These
links are further analyzed by Ding et al. [34]. Glaser, Jaffri,
and Millard [40] propose a framework for the management
of co-reference in the Semantic Web. Hu et al. [52] provide
a study on how matches look in general.

Some approaches to ontology matching have focused mainly
on aligning the classes, and not the entities. Such ap-
proaches use techniques such as sense clustering [42], lex-
ical and structural characteristics [57], or composite ap-
proaches [7]. These approaches can only align classes and do
not consider the alignment of relations and entities. Other
approaches in this field are [56] and [106], which derive class
similarity from the similarities of the entities. Both ap-
proaches consider only the equivalence of classes and do not
compute subclasses. They do not align relations or entities.
There are numerous approaches to match entities of one on-
tology to entities of another ontology. Ferrara, Lorusso, and
Montanelli [37] introduce this problem from a philosophi-
cal point of view. Different techniques are being used, such
as exploiting the terminological structure [81], logical deduc-
tion [85], declarative languages [5], relational clustering [11],
or a combination of logical and numerical methods [86]. The
Sig.ma engine [97] uses heuristics to match entities. The
work in [49] introduces the concept of functionality for this
purpose. The LINDA system [8] matches entities on large-
scale datasets in a distributed manner.

The silk framework [105] allows specifying manual mapping
rules. The ObjectCoref approach by Hu, Chen, and Qu [51]
allows learning a mapping between the entities from training
data. Hogan [48] matches entities and proposes to use these
entities to compute the similarity between classes.

Some approaches address the cause of aligning both classes
and entities simultaneously: the RiMOM [66] and iliads [98]
systems. Both of these have been tested so far on small on-
tologies. The RiMOM system can align classes, but it can-
not find subClassOf relationships. The PARIS system [91]
goes one step further: It can align entities, relations, and
classes at the same time. PARIS can align DBpedia and
YAGO, two of the largest available KBs, in a few hours. Ul-
timately, the goal of ontology matching is to link the whole
Semantic Web Universe into one big RDF graph.

Rule Mining. Patterns in the KB can be formalized by
rules. For example, the following rule says that the husband
of a mother is often the father of her child:

motherOf (m, c) A marriedTo(m, ) = fatherOf(f,c)

Such rules can be mined from a KB by Inductive Logic Pro-
gramming (ILP). ILP bears resemblance to association rule
mining [3], but mines logical rules instead of transactions.
ILP usually requires counter-examples, i.e., statements that
are known to be false. RDF KBs, in contrast, contain only
positive information, and no negative statements. There-
fore, the ILP approaches have to simulate counter-examples
when applied on Semantic Web data.

As we have summarized in [38], there are several such ILP
systems. Sherlock [88] is an unsupervised ILP method to
learn first-order Horn clauses from a set of extracted facts
for a given target relation. It uses probabilistic graphical
models to infer new facts and a scoring function to judge
the quality of rules even in the absence of counter-examples.
The WARMR system [32; 31] mines patterns that corre-
spond to conjunctive queries. It uses a declarative language
bias to reduce the search space. WARMR assumes that all
information that is not in the KB is false. An extension of
the system, WARMER [41], modified the approach to sup-
port a broader range of conjunctive queries and increase the
efficiency of search space exploration.

The ALEPH system? is a general purpose ILP system,
which implements Muggleton’s Inverse Entailment algo-
rithm [71] in Prolog. In order to learn in the absence of
negative examples, ALEPH can run with a scoring function
that uses random facts as counter-examples.

The AMIE system [38] was specifically designed to work on
RDF KBs. It relies on the partial completeness assumption
to generate counter-examples. AMIE is designed to work on
large scale KBs and can mine rules from YAGO or DBpedia
in a few minutes.

Another approach [80; 79] was proposed to discover causal
relations in RDF-based medical data. A domain expert first
defines targets and contexts of the mining process, so that
the correct transactions are generated. Other approaches
use rule mining to generate the schema or taxonomy of a
KB. [24] applies clustering techniques based on context vec-
tors and formal concept analysis to construct taxonomies.
Other approaches use clustering [69] and ILP-based ap-
proaches [28] to derive a schema of the KB. [43] applies
clustering to identify classes of people on the FOAF net-
work, and ILP to learn descriptions of these groups. Another
example of an ILP-based approach is the DL-Learner [65],
which has successfully been applied [47] to generate OWL
class expressions from YAGO. As an alternative to ILP tech-
niques, [104] propose a statistical method that does not re-
quire negative examples.

[59] proposes an algorithm for frequent pattern mining in
knowledge bases represented in the formalism of DL-safe
rules. Other approaches use rule mining for ontology merg-
ing and alignment [70; 29; 82]. The AROMA system [29], for
instance, uses association rules on extracted terms to find
subsumption relations between classes and properties of dif-
ferent ontologies. Another application is to generate ontolo-
gies directly from natural language text. Several approaches
have been proposed that apply association rule mining [68;
103] to generate non-taxonomic relations from text. [58] con-
siders the problem of redundant or over-generalized pat-
terns.

In [93] typical temporal orderings between relations (e.g.

actedIn(person, film) happens before wonPrize( film, award))

2http://www.cs.ox.ac.uk/activities/machlearn/Aleph
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are induced based on the narrative order of inferred men-
tions of these relations, averaged across many documents.
Mining is applied in this context to find verbs that express
certain relations. Since RDF data can also be considered a
graph with resources as vertices connected by edges labeled
with predicates, mining frequent subtrees [21; 60] is another
related field of research.

Scalability. The Semantic Web contains billions of state-
ments about hundreds of different topics. All data is publicly
available on the Web for free. This makes the Semantic Web
one of the largest free providers of non-synthetic “Big Data”.
It also poses challenges to the scalability of data mining ap-
proaches. Several systems have been shown to work even on
millions of statements [91; 38; 8]. Nevertheless, scalability
remains an important challenge. This is because the Seman-
tic Web is distributed, which allows it to grow fast. Most
mining approaches, in contrast, are centralized.

4. KNOWLEDGE DISCOVERY FROM XML
DOCUMENTS

With the massive growth of the Internet and Intranet, XML
(eXtensible Markup Language) has become a ubiquitous
standard for information representation and exchange [1].
Due to the simplicity and flexibility of XML, a diverse va-
riety of applications ranging from scientific literature and
technical documents to handling news summaries utilize
XML in data representation. The English version of web-
based free-content encyclopedia known as Wikipedia is rep-
resented as more than 3.4 million XML documents. More
than 50 domain-specific languages have been developed
based on XML [102], such as MovieXML for encoding movie
scripts, GraphML for exchanging graph structured data,
Twitter Markup Language (TML) for structuring the twit-
ter streams and many others.

With the growing number of XML documents on the Web,
it becomes essential to effectively organize these XML doc-
uments for retrieving useful information from them. The
absence of an effective organization of the XML documents
causes a search of the entire collection of XML documents.
This search may not only be computationally expensive but
my result in a poor response time for even simple queries.
Knowledge discovery from XML documents, i.e., XML Min-
ing, has been perceived as potentially one of the more ef-
fective solutions to improve XML data management for fa-
cilitating better information retrieval, data indexing, data
integration and query processing [77; 74]. However, many
issues arise in discovering knowledge from these types of
semi-structured documents due to their heterogeneity and
structural irregularity.

We present the challenges and benefits of applying mining
techniques on XML documents as well as some of the pop-
ular XML data modeling and mining techniques.

4.1 XML Mining: Benefits and Challenges

Due to the inherent flexibility of XML, in both structure
and semantics, modeling and mining useful information from
XML documents is faced with new challenges as well as ben-
efits. Mining of structure along with content provides new
insights into the process of knowledge discovery. XML data
mining methods can improve the accuracy and speed of the
XML-based search engines in retrieving the relevant por-

tions of data (1) by suggesting similar XML documents by
structure and content after utilizing XML clustering results,
and (2) by discovering the links between XML tags that oc-
cur together within XML documents after utilizing XML
frequent pattern mining results. For example, a data min-
ing rule can discover that the (telephone) tags must appear
within (customer) tags from a collection of XML documents.
This information can be used by searching only customer
tags when executing a query about finding telephone details
thus making the information retrieval efficient.

XML mining is an intricate process requiring both the struc-
ture features (that is, tags and their nesting therein) and the
content features to consider within XML documents to de-
rive meaningful information from them. However, many ex-
isting knowledge discovery methods of XML documents use
either the structural features or the content features for find-
ing useful information due to scalability issues [61; 73; 76;
2; 62; 33]. The sheer size and complexity of using values of
both features and their relationships, in a matrix/tree/graph
representation, and then processing those values to identify
classes, clusters, patterns and rules turn the XML knowledge
discovery process difficult and complex.

Another difficulty inherent in knowledge discovery from
XML documents is flexibility in the design of XML doc-
uments. XML document authors are allowed to use user-
defined tags without much structural constraint imposed
with them. This results in multiple document representa-
tions for a similar content features, and different content
features presented in the similar structural representations.
A knowledge discovery approach should consider the het-
erogeneity of content and structure features within XML
documents.

In summary, the strength of XML such as the capability
of presenting content in a hierarchical and nested struc-
ture, flexibility in its design, capability to represent data
in various forms, online availability and being distributed
and autonomous, make the knowledge discovery from XML
documents complex and challenging. Consider the following
example. Figure 3 shows the fragments of five XML doc-
uments from the publishing domain. The XML fragments
shown in d1, d2 and d3 share a similar structure and so do the
fragments in d4 and ds. If the structural similarity is con-
sidered as a criterion for clustering, two clusters are formed
namely Books and Conference Articles grouping these two
sets of fragments. However, it can be noted that this cluster-
ing solution has failed to distinguish between the documents
(or books) of two genre and has put them all together in one
cluster. For example, (d1) and (d2, d3) of the Books cluster
differ in their content. On the other hand, clustering of doc-
uments based on the content features similarity will result
in two clusters, grouping ds2, ds, d4 and ds in one cluster and
placing d; in another cluster. It can be noted that this clus-
tering solution has failed to distinguish between conference
articles and books that follow two different structures. In or-
der to derive meaningful grouping, these fragments should
be analyzed in terms of both their structural and content
features similarity. For example, clustering XML documents
by considering both the structural and content features to-
gether will result in three clusters, namely Books on Data
Mining, Books on Biology and Conference articles on Data
Mining. This grouping of documents can be used for effec-
tive storage and retrieval of XML documents on the Web.



dy: (Book)
(T'itle) On the Origin of Species (/T'itle)
(Author) (Name) Charles Darwin (/Name) (/Author)
(Publisher) (Name)John Murray (/Name) (/Publisher)
(/Book)
do: (Book)
(T'itle) Data Mining concepts and Techniques (/T'itle)
(Author) Jiawei Han (/Author)
(Author) Micheline Kamber (/Author)
(Publisher) Morgan Kaufmann (/Publisher)
(Year)2006(/Y ear)
(/Book)
ds: (Book)
(T'itle) Data Mining: Practical Machine Learning Tools
and Techniques (/Title)
(Author) Eibe Frank (/Author)
(Author) Ian Witten (/Author)
(/Book)
ds: (Conference)
(ConfTitle) Survey of Data Mining Techniques (/Con fTitle)
(ConfAuthor) John Smith (/ConfAuthor)
(ConfYear) 2007 (/ConfYear)
(ConfName) STAM International Conference (/ConfName)
(/Conference)
ds: (Conference)
(ConfTitle) Combining Content and Structure for
XML document Similarities (/ConfTitle)
(ConfAuthor) Richi Nayak (/ConfAuthor)
(ConfLoc) Adelaide, Australia (/ConfLoc)

(ConfName) Australian Data Mining Conference (/ConfName)

(/Conference)

Figure 3: A Sample XML data set containing 5 XML docu-
ment fragments.

4.2 XML Data Modeling for Knowledge
Discovery

Before the useful information from XML documents can be
mined, it is necessary that they are represented in a format
appropriate to a mining algorithm. The common data rep-
resentations are matrix, tree and graph models. The graph
representation is commonly used in mining the XML schema
definitions documents. If a schema is not available with doc-
uments, the structural features can be extracted from them
to be represented as graphs or trees. Usually it is a straight-
forward process of parsing the document to map its structure
to a data model. There also exist some tools that can infer
a schema given a number of documents conforming to it [39;
74]. Figure 4 shows the graph representation of a schema
document. It can be noted that there is a cyclic reference
to the tag paper from the tag reference.

Tree representation, on the other hand, is commonly used
for XML documents. A tree is an acyclic graph with a root
node of zero indegree. The leaf nodes of the tree contain
the content enclosed within that node. An example of the
rooted, ordered, labeled tree representation corresponding
to an XML document is shown in Figure 5.

The matrix representation of XML documents uses the
vector-space model [87] to present the content and struc-
ture features of the documents. The structure features of
an XML document is represented as a collection of distinct

Figure 4: Graph representation of a schema
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Figure 5: Tree representation of an XML document

paths in the set of documents. The structure features of all
the documents in the dataset can be put together as a path-
document matrix, PDp,xn. Each cell in matrix PD.,xn,
can be the (weighted) frequency of a distinct path appear-
ing in a document using the weighting schemes such as bi-
nary, term frequency, tf x idf or BM25 [87]. Similarly a
term-document matrix, 7' D;x, can be constructed after pro-
cessing the content features of documents. The structural
features of the dataset in Figure 3, containing 5 XML frag-
ments (d1, d2,ds, ds, ds) can be shown as the path-document
matrix in Figure 6. The matrix representation of a XML
dataset risks losing some of the hierarchical features of the
dataset, however, it benefits by allowing the use of advanced
matrix factorization methods such as latent semantic model-
ing [63] and non-Negative matrix factorization methods [64].

4.3 XML Mining Techniques

Once the XML documents are modeled, appropriate data
mining techniques can be applied to data models for knowl-
edge discovery. Some examples of knowledge discovery from
XML documents are mining frequent sub-tree/sub-graph
patterns, grouping and classifying documents/schemas, min-
ing XML queries for efficient processing and schema discov-
ery from a number of XML documents. We discuss XML
data clustering and XML frequent tree mining techniques
here.



path/doc d1 d2 d3 d4 d5
Book/Title 1111
Book/Author 112 2
Book/Publisher 1|1
Book/Year 1
Conference/ConfTitle 111
Conference/ConfAuthor 111
Conference/ConfName 1|1
Conference/ConfYear 1|1
Conference/ConfLoc 1

Figure 6: A matrix PD representing the structure features
of the dataset
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Figure 7: An XML Clustering Taxonomy

XML Data Clustering. Given a set of XML documents D,
a clustering solution C' = (C4, Cs,...Cy) is a disjoint parti-
tion of (D1, D2, ...Dy). C; denotes a cluster in the cluster-
ing solution and D; denotes an XML document represented
as a tree or graph or vector-space model. There are three
main elements of a XML clustering method as shown in Fig-
ure 7. The first element is the type of XML data: documents
or/and schemas.

The second element of a clustering method is the similarity
approach that determines how similar two documents are.
The similarity approach predominantly depends on (1) the
data models that are used in representation of the XML
data and (2) the type of features these data models are
representing: structural or content or both. If the content
and/or structural features of the documents are represented
in a vector-space model, metric distances induced by norms
are typically used. The best-known examples are the L1
(Manhattan) and L2 (Euclidean) distances. Other popu-
lar similarity measures used are the cosine (cos(vl,v2) =
v1v2/[v1||v2|), Dice (Dice(vl,v2) = 2v1v2/[v1[*|v2|?), and
Jaccard (Jac(vl,v2) = v1v2/|vl|*|v2|* — v1v2) coefficients.
Recently the semantic models such as Latent Semantic Ker-
nels have also been used in calculating the content similarity
between XML documents [95]. The similarity coefficients
based on structural features and content features are calcu-
lated independently, and then combined weighted linearly
or non-linearly to form a single measure. If a document
structure is represented using tree or graph models, the tree-
edit distance methods or specific path-similarity coefficients
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considering the contextual positions of tags are employed to
determine similarity between two graphs or trees [75; 76;
73].

The third element of a clustering method is the clustering
algorithm employed to take the similarity coefficients into
consideration to group the documents. There are two ba-
sic types of algorithms used. The first and most commonly
used type of algorithms are based on pair-wise similarity
that is determined between each pair of documents/schemas
in the dataset. A pair-wise similarity matrix is generated
for the dataset, on which a centroid approach such as the
K-means algorithm or a hierarchical approach such as ag-
glomerative and divisive algorithms can be applied to find
groupings within documents/schemas. On the other hand,
an incremental type of clustering algorithm does not need
to compute a pair-wise similarity matrix. An incremental
clustering algorithm defines the clustering criterion function
on the cluster level to optimize the cluster parameters. Each
XML data is compared against the existing clusters instead
of comparing to another individual XML data. Since the
computation of the global metrics is much faster than that
of the pair-wise similarities, an incremental clustering algo-
rithm is efficient and scalable to a very large dataset [73].
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Figure 8: An XML Frequent Tree Mining Taxonomy

XML Frequent Pattern Mining. A major difference be-
tween frequent itemset mining and XML frequent pattern
mining is consideration of ordering among the items in the
latter. The ordering of items in XML documents depends on
the level of nesting among the tags. Given a set of XML doc-
uments, the frequent pattern set contains patterns that have
support or frequency greater than minT hreshold, a user-
defined minimum support that indicates the least number
of documents in which the pattern appears in. The mod-
eling of XML documents forms the perception of patterns.
For instance, if the XML document set is modeled as matrix



(that is each row represents a document and each column
represents the tag in the XML document) then the frequent
patterns are a list of frequently occurring tags. The ma-
trix representation of documents allows the standard item-
set mining algorithms such as Apriori [3] to extract frequent
patterns from the XML dataset; however, it ignores the hi-
erarchical relationships between tags.

The matrix models of data representation for frequent
pattern mining may result in providing inaccurate re-
sults.  Consider, for example, the following two frag-
ments: ((vessel) (craft) boat (/craft) (/vessel)) in XML
document A and the fragment ({occupation) (craft) boat
building (/craft) (/occupation)) in XML document B. The
tag “craft” can be considered frequent if minT hreshold is
2 or more, and the hierarchical relationships are not consid-
ered as in this case. However the tag (craft) is not frequent
as its parents are different, the former refers to a vessel and
the latter to an occupation. Hence, to avoid inaccurate re-
sults, it is essential to consider the hierarchical relationships
among the tags and not just the tag name.

Use of XML frequent pattern mining provides the probabil-
ity of a tag having a particular meaning. For example, a
mining rule inferred from a collection of XML documents is
“80% of the time, if an XML document contains a {(craft)
tag then it also contains a {driver) tag”. Such a rule helps
determine the appropriate interpretation for homographic
tags such as (craft) and can improve information retrieval
by distinguishing two documents who appears similar due
to the presence of homographic tags.

If a XML document is modeled as a tree or a graph preserv-
ing the hierarchical information then the frequent patterns
are frequent subtrees or frequent subgraphs. A sub-tree or
sub-graph preserves the predecessor relationship among the
nodes of the document tree/graph. In spite of the advance-
ments in graph-mining [53; 54], these algorithms have often
been criticized for producing more generic results and incur-
ring excessive time to generate results [116]. Consequently
researchers have shifted their attention to XML frequent
tree mining algorithms by using trees instead of graphs for
representing XML data [21]. Figure 8 represents various
factors important for XML frequent tree mining algorithms,
see [62] for more information.

4.4 Scalability

With the growing importance of XML in document represen-
tation, efficient and effective knowledge discovery methods
need to be devised. Scalability to the very large datasets
should become a basic functionality of the newly developed
methods. Advances in low cost high-powered servers now
just begin to facilitate indexing and mining, such as clus-
tering and links, at the sub-document level. This means
that the number of objects considered can be several or-
ders of magnitude larger than the number of documents in
a collection. State-of-the-art research into Web scale col-
lections is dealing with the order of one billion documents
(e.g., ClueWeb 2012 [20]), but it is now possible to process
sub-document parts, thereby effectively dealing with one to
three order of magnitude larger collections (in the number of
objects indexed/clustered/linked). Is the matrix/tree/graph
representation sufficient for big data? In the big data con-
text, another representation or an extension to the existing
ones, such as the sequence representation or XML struc-
tural summaries, is necessary to face the performance re-

quirements. There may not be the need of representing each
keyword in these representations. Latent Dirichlet Alloca-
tion and Non-negative matrix factorization can be used to
generate concepts in the dataset. So the document contents
can be represented as topics in order to deal with scalability.
Data mining techniques greatly help in representing the big
data, by showing the patterns rather than raw data. For ex-
ample, clusters can be used in representing meaningful sum-
maries of the data. A cluster can be represented in many
ways according to the computation capabilities such as the
largest tree in the cluster, or the frequent trees among all
trees in the cluster, or a cluster level structure containing
all elements of each tree at each level. Similarly, frequent
trees can be used to represent the common structures that
are inherent in the raw data.

Hence, given this description, we can see that XML mining
techniques facilitate the discovery of knowledge from the
Web data consisting of plain text, numbers and complex
data types stored in a seamless manner. These techniques
focus on both the structure and the content of the data, be-
ing potentially interesting to users trying to discover knowl-
edge from different aspects. For example, considering the
works of Einstein, XML structure mining would enable us
to identify the common tags that are used to express his
work and how are they related. These aspects can be useful
to group relevant papers on specific topics and search them.
XML content mining would enable the identification of the
common themes that arise from the works of Einstein. These
aspects can be useful to discover similarities and differences
between his research and that of other scientists working on
related topics.

With this detailed background of XML modeling and min-
ing, we next proceed to explain DSMLs which grow on the
basis of XML.

S. DSML DATA STORAGE AND MINING

A domain-specific markup language, abbreviated as DSML,
is a language that follows the XML syntax and encompasses
the semantics of the given domain. Such languages offer sev-
eral advantages. Markup languages designed using XML tag
sets to capture the needs of specific domains make it easier
for users of the respective domains to exchange information
across a common platform. Moreover, this facilitates storage
and publishing of information worldwide without having to
use a medium of conversion. It also enhances the retrieval
and analysis of data from the users’ angle, e.g., embedded
formulae, as will be illustrated with examples here. Fur-
thermore, this facilitates the use of data mining techniques
such as association rules and clustering to discover knowl-
edge from the XML-based structured data in a given domain
from an application standpoint as elaborated later.
Accordingly, many domain-specific markup languages are
designed using special XML tag sets. Standardization bod-
ies and research communities may extend these to include
additional semantics of areas within and related to the do-
main. Such markup languages thus serve as communication
media for the targeted users such as industries, universities,
publishers, research laboratories and others.

5.1 DSML Examples

We present a few examples of domain-specific markup lan-



guages existing in the literature. We will later provide more
specific examples pertaining to the use of knowledge discov-
ery techniques in conjunction with some of these DSMLs.

MML. This is the Medical Markup Language [44] devel-
oped in Japan to create a set of standards by which medical
data can be stored, accessed and exchanged. The follow-
ing MML module contents are defined: patient informa-
tion, health insurance information, diagnosis information,
lifestyle information, basic clinic information, particular in-
formation at the time of first visit, progress course infor-
mation, surgery record information and clinical summary
information [44]. They are of use to primary care physi-
cians, general surgeons, their patients and related entities.
However, specific information, for example opthalmologi-
cal details such as eye-diseases and spectacle prescriptions
cannot be stored using these general tags. Thus, a more
specific markup language can potentially be developed as
needed within the context of MML to include the semantics
of opthalmology.

MatML. This is the acronym for Materials Markup Lan-
guage [10] developed by the National Institute of Standards
and Technology, NIST in the USA. MatML serves as the
XML for materials property data [10; 99]. MatML elements
are bulk details, component details, metadata, graphs and
glossary of terms. They have sub-elements and attributes
for storage of information related to properties of materi-
als such as metals, ceramics and plastics. For example,
the chemical composition of an alloy would be stored un-
der component details. Specific markups can be defined
if required as extensions to MatML to capture sub-areas.
For example, one sub-area is the Heat Treating of Mate-
rials which involves the controlled heating and cooling of
materials to achieve desired mechanical and thermal prop-
erties [96]. Quenching is the rapid cooling of the material in
a liquid or gas medium [96] and forms an important step of
the Heat Treating processes. In order to store data on these
processes, a markup language called QuenchML [100] has
been developed by the Center for Heat Treating Excellence,
an industry-university consortium.

MathML. A product of the W3C Math working group is
MathML, the Mathematical Markup Language [17]. This is
a specification for describing mathematics as a basis for ma-
chine to machine communication. It provides much needed
foundation for the inclusion of mathematical equations in
Web pages. Thus, a variety of formulae can be included
within the MathML tags, and they would be retrieved dur-
ing a Web search. MathML provides the tag set for including
several expressions ranging from simple additions and sub-
tractions to more complicated matrix operations. A funda-
mental challenge in defining a markup language for math-
ematics on the Web is reconciling the need to encode both
the presentation of a mathematical notation and the content
of the mathematical idea or object which it represents. This
is done by using a presentation markup tag set pertaining
to display of the notation, and a content markup tag set
pertaining to executing the actual mathematical idea.

Other Languages. More examples of XML-based domain-
specific markup include the following. CML, the Chemical

Markup Language [72] serves as a powerful medium to man-
age molecular and technical information in chemistry. CML
is object-oriented, being based on Java and XML, and spans
a fairly wide range of chemical disciplines. ModelML, the
Model Markup Language [117] provides a descriptive frame-
work of object-oriented models to be synthesized. It thereby
enhances the development of automatic model synthesis by
decoupling the knowledge per se from the tools to be built.
SSML, the Speech Synthesis Markup Language [94] stores
data related to speech and pronunciation. Its input is text-
based with no constraints on word usage and it has addi-
tional information included pertaining to speech, e.g., an-
notations with markers to specify features such as empha-
sis, particular speech styles, or the beginning of new top-
ics. With this introduction, we now proceed to discuss how
DSMLs are useful.

5.2 Usefulness of DSMLs

Domain-specific markup languages are very useful in retriev-
ing information in a meaningful fashion due to their seman-
tic tag sets, while also providing worldwide access in a con-
venient manner due to their XML-based syntax.

It is very important to note the specific role played by
DSMLs here. In the absence of DSMLs, information such as
a formula may have been be treated as an embedded picture
while storing and retrieving Web information. However, if
this information is stored using MathML, it would actually
be preserved as a formula and get retrieved accordingly, due
to the availability of the presentation and content markups
in MathML.

We illustrate this with respect to the famous equation on
Einstein’s Theory of Relativity, E = mc?, where FE is en-
ergy, m is mass and c is speed of light in a vacuum. Using
MathML’s presentation markup, this is stored as follows.

(mrow)
(mi)E(/mi)
(mo)=(/mo)
(mi)ym(/mi)
(msup)
(mi)c(/mi)
(mn)2(/mn)
(/msup)
(/mrow)

This example demonstrates some presentation elements.
The first element is mrow used to denote a row of horizon-
tally aligned material. The mi element is used for displaying
variables, such as F and m, while the mo element is used
for displaying operators, in this case, the = operator. The
msup element is for superscripts and takes two arguments,
the base expression, which is ¢ here (enclosed in mi tags
since it is a variable), and the exponent expression which is
2 here, and is enclosed in mn tags, because mn denotes a
constant in MathML presentation syntax.

Using content markup, the equation E = mc? is stored as
shown in the code snippet below.

(mrow)
(apply)
(eq/)
(ci)E(/ct)
(apply)



(times/)

(ciym(/ci)

(apply)
(power/)
(ciye(/ci)
(en)2(/cn)

(/apply)
(/apply)
(/apply)
(/mrow)

Here, the apply content element means that an operator is
applied to an expression. In this example, the operators
applied are equals denoted by the eq/ content element, mul-
tiplication denoted by the times/ content element and ez-
ponentiation denoted by the power/ content element. Note
that the operators take arguments, the order being particu-
larly significant in the case of the power operator. However,
the order of the children is crucial in the use of the apply
content element, since its first child, the operator, takes as
an argument list the remaining operands and other nested
operators. Observe also, the use of the c¢i element to mark
up the variables E, m and ¢ and the use of the cn element
to mark up the constant 2.

Depending on the nature of the application, either one of
or both of these markups can be useful, in order to help
discover the appropriate information from Web documents.
For example, legacy data on the works of Albert Einstein
would probably be best translated into pure presentation
markup. On the other hand, some mathematical applica-
tions and pedagogical tools would be more likely to prefer
the content-based markup. Also, certain applications such
as game development and decision support would be some-
where in between these extremes, where it would be ad-
visable to use a mixture of both presentation and content
markup.

In all these applications, MathML data, like that with any
DSML, can be embedded in a regular XML document that
can contain information on the explanation of the theory,
along with the formulae. Thus, semantically the storage and
retrieval capabilities of MathML are far better than that of
HTML in the context of mathematics. Such storage also
sets the stage for applying knowledge discovery techniques
in a more meaningful manner analogous to the way humans
analyze data.

Consider another example in SSML (Speech Synthesis
Markup Language). The annotated information in the tags
related to pronunciation such as emphasis, styles etc. is ex-
tremely useful in constructing speech from plain text. In
the absence of this annotation, these important vocal as-
pects pertaining to speech would be ignored and written text
would be treated no differently from oral speech when be-
ing conveyed as a document. Thus, semi-structured storage
with the presence of XML-based tags conveying additional
knowledge in SSML proves useful.

Similar arguments on the importance of XML-based semi-
structured storage preserving domain semantics can be ap-
plied to other DSMLs such as MML and CML. With this
discussion, we now delve deeper into mining XML data in
conjunction with DSMLs.

5.3 Association Rule Mining with DSMLs

The mining of association rules for XML documents extends

the concept of frequent pattern mining in XML. As widely
known to the data mining community, association rule min-
ing is the discovery of associations of the type A = B, where
A is called the antecedent and B is called the consequent,
both A and B being features of the dataset. A popular al-
gorithm for association rule mining is the Apriori algorithm
[3] which uses prior information about the frequency of oc-
currence of items in the given data set to discover knowledge
about their likelihood of occurring together. Interestingness
measures for association rules are Rule Confidence and Rule
Support calculated as follows.

Rule Confidence = P(B/A) = count(A A B)/count(A)

Rule Support = P(A A B) = count(A A B)/count(set)

Using these interestingness measures of rule confidence and
rule support along with and suitable thresholds for mini-
mum confidence and minimum support, the Apriori algo-
rithm mines association rules [3].

We now consider the mining of association rules in the con-
text of domain-specific markup languages. If data in the
given domain is stored using the respective DSML, it is con-
venient for deriving the corresponding associations. Let us
apply the Apriori algorithm for the discovery of association
rules from medical data.

Consider the following example with a random sample of
data stored using a semi-structured format with tags as in
the medical markup language MML.

(Smoking) yes (/Smoking) in 44/52 instances
(LungCancer) yes (/LungCancer) in 41/52 instances
38 of these in common with (Smoking)
Association Rule: Smoking = yes = LungCancer = yes
Rule Confidence = 38/44 = 86.36%

Rule Support = 38/52 = 73.07%

In this example, we refer to publications on the subject of
lung cancer with documentation on specific cases. Here, 44
cases of patients are found to be smoking among a total of 52
cases considered. Furthermore, 41 out of all these 52 cases
refer to patients diagnosed with lung cancer, 38 of which
are common with smoking patients. Applying the Apriori
algorithm over this data stored using semantic tags, we get
a rule Smoking = yes = LungCancer = yes with a rule
confidence of 38/44 = 86.36% and rule support of 38/52 =
73.07% using the given formulae. The data for such analysis
would often be found in text sources with documentation on
medical cases. The use of MML to store this textual data
in semi-structured formats facilitates rule derivation.

We emphasize the advantage of the method described above
for rule discovery over text sources. The plain text in such
formats can be converted to XML-based formats, i.e., semi-
structured text using the markup language with the help of
natural language processing tools. This semi-structured text
can then be further preprocessed to a form suitable for rule
mining. An algorithm such as Apriori [3] can then be used
to extract rules from these text sources after conversion.
Note that the use of semantic tags in DSMLs such as MML
or MatML in the corresponding domains facilitates the cap-
turing of relevant information from the plain text sources.
The DSML is crucial in guiding the conversion of plain text
into XML based semi-structured text by extracting suitable
information corresponding to the given tags that is of in-
terest to domain-specific users. On the contrary, in the ab-
sence of a DSML, applying association rules over plain text



sources by simple removal of stem words could lead to obvi-
ous rules such as doctor = patient in the medical domain,
and experiment = result in the Materials Science domain.
This is due to the frequent occurrences of these terms within
related sources of literature. There would also be extreme
lack of efficiency in mining over a seemingly infinite number
of terms. The use of DSMLs serves to filter out unwanted
terms and capture only the relevant ones for the discovery
of meaningful association rules, and also makes the mining
more efficient.

5.4 Clustering with DSMLs

Performing XML clustering in conjunction with domain-
specific markup languages assists in organizing information
stored in the documents more systematically. Suppose there
are a number of documents stored in an organization using
DSMLs, these documents can be grouped according to their
thematic features or their structural features. For example,
given a number of instances of Materials Science experimen-
tal data, XML clustering can group all instances pertaining
to agitation of a cooling medium, distortion of a part and
so on in a rapid cooling process, using the corresponding
semantic tags such as (agitation) and (distortion) respec-
tively, provided by a given DSML such as the Materials
Markup Language MatML or its extension QuenchML that
captures the semantics of heat treating and rapid cooling
processes.

Likewise, with medical data, XML clustering using markups
can be used to group patient documents together in cate-
gories based on the occurrence of diseases as identified by
the semantic tags in the medical markup language MML.
Similarly, considering the example on Einstein’s works in-
troduced earlier, performing XML clustering on the data
stored using the presentation tag set of MathML can be
useful in grouping all documents relevant to specific equa-
tions, such as the one on relativity. Note again that DSML
data can be embedded within an XML document, thus the
XML tags themselves would serve to provide a categoriza-
tion based on other features such as titles and authors. A
finer level of granularity would be provided by the respec-
tive DSML tags. Thus in general, the semantic tags in the
domain-specific markup language can guide the clustering
process. These smaller groups of information can be easily
visualized for further analysis.

The benefit of using XML clustering along with such markup
languages for the information stored in the documents is
that it can leverage on both the structure and content in-
formation inherent in those documents. Sometimes users
present similar information using different tags and struc-
ture. By using XML clustering with domain-specific markup
languages, this information would still be grouped together
even if it looks and feels different. Likewise, if different con-
tent is represented in same hierarchical structure, XML clus-
tering performed with domain-specific markup languages
could differentiate between those datasets.

The knowledge discovered by applying such techniques over
XML documents in conjunction with DSMLs can be use-
ful in several applications, e.g., expert systems, simulation
tools and intelligent tutors in the corresponding domains.
For example, expert systems for medical diagnostics can be
designed by mining data from relevant sources of literature
in medicine guided by MML. Simulation tools in domains
such as Materials Science can be enhanced by the discov-

ery of association rules from MatML based semi-structured
data. Intelligent tutors in Mathematics can be developed
and enhanced using the knowledge discovered from MathML
sources. Likewise, various pedagogical tools and other soft-
ware applications would benefit from the knowledge ac-
quired by mining over various sources of literature in the
concerned scientific domains.

5.5 Perspective on Scalability

The issue of scalability in DSMLs is often debatable. Some
language developers argue that it is good to construct the
DSML tag set such that it is relatively easy for users of re-
lated domains to augment it with additional semantics. For
example, QuenchML (Quenching Markup Language) [100]
has been proposed as an extension to MatML (Materials
Markup Language) [10] to capture the semantics of one of its
sub-areas called Quenching (a crucial heat treating process).
MatML per se is the XML for materials property data. It
has primarily been designed to store various material prop-
erties but does not include the details of all the materials
processes. Thus, semantic extensions such as QuenchML
can be developed as needed. The MatML tag set facilitates
the inclusion of additional semantics, providing several com-
mon elements that can be shared and reused.

On the other hand, there are counter-arguments that too
much scalability presents an obstacle in the path of stan-
dardization. Standards bodies are often not in favor of an
existing DSML standard being updated frequently. More-
over, standardization can take a long time subject to ap-
proval by such standards bodies, e.g., NIST (National In-
stitute of Standards and Technology, USA). However, some
developers argue further in response to this problem. They
state that even if a DSML extension is not standardized, its
tag set can still be made available to users for information
exchange. This serves as a lingua franca in the respective
sub-area of the domain, which is desirable.

Another aspect of scalability is with respect to big data.
Here, we claim that DSMLs would adapt well to data with
higher orders of magnitude provided the required physical
storage is available. This applies to storing as well as min-
ing big data. More efficient algorithms would be needed
to handle DSML mining with big data. However, the tag
set may not necessarily require extension to cater to issues
of scale. In the event that it does need extension, the argu-
ments portrayed above on the pros and cons of scaling would
be valid for big data as well. Furthermore, the issues that
apply to XML scalability are also to be taken into account
with DSMLs, since they grow on the basis of XML. On the
whole, after considering various aspects, we state that scal-
ability is a desired property of DSMLs and that they could
potentially scale well to handle big data.

6. OUTLOOK AND CHALLENGES

We now present a general outlook on the Web developments
addressed in our survey article. We also list some challenges
and open research questions.

Let us first look at the problem of knowledge discovery on
the deep Web. One of the main challenges is the question
of how to get the precise semantics of a service. Consider
a service that, given a person as an input, returns a year
as an output. How can we know whether this year is the
birth date, the death date, or the graduation date? This



is largely an open problem, though some partial solutions
are discussed in [89]. Ideally, we would want to obtain a
fully semantic description of a deep Web service, using for
instance the semantic language for Web services, OWL-S.
Second, dealing with complex forms, especially when there
are dependencies between form fields, is a fully open prob-
lem in its generality. An interesting source of information
could be the Javascript code that validates the data entered
into a form. This code could help derive knowledge on the
form itself. Static analysis techniques could be applied to
the Javascript code to determine which fields of a form are
required, for instance. Note, finally, that much of what we
discussed is actually applicable not only to deep Web appli-
cations, but also to Web 2.0/AJAX applications. An auto-
complete feature, for example, can be seen as functionally
equivalent to a Web form that takes as input a sub-word
and returns a full word. More complex AJAX applications
might be dealt with as deep Web sources.

In summary, although there are techniques to derive the
type of input parameters and output records of a Web form,
it is still challenging to get the precise semantics of a service.
Moreover, dealing with complex forms (such as those used
to access specialized scientific databases), especially when
there are dependencies between form fields, required and
optional fields, etc., is a fully open problem by itself. Finally,
a knowledge discovery system for the hidden Web that would
not cover specific Web sites or a specific domain of interest
but would work at the scale of the whole Web is still to be
constructed.

The Semantic Web has attracted interest from scientists and
industry alike. Numerous projects [107] transfer Semantic
Web technologies to organizations and businesses. The num-
ber of semantic knowledge bases is continuously growing.
New applications, such as enhancing maps with semantic
data, or extracting RDF data from natural language text,
are coming to life.

The Semantic Web is still relatively young. Numerous chal-
lenges still wait to be solved. One of the main open research
questions is the reconciliation of different semantic concep-
tualizations in different ontologies. Another challenge is the
expansion of the Semantic Web, be it through community
work, by converting existing databases into RDF, or by In-
formation Extraction. Reasoning on Web scale is likewise
still an open issue. How can we apply automated reasoners
on huge, potentially noisy data sets? While the challenges
on the Semantic Web resemble challenges in other research
areas, they come with additional twists due to the semantics,
scale, and distribution of the data.

Let us now look at the area of XML. With the growing im-
portance of XML in document representation, efficient and
effective knowledge discovery methods need to be devised.
Scalability to very large datasets is one of the main desider-
ata for such methods. It is important to address the issue
of whether the matrix/tree/graph representation is still suf-
ficient. In the context of large scale data, another represen-
tation or an extension to the existing ones, such as the se-
quence representation or XML structural summaries, could
be necessary to satisfy performance requirements. More-
over, future XML mining techniques will have to consider
both the structure and the content features, in order to deal
with the heterogeneity of the XML documents.

Finally, let us consider DSMLs. Since a DSML follows the
XML syntax and captures the semantics of the given do-

main, it often serves as a non-proprietary Esperanto for tar-
geted user bodies. New DSMLs are being developed and
existing ones are subjected to semantic extensions. This
calls for further research considering the trade-off of exten-
sibility versus standardization, the development of DSML-
based querying and mining packages, and the design of user-
friendly interfaces for DSMLs.

In the area of XML and DSMLs, considerable future work
can emerge from joint research in these areas. A major chal-
lenge here is to effectively model both structure and content
features for XML documents for appropriately mining the
data using DSMLs. It is also challenging to combine struc-
ture and content features in different types of data mod-
els. Adequately harnessing DSMLs to integrate background
knowledge of specific domains into various XML mining al-
gorithms is yet another challenging task. Furthermore, it
might become necessary to develop new standards that use
the synergy between XML and DSMLs. This, in turn, would
present additional research challenges with respect to stan-
dardization and extensibility.

We believe that more research in the areas of the hidden
Web, the Semantic Web, XML, and domain-specific markup
languages can further enhance the field of knowledge discov-
ery on the Web.

7. CONCLUSIONS

This survey article gives an overview of harvesting various
forms of Web information. It addresses developments in
the areas of the deep Web, the Semantic Web, XML and
DSMLs, explaining how these can be harvested for the re-
trieval of useful information from the Web. Given the irony
that humans produce far more data than they can ever use,
the development of knowledge discovery methods must keep
pace with the development of Web technology itself. Re-
search that cuts across two or more of these areas is par-
ticularly challenging and interesting. We believe that new
technologies for these evolving areas of the Web could make
the Web even more powerful and useful.
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