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Abstract-The usual way of the implementation of on-line discrete 
Hilbert transformers is the design of linear phase finite impulse re- 
sponse (FIR) filters. Recently, a method has been published for the 
design of infinite impulse response (IIR) Hilbert transformers as well. 

The paper introduces a new method for the design of both FIR and 
IIR Hilbert transformers, based on a parameter estimation method for 
linear systems. The first approximation is performed in least squares 
(LS) sense in the complex domain. An iterative extension of the algo- 
rithm is also presented. It results in an approximation in minimax 
(Chebyshev) sense, and is also in the complex domain. 

Keywords-Hilbert transformer, least squares fitting, Chebyshev ap- 
proximation, minimax criterion, approximation in the complex do- 
main, digital filter design. 

I. INTRODUCTION 
HE HILBERT transform is a very useful tool in mod- T ulation and demodulation. It has applications not only 

in communications, but also in the measurement of fre- 
quency deviations of rotating machines, in the investiga- 
tion of the impulse response of systems, characterization 
of acoustical devices, etc. At present, it can be realized 
by digital means at a reasonable speed; thus design meth- 
ods for digital Hilbert transformers are of increasing in- 
terest 111-151. 

On-line discrete Hilbert transformers are usually de- 
signed in the form of linear phase finite impulse response 
(FIR) filters 121, [6]. The standard method (the usage of 
the RemCz algorithm) is well elaborated. There are at- 
tempts to design infinite impulse response (IIR) realiza- 
tions, too 131. The method in [3] is based on special tech- 
niques as transforms of normal or generalized halfband 
filters. 

Recently, Chen and Parks [7] have shown that the per- 
formance of FIR filters can be improved by accomplish- 
ing the fit in the complex domain, and by allowing small 
deviations from the linear phase (nearly linear phase fil- 
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ters). This leads to the idea of designing both FIR and IIR 
Hilbert transformers by fitting the filter to the complex 
frequency response. 

In this paper, a new approach is described. Making use 
of the maximum likelihood method originally developed 
for the identification of linear systems from complex fre- 
quency-domain input and output data (Estimation of Lin- 
ear Systems (ELIS), 181, [9]), a design procedure of dig- 
ital Hilbert transformers is presented. This method 
provides a least squares approximation with rather limited 
computational need. After the discussion of the properties 
of the obtained filters, a technique of fitting in an approx- 
imately Chebyshev sense is also presented, making use of 
the fact that this can be done via a weighted least squares 
(LS) fitting using appropriate weights. 

The method to be described in the paper is not only 
computationally efficient but allows the selection of ‘care’- 
bands and the use of other frequency band constraints as 
well. Digital filters other than Hilbert transformers can 
also be designed by following a similar procedure. 

11. ASPECTS OF DIGITAL HILBERT TRANSFORMER 
DESIGN 

The design of a (two-sided) digital Hilbert transformer 
means that we try to approximate the following transfer 
function: 

wheref, is the sampling frequency, and j = J- 1. 
Because of the discontinuity at 0 a n d k / 2 ,  a digital fil- 

ter can approximate this well only in a given band. For- 
tunately, in most applications this can be tolerated. 

When preparing for the design, we have choices listed 
as follows. 

a) Filter type. The filter can be either an FIR or an IIR. 
The advantage of the FIR filter is that it is always stable 
(it has no poles), the implementation is straightforward, 
and with the Remez algorithm there is an effective algo- 
rithm for the design. The IIR filter may often provide the 
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same performance with a significantly lower order, how- 
ever, there is no standard method to assure stability (e.g., 
the first two examples of [3] are definitely unstable), and 
the realization is to be made with care (underflows and 
overflows, etc.). 

b) Measure of goodness of jit. The approximation of 
the desired transfer function can be done using one of the 
minimax (Chebyshev), least squares, least absolute val- 
ues (etc.) criteria (I,, 1 2 ,  l I  norms). Intuitively, the min- 
imax criterion seems to be desirable: using this, the max- 
imum of the error can be kept at a low level. On the other 
hand, one can argue for the other norms: if the cost func- 
tion is small enough, the fit will be almost perfect. 

Another aspect is the implementation of the minimiza- 
tion procedure. For the minimax fit there is the effective 
Remez algorithm for linear phase FIR filters, and there is 
also an approximate method in the complex domain [7]. 
The LS criterion can often be handled analytically [2], 
and there are already methods to handle the other criteria 

c) Handling of the “non-Hilbert’’ bands. For modu- 
lation or demodulation purposes, the Hilbert transform is 
usually only needed in a certain frequency band. At the 
same time, there may be other prescriptions in the other 
frequency intervals: the transfer function should not ex- 
ceed a certain magnitude. 

In some of the applications, the desired Hilbert trans- 
former is not two-sided as defined above, but one-sided 
(the prescribed frequency shift is provided somewhere in 
the (0, fs /2  ) interval only ). This leads to complex signals 
and complex filter coefficients. 

d) Additional restrictions originating from the design 
method. Some of the design methods contain inherent 
constraints. The RemCz algorithm only allows linear 
phase, that is, no phase error is allowed. The method pre- 
sented in [3] only uses all-pass sections, that is, the mag- 
nitude function equals exactly one. 

These different aspects imply that probably no uniform 
solution exists for every case. Thus it is reasonable to look 
for alternative design methods. 

[lo]. 

111. ESTIMATION OF LINEAR SYSTEMS-ELiS 

Recently, a method for the identification of linear sys- 
tems has been published [8], [9]. Starting from the noisy 
complex input and output amplitudes measured at differ- 
ent frequencies in a linear system, the maximum likeli- 
hood estimate of the linear transfer function is deter- 
mined. The transfer function may be in terms of s or z .  

The basic z-domain model is shown in Fig. 1. The input 
signal X has complex amplitudes X ,  at angular frequencies 
wk; the output signal is Y. Both the measured complex 
input and output amplitudes are corrupted by noise ( a ,  
and a,, with variances U-:, and U;, at the corresponding 
frequencies). The noise is assumed to be independent and 
Gaussian, which means that the result is nothing more than 
a weighted least squares estimate. The transfer function 

d 
xnl 

Fig. 1. The z-domain model used in ELiS 

is sought in the following form: 

where 6 2 0 is a delay (the desired function will be re- 
alized in the form z - & H ( z ) ,  that is, we accept this delay 
in order to obtain a realizable approximation), and N ( z - I )  
and D (  z-’ ) are the unknown numerator and denominator 
polynomials of the transfer function. In other words, in- 
stead of H ( z )  we will approximate z - ~ H ( ~ )  by 

The algorithm numerically minimizes the following cost 
function via the coefficients of the numerator and the de- 
nominator of the transfer functicn of the system: 

*‘ l zdN(zL1)Xmk  - D(zF1)Y,,,,12 

u.$IN(zLl) l*  + o $ ( D ( z L 1 ) l  

~ ( z - I ) / ~ ( z - l ) .  

K =  c 2 ( 3 )  

where X,, and Ymk are the measured complex input and 
output amplitudes, respectively, at the frequency points 
wk; and u;k are their variances, and 

with T, being the sampling interval. 
If the noise is small, the least squares estimation can be 

considered in the following way: the transfer function to 
be determined is H (  f )  which approximates in LS sense 
the values 

Ym,/Xmk, k = 1, - * , N.  

Now, if we impose Xmk = 1,  ofk = 0, utk = 1, and Ymk 
equals our desired transfer function, the minimization 
procedure will result in a least squares approximation. If 
D ( z - ’ )  = 1, the result is an FIR filter, otherwise it is an 
IIR filter. The delay is to be given in advance. It may be 
allowed to vary too, but on the one hand the rather com- 
plicated surface of the several dimensional cost function 
will usually lead the minimization procedure to local min- 
ima and, on the other hand, fractional delays are often not 
allowed. Moreover, a poor initial value of 6 often results 
in unstable IIR filters. Thus an appropriate value of 6 is 
to be given in any case, based on experience. 

It is easy to see that the “not Hilbert” frequency bands 
can also be handled. By defining values equal to zero 
within these bands, and giving large values to the corre- 
sponding ot, values (small weighting of the zero values), 
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Fig. 2 .  The designed FIR Hilbert transformer. Order: 30, band: (0.04, 
0.46). delay: 15. (a) Impulse response. (b) Zero pattern. (c) Magnitude 
response. (d) Error of the magnitude in the “care”-band. Solid line: the 
result obtained by E L S ,  dash-dotted line: the result given by the Parks- 
McClellan algorithm. 

the transfer function can be “pulled down” towards zero 
as much as is desired. This requirement may increase the 
order necessary to keep the in-band error under the spec- 
ified level. 

lows: the LS approximation results in an error function, 
which is very small at some frequencies, and larger at 
others. Since we can weight the fitting by choosing the 
values o$ appropriately, it is possible to use the errors of 
the LS fit for the determination of a new weighting set 
(dividing the variance values by the squared error of the 
previous fit), in order to “suppress” the peaks of the er- 
ror. The error is to be analyzed carefully: since it usually 
oscillates, the value of the envelope can be used for the 

IV. EXTENSION TO THE MINIMAX CASE 
The above procedure performs least squares approxi- 

mation in the complex domain. However, it can be ex- 
tended to the minimax problem, too. The idea is as fol- 
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weighting. In the cases studied by the authors, one to two 
iteration steps were sufficient to get close to the minimax 
fit. The theoretical basis for reweighting (although with a 
different weight updating algorithm) can be found in [ 111 
for the FIR case. 

V. FILTERS DESIGNED USING ELiS 

The preceding principles have been tested on examples. 
In this section, some of the results are summarized. 

A .  FIR Filter Design, LS Fit 

A FIR Hilbert transformer of order 30 was designed 
(Example 1 of [2]). The results, presented in Fig. 2, are 
practically the same as those in [2]. This is no wonder, 
the eigenfilter approach is nothing more than a least 
squares method. It can be observed that the error is small 
in the middle, but increases towards the edges. Here it 
surpasses the maximum error of the Parks-McClellan al- 
gorithm, as it has to, since the latter is the solution of the 
minimax problem. Thus the remark in [2] that their error 
is much smaller than that of the Parks-McClellan algo- 
rithm is somewhat misleading. The error is indeed gen- 
erally smaller, but at the edges it is larger than that ob- 
tained using the Rem& algorithm. 

It is also of interest to notice that the real part of the 
transfer function of the designed filter is negligible (it is 
in the order of magnitude of the roundoff errors, shown 
in Table I), though there was no linear phase constraint. 
The cause is most probably the fact that since the desired 
transfer function is purely imaginary, the approximating 
function has the same property (the impulse response is 
exactly odd; see [7] for a similar statement). The real part 
is not negligible any more if the chosen delay value is 
different from half of the order (15 in this case), but the 
fitting error is larger so this case is of no practical interest. 

B. FIR Filter Design, Minimax Fit 

Starting from the above results, an iteration step using 
weighted LS was performed, as shown in Fig. 3.  The fit 
is already very close to the ideal minimax design (Parks- 
McClellan algorithm). 

C. IIR Filter Design, LS Fit 

A systematic search was necessary in order to find the 
minimum IIR order and the appropriate delay which pro- 
vides the same (or even smaller) error as the above FIR 
filters. For a given order, the value of the delay was found 
by starting from the value equal to the order and it was 
decreased gradually until the last value was reached, for 
which the designed filter was still stable. Then the delay 
value was chosen for which the error was minimum. When 
the error was smaller than that desired, the order was de- 
creased. When it was larger, the order was increased and 
the optimum delay was sought again. 

Finally, the order was chosen as 12/12 and the delay 
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Fig. 3. The result of the first step of the iteration towards the minimax f i t .  

TABLE 1 
COEFFrCiENTS OF THE FIR FILTER, LS FIT, ORDER 30 

b ( 0 )  = -0 .006057733301139371,  b ( 3 0 )  = +0 .006057733301140023  
b ( 1 )  = +0 .000000000000000149 ,  b ( 2 9 )  = -0 .000000000000000262 
b ( 2 )  = -0 .013039367531238520,  b ( 2 8 )  = +0 .013039367531238620  
b ( 3 )  = +O .000000000000000095,  b ( 2 7 )  = -0 .000000000000000194 
b ( 4 )  = -0 .023832517737319509,  b ( 2 6 )  = +0 .023832517737320359  
b ( 5 )  = -0 .000000000000000062 ,  b ( 2 5 )  = -0.000000000000000222 
b ( 6 )  = -0 .040114741220746993 ,  b ( 2 4 )  = +0 .040114741220747749  
b ( 7 )  = -0 .000000000000000323,  b ( 2 3 )  = -0 .000000000000000634 
b ( 8 )  = -0 .065247413138588742 ,  b ( 2 2 )  = +0 .065247413138590935  
b ( 9 )  = -0 .000000000000000770,  b ( 2 1 )  = -0 .000000000000000830 

b ( 1 0 )  = -0 .107888520426881795,  b ( 2 0 )  = +0 .107888520426883905  
bill) = -0 .000000000000000464,  b ( 1 9 )  = -0 .000000000000000403  
b ( 1 2 )  = -0 .200092089168674991,  b ( 1 8 )  = +0.200092089168676407 
b ( 1 3 )  = -0 .000000000000000189 ,  b ( 1 7 )  = -0 .000000000000000439  
b ( 1 4 )  = -0 ,632503847986503276 ,  b ( 1 6 )  = +0 .632503847986504275  
b ( 1 5 )  = -0 .000000000000000601  

as 11 (the filter became unstable for 6 < 9). As shown 
in Fig. 4 ,  the error is somewhat smaller than that of the 
above FIR solution. The poles and zeros are easy to im- 
plement. 

It is remarkable that the amplitude response is practi- 
cally flat (the magnitude error is less than 1.2 dB ( 1 mW ), 
that is, the filter is similar to an all-pass filter. 

Fig. 4(c)-(d) show the magnitude error, the phase error 
and the complex error in the “care”-band. 

D. IIR Filter Design, Minimax Fit 

Two steps of the iteration were performed until the er- 
ror of the fit became practically equiripple, as shown in 
Fig. 5. Unfortunately, there is no method in the literature 
which would provide the minimax solution for the IIR 
case. Thus we can only assume that we obtained at least 
a suboptimal minimax approximation. 

VI. CONCLUSIONS 

A novel method for the design of digital Hilbert trans- 
formers using the least squares and the minimax criterion 
has been presented. For FIR filters the results are the same 
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Fig. 5 .  The result of the second step of the iteration of the IIR filter to- 
wards the minimax fit. 
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as those of the optimal methods known from the litera- 
ture. For the same task, stable IIR filters were also suc- 
cessfully designed. The complexity of the IIR filters is 
similar to those of the linear phase FIR filters. The type 
which is preferred may depend on the implementation. 

The procedures proposed here may also be usable for 
the design of digital filters other than Hilbert transformers 
since the desired frequency response is given point by 
point. 

ACKNOWLEDGMENT 

[3] R. Ansari. ”11R discrete-time Hilbert transformers,” IEEE Trans. 
Acoust. ,  Sprrch Signul Procrssing. vol. ASSP-35. pp. I 1  16-1 119. 
Aug. 1987. 

[4] I .  Bork and T. Elfrath. “Momentanfrequenzmessung mit Hilbert- 
Transformation (Measurement of the instantaneous frequency using 
the Hilbert transform),” Acu.stica, vol. 67. pp. 149-151, 1988 (in 
German). 

[5] N .  Thrdne. “The Hilbert Transform,” Bruel-Kjaer Tech. Rev . ,  pp. 
3-15, 198413. 

161 L. R .  Rabiner and B. Gold. Theory und Application ofDigital Signal 
Processing. 

171 X.  Chen and T. W. Parks, “Design of FIR filters in the complex 
domain.” IEEE Transactions on Acoust. , Speech Signal Processing, 
vol. ASSP-35, pp. 144-153, Feb. 1987. 

(81 J .  Schoukens. R .  Pintelon. and J .  Renneboog, “A maximum likeli- 

Englewood Cliffs, NJ: Prentice-Hall, 1975. 

The authors express their gratitude to Dr. F. Nagy for hood estimator for linear and nonlinear systems-A practical appli- 
cation of estimation techniques in measurement problems.” IEEE 
Trans. Instrum. Meas . ,  vol. 1M-37, pp. 10-17, Mar. 1986. his very useful comments and suggestions. 

191 -, “Maximum likelihood estimation of the parameters of linear 
systems.” Periodica Polytrchnica Ser. Elec. Eng. ,  vol. 33, no. 4.  
pp. 165-182. 1989. 

[IO] A. van den Bos. “Nonlinear least-absolute-values and minimax model 
fitting.” Automaticu. vol. 24, no. 6.  pp. 803-808. 1988. 

[ I  I] S .  Ellacott and J .  Williams, “Linear Chebyshev approximation in the 
complex plane using Lawson’s algorithm.” Math. Comput., vol. 30, 
no. 133, pp. 35-44, Jan. 1976. 

REFERENCES 

P. V .  Bhansali and R .  Potter. “Digital demodulation,” IEEE Trans. 
Instrum. Meas . .  vol. IM-35. pp. 324-327, Sept. 1986. 
S.-C. Pei and J . - J .  Shyu. “Design of FIR Hilbert transformers and 
differentiators by eigenfilter,” IEEE Trans. Circuits Syst. ,  vol. 35. 
pp. 1457-1461, Nov. 1988. 


