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Abstract— For a large scale object, scanning from the air
is one of the most efficient methods of obtaining 3D data.
In the case of large cultural heritage objects, there are some
difficulties in scanning them with respect to safety and efficiency.
To remedy these problems, we have been developing a novel 3D
measurement system, the Floating Laser Range Sensor (FLRS)
, in which a rage sensor is suspended beneath a balloon. The
obtained data, however, have some distortion due to the intra-
scanning movement. In this paper, we propose a method to
recover 3D range data obtained by a moving laser range sensor;
this method is applicable not only to our FLRS, but also to
a general moving range sensor. Using image sequences from
a video camera mounted on the FLRS enables us to estimate
the motion of the FLRS without any physical sensors such as
gyros and GPS. At first, the initial values of camera motion
parameters are estimated by perspective factorization. The next
stage refines camera motion parameters using the relationships
between camera images and the range data distortion. Finally,
by using the refined parameter, the distorted range data are
recovered. We applied this method to an actual scanning project
and the results showed the effectiveness of our method.

Index Terms— Structure from Motion, Moving Range Sensor,
Floating Laser Range Sensor, Perspective-Factorization

I. INTRODUCTION

Nowadays, many researches on real object modeling are
making great progress because of the availability of accurate
geometric data from three dimensional laser sensors. The
techniques of real object modeling contribute toward numer-
ous applications in wide areas such as academic investigation,
industrial management, and entertainment.

Among them, one of the most important and comprehensive
applications is modeling cultural heritage objects. Modeling
these heritage objects has great significance in many aspects.
Modeling them leads to digital archives of the object shapes.
Utilizing these data enables us to restore the heritage objects’
original shapes, even if the objects have been destroyed due
to natural weathering, fire, disasters and wars. In addition, we
can provide images of these objects through the Internet to
people in their homes or in their offices. Thus, the techniques
of real object modeling are available for many applications.

We have been conducting some projects to model large
scale cultural heritage objects such as great Buddhas, his-
torical buildings and suburban landscapes. Basically, to scan
these large objects, a laser range finder is usually used with a

tripod positioned on stable locations. In the case of scanning
a large scale object, however, it often occurs that some part
of the object is not visible from the laser range sensor on
the ground. In spite of such a difficulty, we have scanned
large objects from scaffolds temporally constructed nearby the
object. However, this scaffold method requires costly, tedious
construction time. In addition, it may be impossible to scan
some parts of the object due to the limitation of available
space for scaffold-building.

We are now conducting a project to model the Bayon
Temple in Cambodia [7]; the temple’s scale is about 100 x
100 square meters. Scanning such a huge scale object from
several scaffolds is unrealistic. To overcome this problem,
several methods have been proposed. For example, aerial
3D measurements can be obtained by using a laser range
sensor installed on a helicopter platform [12]. High frequency
vibration of the platform, however, should be considered
to ensure that we obtain highly accurate results. To avoid
irrevocable destruction, the use of heavy equipment such as a
crane should be eschewed when scanning a cultural heritage
object.

Based upon the above considerations, we proposed a novel
3D measurement system, a Floating Laser Range Sensor
(FLRS) [4]. This system digitizes large scale objects from the
air while suspended from the underside of a balloon platform
(Fig.1). Our balloon platform is certainly free from high
frequency vibration such as that of a helicopter engine. The
obtained range data are, however, distorted because the laser
range sensor itself is moving during the scanning processes.

Fig. 1. Floating Laser Range Sensor and Bayon temple



In this paper, we propose a method to recover 3D range
data obtained by a moving laser range sensor. Not only
is this method limited to the case of our FLRS, but it is
also applicable to a general moving range sensor. We obtain
distorted range data by using the range sensor, and obtain
image sequences simultaneously by using the video camera
mounted on the FLRS. Then the motion of the FLRS is
estimated by the obtained images and distorted data without
any physical sensors such as gyros and GPS. We estimate
the camera motion parameters imposing some constraints,
which include information derived from the distorted range
data itself. In order to solve the non-linear optimization
problem, we utilize a perspective factorization method as
the initial value to avoid local minimums. Then, using the
refined camera motion parameter, the distorted range data are
recovered.

This paper organized as follows. In Section II, we briefly
explain the perspective factorization, which is utilized as the
initial value for the camera motion. In Section III, we describe
our proposed algorithm for refinement of the parameters. In
Section IV, we describe how we use this algorithm to model
and recover the shape of the Bayon Temple in Cambodia. To
evaluate our method, the recovered shapes are compared with
other data obtained by a range sensor on the ground. Finally,
we present our conclusions and summarize our possible future
works.

II. PERSPECTIVE FACTORIZATION

Estimations of the shape of an object or of camera motion
by using images are called ”Shape from Motion” or ”Shape
from Structure”, and are main research fields in computer
vision.

The factorization method proposed by Tomasi and Kanade
[13] is one of the most effective algorithms for simultaneously
recovering the shape of an object and the motion of the
camera from an image sequence. This method was originally
limited to the orthographic model. Then, however, the factor-
ization was extended to several perspective approximations
and applications [2][8][9][3]. Han and Kanade [3] proposed a
factorization method with a perspective camera model. Using
the weak-perspective projection model, they iteratively esti-
mated the shape and the camera motion under the perspective
model.

First, we briefly explain weak-perspective factorization,
which is subsequently extended to the perspective factoriza-
tion. The solution by the perspective factorization is utilized
as the initial value for the optimizing problem described in
Section III.

A. Weak-Perspective Factorization

Given a sequence of F images, in which we have tracked
P interest points over all frames, each interest point p
corresponds to a single point �sp on the object. In image
coordinates, the trajectories of each interest point are denoted
as {(ufp, vfp)|f = 1, ..., F, p = 1, ..., P 2F ≥ P}.

Using the horizontal coordinates ufp, we can define an
F × P matrix U . Each column of the matrix contains the
horizontal coordinates of a single point in the frame order,
while each row contains the horizontal coordinates for a single
frame. Similarly, we can define an F ×P matrix V from the
vertical coordinates vfp.

The combined matrix of 2F ×P becomes the measurement
matrix as follow.

W =
(

U
V

)
(1)

Each frame f is taken at camera position �tf in the world
coordinates. The camera pose is described by the orthonormal
unit vectors �if , �jf and �kf . The vectors �if and �jf correspond
to the x and y axes of the camera coordinates, while the vector
�kf corresponds to the z axis along the direction perpendicular
to the image plane (Fig.2).

Fig. 2. the coordinate system: �tf denotes the position of the camera
at time of frame f. The camera pose is determined by three unit
basis vectors.

Under the weak-perspective camera model, a single point
in the world coordinates �sp is projected onto the image plane
f as (ufp, vfp).

ufp =
f

zf

�if (�sp − �tf ) (2)

vfp =
f

zf

�jf (�sp − �tf ) (3)

zf = �kf (�c − �tf ) (4)

The vector �c is the center of mass of all interest points.
Without loss of generality, the origin of the world coordinates
can be placed at the centroid, that is �c = 0. Then this means
that zf = − �kf �tf to simplify the expansion of the following
formulation. To summarize,

ufp = �mf �sp + xf (5)

vfp = �nf �sp + yf (6)

where �mf =
f

zf

�if , xf = − f

zf

�if �tf (7)

�nf =
f

zf

�jf , yf = − f

zf

�jf �tf (8)



To be expressed this equation in a matrix form:


u11 . . . u1P

u21 . . . u2P

...
...

...
uF1 . . . uFP

v11 . . . v1P

...
...

...
vF1 . . . vFP




=




�m1
t

�m2
t

...
�mF

t

�n1
t

...
�nF

t




(�s1 . . . �sP )

+




x1

x2

...
xF

y1

...
yF




(1 . . . 1) (9)

Using that the center of all interest points is the origin,
P∑

p=1

ufp =
P∑

p=1

�mf �sp +
P∑

p=1

xf = Pxf (10)

similarly,
P∑

p=1

vfp = Pyf (11)

We obtain the registered measurement matrix W̃ , after
translation W̃ = W − (x1 x2 . . . xF y1 . . . yF)t(1 1 . . . 1)
as a product of two matrixes M and S.

W̃ = M · S (12)

where M is a 2F × 3 Matrix and S is a 3 × P Matrix.
The above decomposition, however, is not unique because

any invertible 3 × 3 matrix A makes a valid decomposition
of Ŵ as

(MA)(A−1S) = M(AA−1)S = MS = W̃ (13)

To get rid of this ambiguity, using the fact that the
matrix M represents the axes of the camera coordinates, the
following constraints should be satisfied.

| �mf | = | �nf |, �mf · �nf = 0 (14)

These constraints give us the motion matrix M and the shape
matrix S.

B. Extension to Full-Perspective Factorization

The above formulation is under the weak perspective cam-
era model, which is a linear approximation of the perspective
model. Next, using an iterative framework, we obtain ap-
proximate solutions under the non-linear perspective camera
model.

Under the perspective camera model, the projective equa-
tion between the object point �sp in 3D world and the image
coordinate (ufp, vfp) is written as

ufp = f
�if (�sp − �tf )
�kf (�sp − �tf )

(15)

vfp = f
�jf (�sp − �tf )
�kf (�sp − �tf )

(16)

displacing zf = − �kf �tf , we obtain the following equation.

(λfp + 1)ufp =
f

zf

�if (�sp − �tf ) (17)

(λfp + 1)vfp =
f

zf

�jf (�sp − �tf ) (18)

where λfp =
�kf · �sp

zf
(19)

Note that the right hand sides are the same form under the
weak-perspective model (see the Eq. 2 and 3). This means,
multiplying a image coordinate (ufp, vfp) by a real number
λfp changes coordinates under the perspective model into
coordinates under the weak-perspective model. Solving the
value of λfp iteratively, we can obtain motion parameters and
coordinates of interest points under the perspective model in
the framework of weak-perspective factorization.

The entire algorithm of the perspective factorization is as
follows:

Input: An image sequence of F frames tracking P interest
points.

Output:The positions of P interest points �sp. The camera
position �tf and poses �if , �jf , �kf at each frame f.

1) giving λfp = 0
2) supposing the equations 17 and 18, solve �sp, �tf , �if , �jf ,

�kf and zf using the weak perspective factorization.
3) calculate λfp by the equation 19.
4) substituting λfp into step2; repeat the above procedure

until λfp’s are close to the previous iteration.

III. REFINEMENT OF CAMERA MOTION

Without noise in input, the above factorization method
leads to the fine solution. As a result, recovered 3D shape
through the estimated camera parameters is valid. Real im-
ages, however, contain a bit of noise. Therefore, it is not
sufficient to recover range data obtained by the FLRS only
through the factorization. For the sake of more refined esti-
mation of camera parameters, we impose three constraints –
tracking, movement, and range data. Refined camera motion
can be found through the minimization of a global functional.
To minimize the function, the solution by the perspective
factorization is utilized as the initial value to avoid local
minimums.

A. Constraint A (Tracking constraint)

As the most fundamental constraint, any interest point �sp

must be projected on each image plane at the coordinates
(ufp, vfp). This constraint conducts the following function:

FA =
F∑

f=1

P∑
p=1

((
ufp − f

�if (�sp − �tf )
�kf (�sp − �tf )

)2

+
(
vfp − f

�jf (�sp − �tf )
�kf (�sp − �tf )

)2
)

(20)

The minimization of FA leads to the correct tracking of
fixed interest points by a moving camera. However, we can



see that the presence of parameters we are trying to estimate
in the denominator makes this equation a difficult one. Then,
suppose that instead, we consider the following function:

FA =
F∑

f=1

P∑
p=1

((
�kf (�sp − �tf )ufp − f �if (�sp − �tf )

)2

+
(

�kf (�sp − �tf )vfp − f �jf (�sp − �tf )
)2
)

(21)

B. Constraint B (Movement constraint)

One of the most significant reasons for adopting a bal-
loon platform is to be free from high frequency vibration
differently from a helicopter platform. In other words, a
balloon platform is only under the influence of low frequency.
The balloon of our FLRS is held with some wires swayed
only by wind. This means that the movement of the balloon
is expected to be smooth. Certainly, the movement of the
balloon is free from rapid acceleration, rapid deceleration
or acute course changing. Taking this fact into account, we
consider following function:

FB =
∫ (

w1

(∂2 �tf
∂t2

)2

+ w2

(∂2qf

∂t2

)2
)

dt (22)

Here, �tf denotes the position of the camera; t is time;
w1, w2 are weighted coefficients; and qf is a unit quaternion
which represents the rotation of camera pose. The presenta-
tion by quaternion is obtained immediately by �if , �jf and �kf .
The first term of the above integrand represents smoothness
with respect to the camera’s translation while the second
represents smoothness with respect to the camera’s rotation.
When the motion of the camera is smooth, the function FB

takes small value.

C. Constraint C (Range Data constraint)

Taking a broad view of range data obtained by the FLRS,
the data are distorted by the swing of the camera. We can
find, however, that these data contain precise information
locally; that information is utilized for refinement of the
camera motion.

The laser range sensor re-radiates laser beams in raster scan
order. This leads that we can instantly obtain the time when
any pixel in the range image is scanned. If the video camera
coincides with the range sensor, we can find the just frame
among the sequence when the pixel is scanned. With the video
camera calibrated with the range sensor, we can obtain the
image coordinate of each interest point in the 3D world, in
addition to the distance from the sensor to it once and for all.
This constraint is very important since knowing the distances
eliminates ambiguity with respect to scaling. The techniques
of ”Shape from Motion” or ”Structure from Motion” only by
images remain ambiguous about scaling. On the other hand,
our method is able to derive some precise information about
scale even from the distorted data and remove the ambiguity.

Then, we can conduct the third constraint to be minimized
as follows:

FC =
P∑

p=1

∥∥ xfp − (�sp − �tfp)
∥∥2

(23)

Here, the index fp denotes the frame number when the
range sensor scans the interest point p, and the measured
distance by the range sensor at this moment denotes xfp.

As xfp = (xfp, yfp, zfp), the above function can be
rewritten to satisfy more rigorous constraint:

FC =
P∑

p=1

((
xfp − �ifp(�sp − �tfp)

)2
+
(
yfp − �jfp(�sp − �tfp)

)2 +
(
zfp − �kfp(�sp − �tfp)

)2)
(24)

D. Global constraint

The weighted sum

F = wAFA + wBFB + wCFC (25)

leads to a global function. To minimize this function, we
employ the Fletcher-Reeves method and the Polak-Ribiere
method [10][5][11], which are types of the conjugate gradient
method. Then, we use the golden section search to determine
the magnitude of gradient directions. As mentioned in the
previous sections, we input the solution by the perspective
factorization as the initial value. Minimizing the function F
is basically quite difficult because this function has many local
minimums. By employing the solution of the factorization as
a fairly good approximation, we try to avoid them.

IV. EXPERIMENTS ON THE BAYON TEMPLE

A. Tracking

In our system, we obtain 72 frames at a single scanning
process. For interest point tracking, we use the SIFT key [6],
which is robust for scaling, that is a movement along the
view direction. A simple window matching method around
the points traces the trajectory of each point throughout all
the frames. After this procedure, we can derive about one
hundred interest points from a sequence of 72 frames.

B. Evaluation of the Recovered Shape

To evaluate the accuracy of our shape recovery algorithm,
we compare the recovered shape with other data, which are
obtained by a range finder, the Cyrax2500, positioned on the
ground. Aligning two data by using ICP algorithm [1][15], we
analyze the overlapped area. The result is shown in Figure 3.
The blue fine data in both images is a non-distorted data (the
correct data) obtained by the Cyrax2500. The white coarse
data in the middle figure indicates the original output data
obtained by the FLRS, while the pink data in the lower
figure indicates the data recovered by our method. One can
easily find that the recovered 3D shape is well-fitted onto
the Cyrax2500’s data. In particular, taking notice of the area
of ellipses in the middle figure, makes it obvious that our
algorithm is effective. In the upper figure, the cross section,



Fig. 3. Range data before and after the recovery process: The
middle figure illustrates the registration of the original data from the
FLRS (white) and the non-distorted data obtained by the fixed Cyrax
2500 (blue). Two shapes do not coincide, especially at the areas of
ellipses in the figure. On the other hand, the recovered shape in the
lower figure (pink) is fitted onto the correct data. The upper figure
shows the cross section on the white dotted line in the middle figure.

cut off on the white dotted line in the middle figure, also
shows the effectiveness.

Another figure, Figure 4, shows the effectiveness of the
method. That figure indicates the point-to-point distances
between Cyrax2500’s data and the recovered data. The left
image shows a comparison between the Cyrax2500’s and the
original distorted data, while the right shows a comparison
between the Cyrax2500’s and the recovered data. The region
where the distances between them are less than 6.0 cm is
colored green(in this study, we set the threshold at 6.0cm).
On the other hand ,the area where the distances are further
than 6.0cm is displayed in blue. At a glance, the green region

Fig. 4. The comparison between the Cyrax 2500’s (the correct data)
and the original distorted data (left), and that between the Cyrax
2500’s and the recovered data: the green region indicates where
the distance of two shapes is less than 6.0 cm, that is, two shapes
coincide in this region. Note that the green region is expanded after
the refinement in the right figure.

Fig. 5. Another data set by the FLRS: in this case, the original
range data are distorted widely (upper left). The recovered shapes
are shown in the upper right and the result of registration with Cyrax
2500’s data is shown in the lower.

is clearly expanded by the recovery algorithm. Taking account
of the fact the Cyrax 2500 could not measure the upper part
of the temple because of occlusions, the method could recover
the 3D shape correctly.

Above data are in the case of that the balloon’s motion
is rather moderate. Figure 5 shows other data, which are
obtained by the balloon in wide motion. One can see that
the range data are distorted widely (the upper left image in
Fig.5). In this case, we can recover the shape without incident
(the upper right). Aligning it with the Cyrax2500’s data, the
recovered shape is well-fitted with the correct data (the lower
image in Fig.5).

V. CONCLUSIONS

We have presented a method for estimating camera motion.
In our framework, we move not only a video camera but also a
range sensor. Without any physical sensors such as gyros and
GPS, we try to recover the shape of an object and the camera



Fig. 6. The overall data of the Bayon Temple

motion by using only an image sequence and the distorted
range data. Correct estimation is essential to recover the object
shape since, in our FLRS system, a range sensor swings
during the measurement process. Using a video sequence on
the FLRS and the distorted range data, we have estimated the
camera motion. At first, the perspective factorization derived
the initial value for the estimation. Next, we solved a non-
linear optimal problem under three constraints. In this process,
we utilized distorted data which had been formerly sloughed.
Finally, by using estimated camera motion parameters, we
recovered the shapes (Figure 6 shows the overall 3D data of
the Bayon Temple). This framework can be generally applied
to a framework in which a range sensor moves during the
scanning process, and is not limited to our FLRS.

We achieved high accuracy recovery of the distorted range
data. Our FLRS is expected to be effective for measurement
of large scale objects. Therefore, we have to improve the
precision obtained by this algorithm.

On the other hand, several problems remain in this method.
For example, in the present system, all tracked interest points
must be visible throughout a sequence. The tracking algorithm
is so simple that it would be rather difficult to track points
when balloon’s movement is violent.
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