
Real-Time Syst (2012) 48:463–498
DOI 10.1007/s11241-012-9154-0

Quality-aware data abstraction layer for collaborative
2-tier sensor network applications

Woochul Kang · Sang H. Son · John A. Stankovic

Published online: 4 May 2012
© Springer Science+Business Media, LLC 2012

Abstract This paper presents PRIDE, a novel data abstraction layer for collaborative
2-tier sensor network applications. PRIDE, more specifically, targets distributed real-
time applications, in which multiple collaborative mobile devices have to analyze a
global situation by collecting and managing data streams from massive underlying
sensors. PRIDE at these devices hides the details of underlying sensors and provides
transparent, timely, and robust access to global sensor data under highly dynamic and
unpredictable environments of emerging sensor network applications. For transpar-
ent and efficient sharing of global sensor data, a model-based predictive replication
mechanism is proposed and integrated into a conventional data management system
that supports diverse types of spatial and temporal queries. In addition, for robust and
timely query processing, the predictive replication scheme is extended to the prob-
lem of guaranteeing Quality-of-Service (QoS) by introducing feedback control of the
accuracy bounds of models. We show the viability of the proposed solution by imple-
menting and evaluating it on a 2-tier sensor network testbed, emulating collaborative
search-and-rescue tasks with realistic workloads. Our evaluation results demonstrate
that PRIDE can achieve timely sensor data sharing among a large number of devices
in a highly robust and controlled manner.

Keywords Real-time collaboration · Sensor data replication · Sensor networks ·
Feedback control · Implementation

W. Kang (�)
Daejon, South Korea
e-mail: wchkang@etri.re.kr

S.H. Son · J.A. Stankovic
Charlottesville, VA, USA

S.H. Son
e-mail: son@virginia.edu

J.A. Stankovic
e-mail: stankovic@virginia.edu

mailto:wchkang@etri.re.kr
mailto:son@virginia.edu
mailto:stankovic@virginia.edu

464 Real-Time Syst (2012) 48:463–498

1 Introduction

1.1 Motivation

Recent advances in sensor technology and wireless connectivity have paved the way
for next generation real-time applications that are highly data-driven, where data rep-
resent real-world status. For many of these applications, data streams from underlying
sensors are managed and processed by application-specific devices such as PDAs and
micro servers. Further, as sensors are deployed in increasing numbers, a single device
cannot handle all sensor streams due to their scale and geographic distribution. Often,
a group of such devices need to collaborate to achieve a common goal. For instance,
consider a team of firefighters involved in a search-and-rescue task during a building
fire. While PDAs carried by firefighters collect data from nearby sensors to check the
dynamic status of the building, they have to collaborate by sharing their locally col-
lected real-time data with peer firefighters since each individual firefighter has only
limited information from nearby sensors (Sha et al. 2006; http://w3.antd.nist.gov/
comm_net_ps.shtml 2008; http://fire.me.berkeley.edu/ 2008). The building-wide sit-
uation assessment requires the fusion of data from all (or most of) firefighters. As
this application shows, in lots of future applications envisioned by Cyber-Physical
Systems (Lee 2008; Stankovic et al. 2005), the data from underlying sensor nodes
will be managed by distributed devices in cooperation. Their operating environments
can be highly dynamic including mobile entities such as PDAs and moving sensor
nodes. Sharing data to allow timely access to global data for each participating entity
is mandatory for successful collaboration in such distributed real-time applications.

However, current tiered sensor network architectures, in which a group of de-
vices at the upper tier manage data from the underlying sensor tier, have a limitation
in satisfying the requirements of aforementioned emerging applications in terms of
timeliness, flexibility, and robustness. Since sensor data is partitioned and distributed
across the upper-tier devices, or proxies, queries accessing global sensor data cannot
be processed in a timely manner; the queries incur unpredictable communication de-
lays between upper-tier devices to locate and access distributed sensor data (Gnawali
et al. 2006; Li et al. 2006; Desnoyers et al. 2005). Some approaches exploit indexes
to reduce the time to locate distributed sensor data (Desnoyers et al. 2005). How-
ever, in highly dynamic situations including mobile entities, such approaches can
severely limit the flexibility since the indexes needs to be updated frequently, offset-
ting the benefit of maintaining indexes. Further, data rate from the underlying sensors
can be highly unpredictable. For instance, in an emergency situation, the system will
be subject to a massive load increase. Potential mobility of entities can also incur
unpredictable workload changes to each upper-tier devices since the number of sen-
sors that each upper-tier device covers can change dramatically. This unpredictable
workload changes can severely congest or overload the devices, incurring additional
unpredictable delays in processing queries.

1.2 Our contribution

To deal with the problem of the emerging large-scale sensor network applications,
this paper presents a novel data abstraction layer, called PRIDE (Predictive Replica-
tion In Distributed Embedded devices). PRIDE enables transparent access to global

http://w3.antd.nist.gov/comm_net_ps.shtml
http://w3.antd.nist.gov/comm_net_ps.shtml
http://fire.me.berkeley.edu/

Real-Time Syst (2012) 48:463–498 465

sensor data in a timely, flexible, and robust manner in highly dynamic environments
of emerging distributed real-time applications interacting with pervasive sensors.

The contributions of this paper are as follows:

1. A predictive replication-based 2-tier architecture: Data replication has been a key
technique that enables each participating entity to share data and obtain a timely
understanding of the global status without the need for a central server (Son 1988;
Gray et al. 1996; Cook et al. 2002; Padmanabhan et al. 2008). To this end, we
propose a replication-based 2-tier architecture, in which data from the sensor tier
is replicated among upper-tier devices. Our replication-based approach provides
several key advantages. First, since global data from the sensor tier are immedi-
ately available at each upper-tier device, spatio-temporal queries on global sensor
data can be answered in a timely manner without remote communication. Further,
since all upper-tier devices share the same states regarding underlying sensors, the
data source tier (sensors) does not need to be tightly coupled with the upper-tier
devices. This loose coupling between the tiers implies that the mobility of sensor
nodes as well as the upper-tier devices can be easily accommodated.

Despite these advantages, replication can impose a significant burden on the
system (Gray et al. 1996). To mitigate such inherent overheads of replication,
a predictive replication scheme is proposed, in which the models of sensor streams
are replicated at upper-tier devices, instead of data themselves. Once a model for
a sensor stream is created at its primary device and its peer devices, the updates
from the sensor are replicated to peer devices only if the prediction from the model
is not accurate enough. This model-driven approach provides the timeliness and
reliability of sensor data at the upper tier devices since they can locally predict
the current as well as future states of physical processes using the models without
actual communication with the underlying sensor tier.

2. A feedback controller to provide robustness against unpredictable workloads:
Even though PRIDE mitigates the high overhead of replication via the predic-
tive replication scheme, upper-tier devices still can be overloaded or congested.
During critical situations, the data rates from the sensor tier can significantly in-
crease and exceed system capacity. If no corrective action is taken, queues will
form and the latencies of queries will increase without bound. To prevent such
situation, we extend the model-driven replication to the problem of guaranteeing
Quality-of-Service (QoS) by introducing feedback control of the quality of sensor
data. A target CPU utilization at each upper-tier device is defined as a primary QoS
metric since, in soft real-time systems, the scheduler will use any cycles that are
saved by the utilization control to improve the timeliness of tasks or queries in the
application. A formal feedback control approach is applied to guarantee the QoS
by dynamically adapting the accuracy bounds of models. By combining feedback
control of QoS into the predictive replication scheme, PRIDE can achieve high
predictability.

3. Implementation and evaluation: The proposed predictive replication mechanism
and feedback control approach can be integrated into typical data managers, sup-
porting diverse types of spatial and temporal queries. To show the viability of
the proposed approach, we integrate our approach into Berkeley DB (http://www.
oracle.com 2008), a popular embedded database. PRIDE is evaluated extensively

http://www.oracle.com
http://www.oracle.com

466 Real-Time Syst (2012) 48:463–498

on an emulation testbed composed of Nokia N810 Internet tablets (http://www.
nseries.com/ 2008), a cluster computer, and a fire simulator from NIST (http://fast.
nist.gov/ 2008). The testbed emulates collaborative search-and-rescue tasks in a
building fire with realistic workloads. Based on the prototype implementation, we
investigate the system performance attributes such as communication/computation
loads, timeliness of query processing, handling of mobility, energy efficiency, and
robustness. Our evaluation results demonstrate that PRIDE can achieve timely
sensor data sharing among devices in a highly robust and predictable manner.

The rest of this paper is organized as follows. Section 2 presents the overview
of PRIDE. Section 3 discusses the details of the predictive replication scheme and
the QoS enforcement mechanism in PRIDE. Section 4 presents the query processing
mechanism of PRIDE. Section 5 discusses our prototype implementation and testbed,
and Sect. 6 presents our experimental results. The related work is discussed in Sect. 7.
We present conclusions and future work in Sect. 8.

2 Overview of PRIDE

2.1 System model

PRIDE envisions 2-tier sensor network systems with a sensor tier and a storage tier
as shown in Fig. 1. The sensor tier consists of a large number of cheap and simple
sensors; S = {s1, s2, . . . , sn}, where si is a sensor. Sensors are assumed to be highly
constrained in resources, and perform only primitive functions such as sensing and
multi-hop communication without local storage. Sensors stream data or events to a
nearest storage node. These sensors can be either stationary or mobile; e.g., sensors
attached to a firefighter are mobile.

The storage tier consists of more powerful devices such as PDAs, smartphones,
and base stations; D = {d1, d2, . . . , dm}, where di is a storage node. These devices
are relatively resource-rich compared with sensor nodes. However, these devices also
have limited resources in terms of processor cycles, memory, power, and bandwidth.
Each storage node supports multiple radios; an 802.11 radio to connect to a wireless
mesh network of storage nodes and a 802.15.4 to communicate with underlying sen-
sors. Storage nodes are supposed to form an ad-hoc mesh network that is efficient for

Fig. 1 A collaborative
application on a 2-tier sensor
network

http://www.nseries.com/
http://www.nseries.com/
http://fast.nist.gov/
http://fast.nist.gov/

Real-Time Syst (2012) 48:463–498 467

broadcasting (Fife and Gruenwald 2003) or multicasting (de Morais Cordeiro et al.
2003) of messages. However, constructing and maintaining an ad-hoc mesh network
among mobile devices is out of scope of this paper, and readers are referred to Aky-
ildiz and Wang (2005), Raniwala and cker Chiueh (2005).

Each storage node di is a primary storage node of a set of sensors in vicinity V (di),
where V (di) ⊂ S, and provides in-network storage for V (di). For the full coverage
of all sensors S, the union of V (di) is supposed to be equal to S. The primary storage
node of a sensor is determined implicitly by receiving sensor updates directly from
the sensor; the remaining storage nodes receiving sensor updates indirectly from the
primary storage node of the sensor automatically become the peer storage nodes.
This implies that the mechanisms of PRIDE at the storage tier is independent of
the policies at the underlying sensor tier. Hence, PRIDE does not mandate a specific
clustering and routing mechanism at the sensor tier. For example, a sensor can choose
its primary storage node based on Euclidean distance, stability of radio channels,
remaining energy at sensor nodes in vicinity, etc.

In PRIDE, all nodes in the storage tier are homogeneous in terms of their roles;
no asymmetrical function is placed on a sub-group of the nodes. All or part of the
nodes in the storage tier form a replication group R to share the data from underlying
sensors. In this paper, we assume R = D. When the size of R is too large for the full
replication of sensor data, they should be partitioned as in Mathiason et al. (2008).
The focus of this paper is to make each replication group more scalable. When there
exist multiple replication groups, sophisticated group communication schemes such
as Mohapatra et al. (2004) should be introduced. But they are out of scope of this
work. All devices joining the ad-hoc mesh network is supposed to be a member of
the replication group, and messages are broadcast via broadcasting or multicasting
protocols. Once a node joins the replication group, updates from its local sensors
are propagated to peer nodes; conversely, the node can receive updates from remote
sensors via peer nodes.

In the remainder of this paper, a node refers to a storage node if it is not explicitly
stated.

2.1.1 Mobility of entities

Since all nodes are homogeneous and share same states regarding the underlying sen-
sors, the sensor tier and the storage tier are loosely coupled. This loose coupling is one
of the key benefits provided by PRIDE’s replication-based approach. If the tiers are
tightly coupled, a complex group management and hand-off procedure are required
to handle the mobility of entities (Abdelzaher et al. 2004). Even though PRIDE does
not mandate any particular group management and hand-off mechanisms, PRIDE can
easily handle the mobility of both sensors and storage nodes. For example, in Fig. 1,
when a sensor node s1 changes its belonging cluster from cluster #1 to cluster #2, no
additional handover procedure is required at the storage tier since both storage node
d1 and d2 maintain the same state regarding s1. Under the assumption that sensor
nodes forward data streams to a nearest storage node, storage node d2 can simply
broadcast replication messages to its peer nodes from the moment sensor streams are
received from the sensor s1. This procedure is depicted in Fig. 2. It should be noted

468 Real-Time Syst (2012) 48:463–498

Fig. 2 An example of hand-off
procedure

that no communication load is incurred at the storage tier to reflect the topology
change at the sensor tier.

2.2 Usage model

Applications at each storage node are linked to the PRIDE data abstraction layer.
Applications issue queries to the underlying PRIDE data abstraction layer either
autonomously, or by simply forwarding queries from external users. In the search-
and-rescue task example, each storage node, or firefighter’s PDA, serves as both in-
network data storage for nearby sensors and a device to run autonomous real-time
applications for the mission; the applications at each PDA collect data by issuing
queries periodically to the underlying PRIDE layer and analyzing the situation to
report results to the firefighter.

PRIDE targets soft real-time applications, in which the tasks and queries have soft
deadlines. Due to the inherent uncertainties of wireless communications, most real-
time applications with wireless communications medium are inherently soft real-time
applications. Further, since we assume mobile devices such as PDAs and smartphones
that typically run by non-real-time operating systems (e.g., Android and Windows
Mobile), it is almost impossible to provide hard real-time guarantees on the deadlines
of tasks or queries. Instead of guaranteeing deadlines directly, PRIDE supports a
predictable scheduling of the queries or tasks at the application layer by trying to
minimize both computation and communication uncertainties in processing queries.
The replication-based tiered architecture of PRIDE eliminates unpredictable remote
communication when queries are processed. Further, the usage of CPU resource is
controlled to prevent overloads against unpredictable workload changes. The details
of the two mechanisms are discussed in Sect. 3.

2.2.1 Supported query types

PRIDE is characterized by the queries that it supports. PRIDE supports both temporal
queries on each individual sensor stream and spatial queries on current global data.
Temporal queries on sensor si ’s historical data can be answered using the model for
si . An example of temporal query is “What is the value of sensor si 5 minutes ago?”
For spatial queries, each storage node provides a snapshot on the entire set of un-
derlying sensors (both local and remote sensors.) The snapshot is similar to a view
in database systems. Using the snapshot, PRIDE provides traditional data organiza-
tion and access methods for efficient spatial query processing. The access methods

Real-Time Syst (2012) 48:463–498 469

can be applied to any attributes, e.g., sensor value, sensor ID, and location; there-
fore, value-based queries can be efficiently supported. Basic operations on the access
methods such as insertion, deletion, retrieval, and the iterating cursors are supported.
Special operations such as join cursors for join operations are also supported by mak-
ing indexes to multiple attributes, e.g., temperature and location attributes. This join
operation is required to efficiently support complex spatial queries such as “Return
the current temperatures of sensors located around the firefighter #6 within a radius
of 10 meters.”

2.2.2 Quality of data and quality of service

In PRIDE, quality of data is defined in terms of the precision bound of sensor data.
Since there exists a trade-off between the quality of data and the increased workloads,
it is necessary to prevent the overload and subsequent message delays at each node
while satisfying the given data quality goals. To this end, the primary QoS metric in
this paper is the CPU utilization bound at each node. With CPU load control, it is
assumed that any cycles that are recovered as a result of control in the PRIDE layer
are used sensibly by the scheduler in the application layer to relieve the overloads
or to save power (Lu et al. 2005; Tatbul et al. 2003). It can also enhance system
robustness by providing overload protection against workload fluctuation.

At each node, the system specification 〈U,δmax〉 consists of a utilization bound
U and the precision specification δmax . The desired utilization, or QoS goal, U ∈
[0..1] gives the required CPU utilization. The precision specification δmax denotes
the maximum tolerable precision bound. The precision bound defines the quality of
data and subsequent query results. Note there is no lower bound on the precision as
in general users require a precision bound as small as possible (as long as the system
is not overloaded.)

3 Quality-aware predictive replication in PRIDE

This section discusses the architecture of PRIDE, the predictive model-based repli-
cation mechanism, and the adaptive control of sensor data precision to guarantee the
desired QoS.

3.1 System architecture

The architecture of PRIDE data abstraction layer is shown in Fig. 3. Since all stor-
age nodes in PRIDE are homogeneous, each storage node has the same architecture.
The layer consists of three key components: (i) filter & prediction engine, which is
responsible for sensor stream filtering, model update, and broadcasting of updates
to peer nodes, (ii) query processor, which handles queries on spatial and temporal
data by using a snapshot and temporal models, respectively, and (iii) feedback con-
troller, which determines proper precision bounds of data for overload protection and
robustness. Three components interact closely with each other.

Each data stream from a sensor has a corresponding model both at its primary
node and peer nodes. Updates from a sensor are first delivered to its primary node’s

470 Real-Time Syst (2012) 48:463–498

Fig. 3 The architecture of
PRIDE data abstraction layer
(gray boxes)

filter & prediction engine. The filter & prediction engine determines if the updates
need to be broadcast to peer nodes. New updates are propagated to peer nodes only
if the observed sensor values deviate from the model’s predicted value by more than
a specified precision bound δ. The precision bound δ is set dynamically to meet the
desired QoS—the CPU load U . The load monitor periodically reports the current
CPU load to the feedback controller, which in turn calculates the CPU utilization
error, i.e., the difference between the desired CPU load and the measured CPU load
at every sampling interval. Based on the error, the feedback controller determines
if how the precision bound δ should be adjusted for the next sampling interval. To
maintain the consistency among the storage nodes in the replication group, the min-
imum of the local δs from the nodes is taken as the global precision bound for the
next sampling interval. The query processor processes the query requests from either
internal applications or external users. Instead of directly fetching data from sen-
sors, The query processor maintains a snapshot which reflects the global status of
the monitored physical processes. Each data object in the snapshot is refreshed from
corresponding model indirectly to maintain the freshness of data.

3.2 Filter and prediction engine

The goals of filter & prediction engine are to filter out updates from local sensors
using models, and to synchronize models at each storage node. The premise of using
models is that the physical phenomena observed by sensors can be captured by mod-
els and a large amount of sensor data can be filtered out using the models. In PRIDE,
when a sensor stream si is covered by PRIDE replication group R, each storage node
in R maintains a model mi for si . Therefore, all storage nodes in R maintain a same
set of synchronized models, M = {m1,m2, . . . ,mn}, for all sensor streams in un-
derlying sensor tier. Each model mi for sensor si is synchronized at run-time by si ’s
current primary storage node (note that si ’s primary node can change during run-time
because of the network topology changes either at sensor tier or storage tier).

Algorithms 1 and 2 show the basic framework for model synchronization at a pri-
mary node and peer nodes, respectively. In Algorithm 1, when an update v is received
from sensor si to its primary storage node dj , the model mi is looked up, and a pre-
diction is made using mi . If the gap between the predicted value from the model, v̂,
and the sensor update v is less than the precision bound δ (line 2), then the new data

Real-Time Syst (2012) 48:463–498 471

Algorithm 1: OnUpdateFromSensor
Input: update v from sensor si
v̂ = prediction from model for si ;1

if |v̂ − v| ≥ δ then2

broadcast v to peer storage nodes;3

update data for si in the snapshot;4

update model mi for si ;5

store to cache for later temporal query processing;6

else7

discard v (or store for logging);8

end9

Algorithm 2: OnUpdateFromPeer
Input: sensor observation v from peer dx

update data for sx in the snapshot;1

update model mx for sx ;2

store to cache for later temporal query processing;3

is discarded (or saved locally for logging.) This implies that the current models (both
at the primary node and the peer nodes) are precise enough to predict the sensor out-
put with the given precision bound. However, if the gap is bigger than the precision
bound, this implies that the model cannot capture the current behavior of the sensor
output. In this case, mi at the primary node is updated and v is broadcast to all peer
nodes (line 3). In Algorithm 2, as a reaction to the broadcast from dj , each peer node
receives a new update v and updates its own model mi with v. The value v is stored
in local caches at all nodes for later temporal query processing.

As shown in the Algorithms, the communication among nodes happens only when
the model is not precise enough.

3.2.1 Models, estimation, and prediction

Several distinctive requirements guide the choice of modeling technique in PRIDE.
First, the computation and communication costs for model maintenance should be
low since PRIDE handles a large number of sensors (and corresponding models
for each sensor) with collaboration of multiple nodes. The cost of model mainte-
nance linearly increases to the number of sensors. Second, the parameters of mod-
els should be obtained without an extensive learning process, because many collab-
orative real-time applications, e.g., a search-and-rescue task in a building fire, are
short-term and deployed without previous monitoring history. A statistical model
that needs extensive historical data for model training is less applicable even with
their highly efficient filtering and prediction performance. Finally, the modeling
should be general enough to be applied to a broad range of applications. Ad-
hoc modeling techniques for a particular application cannot be generally used for

472 Real-Time Syst (2012) 48:463–498

other applications. Since PRIDE is a data abstraction layer for wide range of col-
laborative applications, the generality of modeling is important. To this end, we
choose to use a state-space modeling technique and Kalman filters (Gelb 1974;
Jain et al. 2004). In Jain et al. (2004), it is show that Kalman filters can be applied to
a broad range of applications.

In PRIDE, a physical process, such as temperature, measured by a sensor at a lo-
cation at time k is represented in a state vector having 2 state variables, xk = [x dx

dt
]T ,

where x is the current sensor value at time k and dx
dt

is the derivative of x with re-

spect to time t . We may need an additional state variable, such as d2x

dt2 , to describe the
physical process more accurately. However, the cost of model maintenance increases
according to the number of state variables, and, hence, the current implementation of
PRIDE choose to use 2 state variables for each sensor data object. We believe that
the dynamics of most simple physical processes such as temperature, light intensity,
pressure, etc., can be described using these 2 state variables.

The estimation of current and future states with the models follows the standard
procedures of Kalman filtering technique. As a new measurement is available from
a sensor, the true state of the sensor is estimated using the previous prediction from
the model and weighted prediction error. Based on the prediction error, the model is
updated and the estimation of future states is made from the update model. Unlike
batch estimation techniques, no history of observations is required for Kalman filters.
The accuracy of the parameters of Kalman filters and state variables improves gradu-
ally and adapts to the changes by having more sensor measurements. Moreover, since
the parameters of models at all storage nodes are synchronized simply by exchanging
an sensor update when the measured value deviates from what its model predicts, no
further communication is required to synchronize the models. For detailed discussion
on Kalman filters and its estimation procedures readers are referred to Gelb (1974)
and Jain et al. (2004).

3.2.2 Impact of model inaccuracy

According to our scheme, the communication load incurs only when models are not
accurate enough. In this section, we introduce intentional errors to show the impact
of the model inaccuracy.

For the evaluation, a physical process, which has a non-negligible 3rd component,
d2x

dt2 = α, is modeled with states having 2 components in PRIDE, x = [x dx
dt

]T . When

the second component dx
dt

is c at a given instant, the expected change of x after t in
PRIDE is

�x̂ = t × dx

dt
= ct. (1)

On the contrary, the true change of x is

�x =
∫ t

0

dx

dt
dt =

∫ t

0
(αt + c)dt. (2)

In PRIDE, updates and communication occur only when |�x̂ − �x| ≥ δ,

|�x̂ − �x| =
∣∣∣∣ct −

(
αt2

2
+ ct

)∣∣∣∣ ≥ δ. (3)

Real-Time Syst (2012) 48:463–498 473

Hence, the expected update rate r is

r = 1

t
≤

√
α

2δ
=

√
1

2δ

d2x

dt2
. (4)

This implies that the increase of update rates is proportional to the square root of the
third term. For example, if the precision bound δ is 1 meter when we measure the
moving distance of a vehicle, the model inaccuracy incurs 1.56 additional updates
per second since the acceleration of a typical starting vehicle is known to be less than
4.9 m/s2. Furthermore, the effect of the third component is transient for many physical

processes; the third term, or d2x

dt2 , approaches to 0 quickly after starts. We provide the
data quality adaptation mechanism, which will be discussed in the following section,
to handle such transient and bursty workloads incurring from the model inaccuracy,
instead of using a more complex model, which incurs constant overheads.

3.3 Adaptive data quality control

Figure 4 shows the temperature changes observed by a sensor in a building fire,
and how closely PRIDE estimates this temperature change when different precision
bounds, δ = 1◦, 5°, and 10°, are applied. As the precision bound is getting bigger,

Fig. 4 Varying data precision

474 Real-Time Syst (2012) 48:463–498

Fig. 5 The feedback control
loop

the gap between the real state of the sensor (dashed lines) and the current value at the
PRIDE (solid lines) increases. In the solid lines, the discontinued points are where the
gap between the model prediction and the real measurement from the sensor are big-
ger than the precision bound, and subsequent communication is made among storage
nodes for model synchronization. For applications and users, maintaining the smaller
precision bound implies having a more accurate view on the monitored situation.
However, the overhead also increases as we have the smaller precision bound, poten-
tially incurring the delays in processing queries and communication messages. Given
the unpredictable data arrival rates and resource constraints, it is a challenging task
to determine a proper precision bound at runtime.

To this end, to guarantee the system specification without a priori knowledge of
the workload or accurate system model, we apply feedback control which has shown
to be very effective for a large class of computing systems exhibiting unpredictable
workloads and model inaccuracies (Hellerstein et al. 2004).

3.3.1 Local feedback control to guarantee the system specification

The overall feedback control loop at each storage node is shown in Fig. 5. Let T
is the sampling period. The utilization u(k) is measured at each sampling instant
0T ,1T ,2T , . . . and the difference between the target utilization and u(k) is fed into
the controller. Using the difference, e(k), the controller computes a local precision
bound δ(k) such that u(k) converges to U .

The first step for local controller design is modeling the target system (storage
node) by relating δ(k) to u(k). We model the relationship between δ(k) and u(k)

by using profiling and statistical methods (Hellerstein et al. 2004). As shown in
Sect. 6.5.1, δ(k) has higher impact on u(k) as the size of the replication group in-
creases, hence, a single linear model cannot capture the relation between δ(k) and
u(k). To address this problem, we employ the gain scheduling technique. In gain
scheduling, better controller performance can sometimes be achieved by construct-
ing separate controllers from workload-specific models and then switching to the
appropriate controllers as workload changes. To this end, a set of first-order linear
models are identified under different sizes of replication groups, R:

u(k) = a × u(k − 1) + b × δ(k − 1), (5)

where a and b are model parameters, δ(k) is a system input, and u(k) is a system out-
put. For computational convenience, the models are z-transformed to transfer func-
tions, G|R|(z) = b

z−a
, where |R| ∈ {4,8,16,32, . . .}. With z-transform, we can easily

extract key properties of models and controllers such as the settling time of a system.
Table 1 shows the transfer functions for different sizes of replication groups. For in-
stance, G16(z) captures the system behavior when the size of a replication group is
around 16. It should be noted that a is negative, meaning that a larger δ decreases the

Real-Time Syst (2012) 48:463–498 475

Table 1 Transfer functions for
varying sizes of replication
groups

|R| 4 8 16 32

Gn(z) −0.646
z−0.605

−0.816
z−0.672

−1.112
z−0.604

−1.499
z−0.606

Algorithm 3: PrecisionBoundControl
Input: myid: my storage id number
/* Get local δ. */1

measure u(k) from monitor;2

calculate δmyid(k) from local controller;3

foreach peer node d in R − {dmyid} do4

/* Exchange local δs. */5

/* Use piggyback to save communication cost. */6

send δmyid(k) to d ;7

receive δi(k) from d ;8

end9

/* Get the final global δ. */10

δglobal(k) = max(δi(k)), where i ∈ R;11

CPU load. Further, the gap between a and b is getting greater as the size of replica-
tion groups increases. This implies that the system is more sensitive to the change of
δ accordingly as the size of replication groups grows.

After the modeling, we design a controller for the model. The goal of the con-
troller is to ensure that the measured CPU utilization, u(k), is equal to the target
utilization, U . We have found that a proportional integral (PI) controller (Hellerstein
et al. 2004) is sufficient in terms of providing a zero steady-state error, i.e., a zero
difference between u(k) and the target utilization bound. Further, a gain scheduling
technique (Hellerstein et al. 2004) have been used to apply different controller gains
for different size of replication groups. For instance, the gain for G32(z) is applied if
the size of a replication group is bigger than 24 and less than or equal to 48. Due to
space limitation we do not provide a full description of the design and tuning meth-
ods. For details on controller design and tuning, readers are referred to Hellerstein
et al. (2004).

3.3.2 Coordination among replication group members

If each node independently sets its own precision bound, the net precision bound of
data becomes unpredictable. For example, at node dj , the precision bounds for local
sensor streams are determined by dj itself while the precision bounds for remote
sensor streams are determined by their own primary storage nodes.

PRIDE takes a conservative approach in coordinating storage nodes in the group.
As Algorithm 3 shows, the global precision bound for the kth period is determined by
taking the maximum from the precision bounds of all nodes in the replication group.
The global precision bound at kth sampling period, is the precision bound applied

476 Real-Time Syst (2012) 48:463–498

for all storage nodes in the replication group for the period. We choose the greatest
value among all precision bounds from each local control loop since a node that has
the greatest precision bound is the most overloaded node in period k. By setting the
global precision bound to the most overloaded node’s, we can ensure that congestion
at the most overloaded node is reduced.

One of the most important properties of a feedback control system is stability.
However, the stability analysis of distributed feedback control loops is possible only
in limited settings (Wang et al. 2007). Hence, we show the stability of PRIDE’s feed-
back control mechanism in an empirical manner in Sect. 5.

4 Query processing in PRIDE

The query processor of PRIDE supports both temporal queries and spatial queries.
We plan to extend PRIDE to support spatio-temporal queries.

4.1 Spatial queries

Each storage node maintains a snapshot for all underlying local and remote sensors
to handle queries on global spatial data. Each element (or data object) of the snapshot
is an up-to-date value from the corresponding sensor. The snapshot is dynamically
updated either by new measurements from sensors or by models.1 The Algorithm 1
(line 4) and Algorithm 2 (line 1) show the snapshot updates when a new observation is
pushed from a local sensor and a peer node, respectively. As explained in the previous
section, there is no communication among storage nodes when models well represent
the current observations from sensors. When there is no update from peer nodes, the
freshness of values in the snapshot deteriorate over time. To maintain the freshness
of the snapshot even when there is no updates from peer nodes, each value in the
snapshot needs to be updated by its local models either periodically or on-demand.
On-demand updates are more suitable if queries do not have timing constraints and
the execution of the queries are rare. With on-demand updates, resources such as CPU
time can be saved. However, since PRIDE targets applications that execute queries
often for the timely situation-awareness, on-demand updates can be another source
of delays in processing queries. To this end, PRIDE performs periodic updates of
snapshots. The overhead of periodic updates of snapshots is quantified in Sect. 6.

Each storage node can estimate the current state of sensor si using models without
communication to the primary storage node of si . The period of update of data object
i for sensor si is determined, such that the precision bound δ is observed. Intuitively,
when a sensor value changes rapidly, the data object should be updated more fre-
quently to make the data object in the snapshot valid. In the example of Sect. 3.1, the
period can be dynamically estimated as follows:

p[i] = δ/
dx

dt
. (6)

1Note that the data structures for the snapshot such as indexes are also updated when the value of the
snapshot is updated.

Real-Time Syst (2012) 48:463–498 477

Fig. 6 Smoothing for temporal
query processing

The 2 × δ/dx
dt

is the absolute validity interval (avi) before the data object in the snap-
shot violates the precision bound, which is ±δ. The update period should be as short
as the half of the avi to make the data object fresh (Ramamritham et al. 2004).

Since each storage node has an up-to-date snapshot, spatial queries on global data
from sensors can be efficiently handled using local data access methods (e.g., B+
tree) without incurring further communication delays.

4.2 Temporal queries

Historical data for each sensor stream can be processed in any storage node by ex-
ploiting data at the local cache and linear smoother (Gelb 1974). Unlike the estima-
tion of current and future states using one Kalman filter, the optimized estimation of
historical data (sometimes called smoothing) requires two Kalman filters, a forward
filter x̂ and a backward filter x̂b . Smoothing is a data processing scheme that uses all
measurements between 0 and T to estimate the state of a system at a certain time t ,
where 0 ≤ t ≤ T (see Fig. 6.) The smoothed estimate x̂(t |T) can be obtained as a
linear combination of the two filters as follows.

x̂(t |T) = Ax̂(t) + A′x̂(t)b, (7)

where A and A′ are weighting matrices. For detailed discussion on smoothing tech-
niques using Kalman filters, the reader is referred to Gelb (1974).

5 Implementation and testbed

We have implemented a prototype of PRIDE on a multi-tier sensor network testbed.
In this section, we describe the issues in the implementation of PRIDE and explain
the details of the testbed.

5.1 Implementation details

PRIDE utilizes an extension of Berkeley DB (http://www.oracle.com 2008), which
is a popular open-source embedded database. Unlike traditional database systems,
Berkeley DB is embeddable to an application; Berkeley DB is linked to an appli-
cation (or application infrastructure) and provides robust storage features such as
diverse access methods, ACID transactions, recovery, locking, and multi-threading
for concurrency. PRIDE exploits these features of Berkeley DB and extends them by
providing predictive replication, snapshot management, and dynamic data precision
control. Since PRIDE is intended for use in open systems, it has been built on top
of a POSIX-based standard operating system (http://standards.ieee.org/regauth/posix

http://www.oracle.com
http://standards.ieee.org/regauth/posix

478 Real-Time Syst (2012) 48:463–498

2009), instead of a specialized real-time operating system. PRIDE, except the origi-
nal Berkeley DB, is composed of about 7000-line C codes. The binary size of PRIDE
is less then 40 KB. Hence, we believe that PRIDE is applicable to a wide range of
embedded devices including smart-phones.2

5.1.1 Snapshot management

Snapshots of PRIDE are ordinary database files of Berkeley DB. By using ordinary
database files, PRIDE can exploit diverse built-in functionalities of Berkeley DB such
as indexing. However, since database files are static entities, as discussed in Sect. 3.2,
they need to be updated periodically to maintain the freshness of their data. In PRIDE,
each data record has an implicit data field, which contains its update period. A timer
is set to the next expiration time, which is current time + update period. On the ex-
piration of the timer, the update period is reevaluated using (6), and the timer is set
to the next expiration time. However, since potentially a large number of data records
exist in database files, setting a separate timer for each data record can degrade the
system performance to handle lots of timer interrupts; each timer interrupt incurs
context-switching, which can be a major source of CPU load. Instead, PRIDE main-
tains a priority queue, which orders all timer interrupt requests for snapshot updates,
and coalesces requests having close expiration times. For example, PRIDE ignores
sub-second units of each timer request, and coalesces them to one timer interrupt
request. When a timer expires, all data records corresponding to the coalesced timer
request are updated. We believe that one context switching per second to handle timer
interrupt will incur virtually no overhead. However, the detailed effects of coalescing
on the performance is left for future work.

5.1.2 Feedback control

PRIDE has a dedicated control task that periodically monitors and adjusts the data
precision as discussed in Sect. 3.3. The PRIDE control task is a p-thread belonging to
the real-time class and is periodically activated every 5 seconds. The communication
overhead affects the choice of sampling interval because too short sampling periods
incur communication overhead for storage nodes to coordinate a global precision
bound as discussed in Sect. 3.3. Conversely, if the sampling interval is too long, the
speed of control will be slow. Our experiment showed that the sampling interval of 5
seconds makes good trade-offs between the two conflicting requirements.

The CPU load is the system output in PRIDE, and the effectiveness of feedback
control depends on the preciseness of CPU load information. In Linux underlying
PRIDE, CPU load average information via proc file system (/proc/loadavg) is based
on queuing-theoretic estimation by observing the length of run queue in the CPU
scheduler. This information does not provide fine-grain information on how much
CPU time has been used by a specific set of tasks. Hence, instead of using the load
average information, we measure the number of clock ticks that actually have been
used by PRIDE both in user and kernel modes. This information is available via
/proc/stat interface in Linux.

2The minimum footprint of PRIDE including Berkeley DB is 540 KB.

Real-Time Syst (2012) 48:463–498 479

Fig. 7 PRIDE testbed

5.2 Emulation testbed

A collaborative search-and-rescue scenario in a building fire from (http://fire.me.
berkeley.edu/ 2008) is adapted, and emulated on our emulation testbed. In this sce-
nario, PDAs carried by a team of firefighters are storage nodes collecting data from
sensors in a building via wireless communication.

In the testbed, the storage tier employs one Nokia N810 Internet tablet (http://www.
nseries.com/ 2008) and a Centurion cluster machine as shown in Fig. 7. The N810
device is equipped with 400 MHz TI OMAP processor, 128 MB RAM, 256 MB
flash memory, 802.11b Wi-Fi radio, and runs Maemo, which is a modified version
of GNU/Linux slimmed down for mobile devices.3 Since the number of available
storage nodes is limited, the Centurion cluster with 32 computing nodes are used
to enable a large-scale evaluation. Each node of the cluster is equipped with two
1.5 GHz AMD Opteron processors, 2 GB RAM. The N810 device and each node of
the Centurion cluster emulate one storage node. Hence, 32 firefighters in maximum
are emulated by storage nodes in the testbed (one N810 device and up to 31 Centurion
cluster nodes). The N810 device and the Centurion cluster are connected via 802.11b
Wi-Fi. The broadcast among the emulated storage nodes is implemented by sending
a separate message to each storage node. All emulated storage nodes, either on N810
or on the Centurion cluster, perform homogeneous functionality. However, the real
measurements of CPU utilization, energy consumption, and the query latency are
performed in the N810 device. We believe that the N810 device represents emerging
mobile computing platforms, which are expected to interact with ubiquitous sensors
in the near future.

In the sensor tier, sensor streams are generated by NIST CFAST (The Consoli-
dated Model of Fire and Smoke Transport) fire simulator (http://fast.nist.gov/ 2008).
CFAST is a two-zone fire model used to calculate the evolving distribution of smoke,
fire gases and temperature throughout compartments of a building during a fire. Us-
ing CFAST simulator, a wide-range of fire scenarios can be simulated in detail by
configuring the input parameters, which include the geometry of the compartments
and the connections between these compartments, the initial fire source and burn-
ing objects in the compartments, flow vents, and floor/wall materials. In the testbed,
traces are generated from CFAST simulator off-line for repeatability and scalabil-
ity of experiments. Each trace corresponds to the history of temperature changes at

3Maemo is based on GNU/Linux 2.6.21 kernel and compliant with POSIX standards.

http://fire.me.berkeley.edu/
http://fire.me.berkeley.edu/
http://www.nseries.com/
http://www.nseries.com/
http://fast.nist.gov/

480 Real-Time Syst (2012) 48:463–498

Table 2 Testbed settings
Parameter Value

of storage nodes (|R|) 32 in maximum
(One N810 and 31 cluster nodes)

Measurement device N810

Networking 802.11b Wi-Fi

Type of sensors Temperature

of sensors (|S|) 4480 in maximum
(80–140 per storage node)

Sensor measurement
report interval

1 second

Query issue interval 0.5 second

Query operation Accesses data (|S| × 0.1) times

Query access pattern 50–50 (random) and 90–10

a specific location in the modeled building. For large scale experiments, additional
sensor streams can be made by time-shifting the original traces. In the runtime of
each simulation, these traces are replayed and sent to storage nodes by one node of
the Centurion cluster with 1 second interval as shown in Fig. 7.

Each storage node is expected to be a primary storage node of up to 140 sensors;
hence, 4,480 sensor streams in maximum are covered by 32 firefighters. In the simu-
lated search-and-rescue scenario, real-time tasks running on each storage node check
the status of the building such as the possibility of collapse, explosion, the existence
of safe retreat path, etc. For the emulation of such real-time tasks, a query is reg-
ularly issued by an application at each storage node on every 0.5 second period.4

The queries access sensor data in the snapshot according to x–y data access pattern.
In x–y access scheme, x % of the data accesses are directed to y % of the data in
the PRIDE layer. For instance, with 90–10 access pattern, 90 % of the data accesses
are directed to 10 % of the data in the PRIDE layer, thus, incurring data contention
on 10 % of the entire data. To demonstrate that PRIDE is robust to access pattern
changes, we tested our approach by applying 2 different x–y access patterns; 90–10
and 50–50. The number of data accesses per query is proportional to the total number
of sensors. The applications can use raw data returned from the queries for further
analysis and decision making. However, further processing in the application layer is
not modeled in the evaluation. The summary of the settings of the testbed is shown
in Table 2.

6 Evaluation

In this section, the goal and background of the experiments are discussed and results
are presented.

4Real-time queries for firefighters can be invoked on a per-second basis (Jiang et al. 2004).

Real-Time Syst (2012) 48:463–498 481

Table 3 Tested approaches

Full Full replication

Approx-caching Replication using recently cached values

PRIDE Model-based replication at the storage tier

PRESTO Model-based communication between the tiers;

No sensor data replication at the storage tier

PRIDE + PRESTO Model-based communication between the tiers;

Model-based sensor data replication at the storage tier

6.1 Performance evaluation goals

The objectives of the performance evaluation are (1) to determine the suitability of the
light-weight replication-based 2-tier architecture of PRIDE in terms of its scalability,
timeliness of query processing, handling of mobility, energy consumption, and data
quality and (2) to determine if the presented algorithms can provide guarantees on
target CPU loads according to a QoS specification. For the first objective, we have
studied and evaluated the behavior of the algorithms under various conditions, where
a set of parameters have been varied. Through Experiments #1 and #2, the data quality
controller in PRIDE is turned off during the evaluation to assess the efficiency of the
predictive replication alone.

The second objective is investigated in Experiment #3 by comparing PRIDE’s
performance adaptation while its controller is turned on and off.

6.2 Baselines

For performance comparisons, we consider five approaches shown in Table 3. In
Full, all updates from sensor streams are fully replicated to peer storage nodes in
the replication group. This is a typical replication approach for most commercial dis-
tributed databases. Approx-Caching is a value-driven approach, in which a storage
node broadcasts updates from sensors only if the difference between current data and
last broadcast data is larger than a threshold (δ). This approach is similar to the algo-
rithm in Olston et al. (2001). PRESTO represents a state-of-the-art 2-tier architecture
(Li et al. 2006; Desnoyers et al. 2005; Gnawali et al. 2006), in which the two tier
reduce the load of communication by exploiting models. In the original PRESTO (Li
et al. 2006), seasonal ARIMA model is exploited for the communication between
the tiers. However, since the performance of specific models is not the focus of this
paper, we use the Kalman filtering technique, which is used in PRIDE. Among the
baselines, PRESTO is the only approach that does not support sensor data replication
at the storage tier. Hence, senor data is partitioned across the storage nodes and each
storage node has a partial view on the global situation. At each storage node, sensor
data is located via an index structure, and remote sensor data is accessed on-demand.
The index at each storage node is updated when the topology of either sensor tier
or storage tier changes. PRIDE is our approach, which replicates sensor data using
models and updates its snapshots to maintain the freshness of sensor data. Finally,
PRIDE + PRESTO combines PRESTO’s model-based communication scheme be-
tween the tiers and PRIDE’s model-based replication technique at the storage tier.

482 Real-Time Syst (2012) 48:463–498

Like PRESTO, the communication load between the tiers is reduced by exploiting
models on each sensor streams. Further, like PRIDE, each storage node maintains
models for all sensors and updates from a model are broadcast to all peer storage
nodes. Hence, PRIDE + PRESTO does not need to access remote sensor data for pro-
cessing queries. However, it should be noted that PRIDE + PRESTO, like PRESTO,
needs to synchronize models between the two tiers, and it makes the tiers less inde-
pendent with each other.

6.3 Experiment 1: Performance of predictive replication-based 2-tier architecture

First, we show the performance of the predictive replication scheme in PRIDE. The
data precision bound δ is 1 °C for all model-based approaches and Approx-Caching.
All evaluation results are based on at least 5 runs and the averages with 95 % confi-
dence intervals are taken.5

6.3.1 Scalability and timeliness

Figure 8 shows the scalability and timeliness of query processing in PRIDE and base-
lines when we change the number of storage nodes from 2 to 16. Each storage node
receives data streams from 100 sensors. Hence, the total number of underlying sen-
sors increases from 200 to 1,600 accordingly.

In Figs. 8(a), as the system size increases, the number of messages increases in all
approaches. Among the replication-based approaches, Full and Approx-Caching gen-
erate a significant amount of messages as the network scales up. In contrast, the slope
is much flatter in PRIDE compared to them since PRIDE filters out most of the in-
coming data from sensors as long as its models can predict the value within the preci-
sion bound. For instance, PRIDE filters out 93 % of the original data when 16 storage
nodes are deployed while Approx-Caching filters out only 80 %. This gap increases
as the system scales up. PRESTO, which does not support replication at the stor-
age tier, is highly sensitive to data access patterns. For example, when 90–10 access
pattern is applied, PRESTO incurs similar communication overhead as PRIDE. How-
ever, when 50–50 access pattern is applied, it incurs approximately 5.5 times more
communication loads than when 90–10 access pattern is applied. This is because
most communication overhead of PRESTO, unlike replication-based approaches, re-
sults from accessing remote data at the storage tier. This highly unpredictable nature
of PRESTO can be a problem for real-time systems which need predictable behavior
from the system. In contrast, the effect of varying access pattern is insignificant in
replication-based approaches since all data accesses are handled locally. Hence, the
graphs for replication-based approaches show only the results when 50–50 access
pattern is applied unless they differ more than 5 %. For PRESTO, hereafter, we do
not show the result of 50–50 access pattern unless it is necessary since 90–10 is the
best case for PRESTO.

The least communication load is achieved when the advantages of both PRIDE
and PRESTO are combined in PRIDE + PRESTO. For example, PRIDE + PRESTO

5The confidence interval bars are shown in the graphs.

Real-Time Syst (2012) 48:463–498 483

Fig. 8 Scalability and
timeliness of PRIDE

484 Real-Time Syst (2012) 48:463–498

Fig. 9 The breakdown of CPU load

incurs only 8.8 times more messages when the number of storage nodes changes from
2 to 16. In contrast, PRIDE and PRESTO(90–10) generate 62.5 times and 34.8 times
more messages, respectively, in the same environment. This is because PRIDE +
PRESTO not only reduces the communication loads between the tiers using models,
but it also eliminates the need for accessing remote data at the storage tier. Hence,
PRIDE + PRESTO results in the least communication load as the system scales up.

Figure 8(b) shows the CPU utilization in the same experiment. The amount of
communication is highly related to the CPU load since each message incurs overhead
to handle it. In Fig. 8(b), the CPU loads increase proportionally to the amount of
communication in all approaches. The breakdown of the CPU utilization is shown
in Fig. 9. In the graph, three major tasks contribute to the overall measured CPU
load; cx3110x task is the WI-FI driver for interrupt handling, OMAP McSPI/O task
is the DMA transfer driver, and PRIDE task is the PRIDE task itself. The combined
CPU load of cx3110x task and OMAP McSPI/O task represents the CPU overhead
to process incoming/outgoing messages. As Fig. 9 shows, data communication is the
primary source of CPU time for all approaches, and its portions increase as the size
of the collaboration group increases.

In PRIDE and other model-based approaches, CPU load is not only related to the
number of exchanged messages, but also to the number of underlying sensors since
PRIDE updates data objects in the snapshot periodically using models of each sensor.
In Fig. 9, the gap between PRIDE and PRIDE/NU quantifies the cost of the dynamic
snapshot update using models. PRIDE/NU is the PRIDE approach performing the
predictive replication, but the snapshot at each node is not dynamically updated by
models. Figure 9 shows that PRIDE incurs less than 10 % additional CPU overhead
than PRIDE/NU when 16 storage nodes are involved. This implies that the CPU
overhead to maintain models in PRIDE is insignificant.

Figure 8(c) shows the query latency as the size of the system increases. In the
replication-based approaches, CPU contention is the major factor determining the
query latency. Once CPU load rises above a certain scheduling bound, the lengths of
scheduling queues in the system increase limitlessly. For example, the query latency

Real-Time Syst (2012) 48:463–498 485

Fig. 10 Effect of mobility

of Full approach increases without limit as CPU gets saturated. The query latencies
of the other replication-based approaches increase gradually as their CPU load in-
creases. In contrast, the query latencies of the non-replication-based approaches are
mostly affected by the communication latency to access remote data. For example,
even though PRESTO(90–10)’s CPU load is almost equal to PRIDE’s, the query
latency of PRESTO(90–10) is approximately 126 times longer than PRIDE’s. This
result demonstrates that the replication-based approach of PRIDE is more appropriate
when timely query responses are required.

6.3.2 Mobility

In the same setting as in Sect. 6.3.1, the effect of dynamic network topology is tested
when 0–10 % sensors change their primary storage node every second. The result
with 16 storage nodes is shown in Fig. 10.

In PRESTO, as the more sensors change their primary storage nodes, the more
communication loads are incurred to keep track of the locations of the sensor data;
a new primary node of a sensor needs to broadcast the updated locations of the sen-
sor to all peer nodes. For instance, 1 % additional topology change at the sensor
tier incurs approximately 13 % increase of message counts at the storage tier to up-
date index at each storage nodes. In practice, additional communication overheads
are inevitable in non-replication-based approaches to transfer states and synchronize
between the storage nodes (Abdelzaher et al. 2004); our experiment accounts for
only the messages to update indexes that map the current sensor data to its primary
storage node. In contrast, in PRIDE and other replication-based approaches, no ad-
ditional communication is required at the storage tier when the topology changes in
the sensor tier. This loose coupling between the tiers via replication at the storage tier
makes PRIDE highly suitable for 2-tier sensor network applications having mobile
entities.

486 Real-Time Syst (2012) 48:463–498

Fig. 11 Energy consumption

6.3.3 Energy consumption

Since PRIDE targets (potentially mobile) low-end devices such as PDAs, and micro
severs, energy is a critical resource for long lifetime. In this section, we compare the
energy consumption of PRIDE to the baseline approaches. In the evaluation, 16 stor-
age nodes are deployed for 30 minutes, where each storage node handles 100 sensor
streams. The power is measured at the N810 device by monitoring the remaining
battery power. The full capacity of the battery is 1,500 mA h.

Figure 11(a) shows the energy consumption after 30 minutes, and Fig. 11(b)
shows the changes in the remaining battery power over 30 minutes. The result shows
that PRIDE consumes significantly smaller energy than other approaches. For in-
stance, PRIDE consumes 27 %, 38 %, and 43 % less energy than Approx-Caching,
PRESTO(50–50), and Full approach, respectively. PRESTO’s energy consumption
can be reduced to the level of PRIDE’s only when its data access pattern is highly
skewed as much as 90–10. This result is expected since the overhead in computation
and communication has net effect on the energy consumption.

6.3.4 Quality of data

In wireless sensor networks, packet losses are common due to various interferences
from their environments. In this section, we evaluate the impact of lossy communica-
tion on the data accuracy at storage nodes. In the evaluation, the accuracy of sensor
data at one of the storage nodes is measured while data packets from sensors are
dropped with random probabilities. The accuracy of the sensor data at the storage
node is quantified by root mean square error (RMSE) between the ground truth x

and the estimated value at the storage node x̂ over the entire emulation period n;

RMSE is defined as
√∑n

k=1(xk−x̂k)
2

n
.

Figure 12 shows the RMSEs of PRIDE and Approx-Caching while the packet
drop ratio changes from 10 % to 90 %.6 In Fig. 12, both approaches can satisfy the

6PRIDE is representative of approaches exploiting models including PRESTO and PRIDE + PRESTO.
Hence, we only show the result of PRIDE.

Real-Time Syst (2012) 48:463–498 487

Fig. 12 RMSE vs. packet drop ratio

required precision bound δ even until the majority of sensor data is lost; however,
PRIDE maintains the higher accuracy of sensor data (or, the lower average RMSE)
despite the packet losses. For instance, in Fig. 12(a) PRIDE can maintain the required
data quality, δ = 0.5, until 82 % of sensor data is lost, while Approx-Caching begins
to violate it when the packet drop ratio is over 63 %. When δ is greater, e.g. δ = 5
in Fig. 12(b), even more packet losses can be tolerated in both approaches; the target
data precision is not violated even until 93 % and 86 % of packets are lost in PRIDE
and Approx-Caching, respectively.

This result shows that both approaches are highly resilient to packet losses; a frac-
tion of data can be enough to estimate the current state of physical processes. This
is because both PRIDE and Approx-Caching exploit the impreciseness of data on
purpose. However, PRIDE can achieve the higher data quality of sensor data under
unreliable communication. For PRIDE, it is also interesting that RMSE does not in-
crease monotonically as the packet drop ratio increases. This is because some sensor
data reflecting transient changes of physical processes can have a negative effect in
modeling the long-term trends of the physical processes.

6.4 Experiment 2: Trading data freshness for scalability

PRIDE has been designed for distributed real-time applications, where maintaining
high data freshness is critical. To this end, storage nodes in PRIDE deliver outgo-
ing messages to peer nodes without delay in the buffer. However, some applica-
tions are tolerant, to some extent, to communication delays and subsequent stale-
ness of data. For example, environment monitoring applications (Selavo et al. 2007;
Fall 2003) require high scalability to cover wide areas with high precision; however,
they rarely need high sensor data freshness. For such applications, data freshness can
be compromised to some extent to achieve other quality aspects such as high scala-
bility.

In this experiment, we evaluate how the scalability of PRIDE is affected when
the freshness of sensor data is compromised. In the experiment, individual outgoing
messages are buffered and are transmitted in one message. Instead of delivering mes-
sages immediately to peer nodes, the messages in each buffer is concatenated into

488 Real-Time Syst (2012) 48:463–498

Fig. 13 Trading freshness for
scalability

one message and are transmitted only when the buffer is full. The size of buffer is
changed from 512 bytes to 8192 bytes when 32 storage nodes are deployed. At the
receiving nodes, the incoming concatenated messages are parsed and divided into
original messages before their processing.

As shown in Fig. 13(a), the utilization at each storage node decreases significantly
for all approaches, making them much more scalable. The gain is particularly pro-
nounced in Approx-Caching since it has the greatest communication overhead com-
pared to other approaches as shown in Fig. 9. For example, when the buffer size
is 512 bytes, the utilization of Approx-Caching decreases from 1.0 to 0.31 while the
utilization of PRIDE drops from 0.85 to 0.34. Due to this significant decrease of com-
munication overheads, Approx-Caching outperforms PRIDE and other model-based
approaches slightly except PRIDE + PRESTO. When communication overhead is
low enough, PRIDE and model-based approaches have a higher computational over-

Real-Time Syst (2012) 48:463–498 489

head to process models. Since the communication overhead is low enough when the
size of buffer is 512 bytes, not much further gain is achieved by increasing the buffer
size over 512 bytes. For example, only 15 % CPU utilization is reduced for PRIDE
by increasing the buffer size from 512 bytes to 8192 bytes. However, as shown in
Fig. 13(b), delay in the buffer increases linearly as the size of the buffer increases.
For instance, the delay in buffer increases from 34 milliseconds to 394 milliseconds
for PRIDE when the buffer size is increased from 512 bytes to 8192 bytes. Hence,
the size of buffer should be chosen carefully to make best compromise between the
communication overhead and latency.

6.5 Experiment 3: Adaptability

We next evaluate the adaptability of PRIDE against unpredictable workloads. First,
the effects of varying precision bounds are quantified in Sect. 6.5.1 by manually
changing precision bounds. In the following Sections, the adaptability of PRIDE is
evaluated by deploying 32 storage nodes and turning on the data quality controller
at each node. The performance goal is given by the specification 〈0.6,10 °C〉, which
means the CPU utilization bound is 60 % and the maximum precision bound δ is
10 °C.7 In the experiment, the sampling intervals of controllers are set to 20 seconds.

6.5.1 Effects of varying precision bounds

In PRIDE, the target CPU utilization is achieved by systematically controlling the
precision bounds of models. In this experiment, we evaluate the impact of varying
precision bounds on the system by manually applying different precision bounds,
δ = 0.5, 1, 5, and 10 to PRIDE. Controllers are turned off to prevent the dynamic
changes of δ at runtime.

Since PRIDE has n-to-n connections, the number of messages is proportional to
n2

δ
, where n is the number of storage nodes. The implication is that precision bounds

have higher impact on the system performance as the size of replication groups in-
creases. Figure 14 shows the numbers of messages, CPU utilizations, and the query
latencies when we change the number of storage nodes from 2 to 16. As expected,
changing precision bounds has higher impact on the system when the size of replica-
tion group is great. For example, when the size of replication group is 16, changing
δ from 10 to 1 incurs 0.194 increase in the CPU load, while 0.04 increase in the
CPU load when the size of replication group is 8. This result demonstrates that the
dynamics of PRIDE at different sizes of replication group can not be captured with
one model. This end, PRIDE’s data quality controller exploits the gain scheduling
technique to choose different models and corresponding controller parameters as the
size of replication group changes.

Another interesting point to note is that theoretically as δ approaches to zero, the
number of messages approaches to the infinity and the quality of data increases lin-
early. In practice, however, the maximum number of messages and subsequent model

7In the simulated scenario, the observed temperatures are exploited to make the real-time prediction on
fire and smoke flows, and hence high precision bound, such as below 10 °C, can be tolerated. To achieve
higher data accuracy in different scenarios, the timeliness can be traded as shown in Sect. 6.4.

490 Real-Time Syst (2012) 48:463–498

Fig. 14 The effect of different precision bounds

quality is bounded by the physical precision and sampling rates of sensors. For ex-
ample, the number of messages is expected to double when δ is changed from 1 to
0.5 in theory; however, in practice, it incurs less than 20 % increase in the number of
messages regardless of the size of the replication group.

6.5.2 Average performance

We evaluate the adaptability of PRIDE by changing the workload while the data
quality controllers are turned on and off. The workloads are varied by changing the
number of sensor streams for each storage node from 60 to 140; hence, |S| changes
from 1920 to 4480. For PRIDE without controllers, the precision bound is set to 3 °C.

In Fig. 15, the average performance is shown. Figure 15(a) shows that PRIDE
with controller achieves the target CPU load closely in all workloads. In contrast,
the CPU load fluctuates dramatically between under-utilization and over-utilization
when no control is applied; the load changes between 0.28 and 1. Violating the goal
in CPU load implies that the latency of application tasks and queries in PRIDE can be
increased significantly. Figure 15(b) shows the changes in δ to achieve the target CPU
load. In PRIDE, the precision bound δ increases linearly as the workload increases.
However, PRIDE still satisfies the maximum precision bound, which is 10 °C.

Real-Time Syst (2012) 48:463–498 491

Fig. 15 Varying workload

Fig. 16 Transient behavior

6.5.3 Transient performance

The average performance is not enough to show the performance of dynamic sys-
tems. Transient performance such as settling time should be small enough to satisfy
the requirements of applications. In this experiment, the workload is increased by
changing the number of underlying sensors and the transient behavior is observed.
For example, we can consider a situation in which a firefighter moves to a location
where sensors are densely deployed. The number of sensors at one of the storage
nodes (the N810 device) is increased from 80 to 140 for 30 sampling periods.

Figure 16 shows the CPU load and the precision bound δ. The increase of the
workload starts at the 30th sampling period. We can see that the CPU load increases
suddenly at the 30th sampling period to handle the increased workload; for example,
the CPU load is surged to 0.9. However, the CPU load stabilizes to the target CPU
load, which is 0.6, within 2 sampling periods; it is achieved by increasing δ from 2
to 4. When the workload decreases to the original level at the 60th sampling period,

492 Real-Time Syst (2012) 48:463–498

it takes 1 sampling period for CPU load to stabilize; it is achieved by decreasing δ

back to the original level.
Finally, it should be noted that even though it is not shown for the space limitation,

our experiment shows that PRIDE can also closely track the target CPU utilization
bound under unpredictable changes in sensor data rates.

7 Related work

7.1 Storing and querying sensor data

There have been significant research efforts devoted to the storage and query-
ing of sensor data. Some approaches, such as Cougar (Bonnet et al. 2001) and
TinyDB (Madden et al. 2005), view each sensor node as a mini data repository,
and the sensor network as a database distributed across the sensor nodes. A user
formulates a declarative query, which is similar to SQL, and sends it to the sen-
sor network through a gateway. Once a query is disseminated, sensor nodes probe
their sensors and propagate sensor measurements back to the gateway. These ap-
proaches are essentially centralized ones since sensor readings are funneled into
a centralized gateway. This funneling effect can severely limit the scalability of
these approaches (Ahn et al. 2006). Exploiting several gateways by partitioning
the sensor network can mitigate the funneling effect (Abbasi and Younis 2007;
Li et al. 2006). However, these gateways have only partial view on the situation since
the sensor network is partitioned. In contrast, PRIDE provides global view on the
physical situation in a large scale sensor network using the predictive replication
mechanism at the upper storage tier.

Data-centric routing and storage approaches (Intanagonwiwat et al. 2003; Rat-
nasamy et al. 2002), which store sensed data within sensor networks themselves,
achieve high scalability by minimizing communication overhead. Instead of propa-
gating sensor observations to a gateway, sensed data are stored within sensor net-
works and queries are processed in the network; communications are postponed until
the query processing time. However, the high scalability can be achieved at the cost of
increased system complexity and reduced manageability (Gnawali et al. 2006). Fur-
ther, they cannot provide the timeliness in data accesses and query processing due to
communication delays at the query processing time. Unlike data-centric approaches,
PRIDE is appropriate for real-time applications since it does not incur communica-
tion overhead at the query processing time.

PRIDE is influenced by the recent tiered sensor network architectures (Gnawali
et al. 2006; Li et al. 2006; Desnoyers et al. 2005), which lie between these two ex-
tremes, centralized ones and data-centric approaches. PRESTO (Li et al. 2006) re-
duces the communication load between the tiers by exploiting the model-based push
approach. However, since each proxy has a limited view, excessive communication
overhead and delay is inevitable for processing queries on global sensor data. Further,
the model parameters should be synchronized between the tiers, making the tiers de-
pendent to each other. In PRESTO, simple multicasting of sensor data to all proxies
is not enough to provide global view since each proxy cannot make predictions on

Real-Time Syst (2012) 48:463–498 493

current and future sensor values that are managed by peer proxies. Models need to
be replicated to all peer proxies at the proxy tier as in PRIDE to achieve timely query
processing on global sensor data. Our experiment in Sect. 6 shows that combining
the approaches of PRESTO and PRIDE can achieve the best performance in terms of
scalability and the timeliness of query processing. TSAR (Desnoyers et al. 2005) tries
to achieve both the timeliness of data accesses and high scalability through distributed
indexing at the upper device tier. However, since TSAR is pull-based, it incurs com-
munication delays at processing queries to look up the distributed index and fetch
data from the sensor tier. Further, the distributed indexing scheme tightly couples the
sensor tier and the upper device tier, limiting the flexibility of the system. The tight
coupling between tiers in the previous approaches, including TSAR, makes it very
complex to support the mobility of sensors and upper tier devices. In contrast, the
predictive replication mechanism of PRIDE does not require tight coupling between
tiers while supporting timely access to global sensor data.

7.2 Data reduction using models and filters

The problem of data reduction using predictive modeling techniques in sensor
networks has received a great deal of attention from the research community
(Goel and Imielinski 2001; Deshpande et al. 2004; Lazaridis and Mehrotra 2003;
Pattem et al. 2008; Wei et al. 2011; Jiang et al. 2011). Goel and Imielinski (2001)
suggested to visualize a snapshot of the sensor readings in the network as an optical
image. The basic paradigm requires a base station to monitor the readings from the
sensors and generate a prediction model, which is valid over a given time interval.
In BBQ (Deshpande et al. 2004), a spatio-temporal prediction model is generated
from historical sensor data at a base station; new data is fetched from sensors only
if the confidence interval of query results from the prediction models are out of the
desired range. Even though above approaches are different in technical details, they
commonly try to optimize the model at a base station to reduce the communication
overhead between sensors and a base station. In contrast, PRIDE aims to reduce repli-
cation overheads among upper-tier devices. Hence, models matching sensor streams
are replicated to all upper-tier devices. Given replicated and distributed models, min-
imizing the cost of model maintenance is more important than optimizing individual
models. Our approach of using models at the upper tier is not exclusive but comple-
mentary to the previous work.

A few model-based data reduction approaches try to adapt the models for the ob-
served phenomenon (Le Borgne et al. 2007; Santini and Romer 2006). Santini and
Romer (2006) proposed a modeling scheme that does not require a-priori knowledge
of the observed phenomenon. The adaptive algorithms both at the data source and the
sink of a data stream exploit the Least-Mean-Square algorithm to adapt their model
parameters independently without help from a central server. In Le Borgne et al.
(2007), proposed the racing mechanism, which allows to discard poorly performing
models from a set of candidate prediction models via a cost/benefit analysis. Unlike
these approaches, which advocate particular models for particular types of data or do-
main, the goal of our work is to build a data abstraction layer that integrates models
accounting for the timeliness and robustness. Hence, previous modeling techniques

494 Real-Time Syst (2012) 48:463–498

can be applied to PRIDE as long as they are light-weight, general enough to be ap-
plied to a broad range of data sources, and do not require a massive amount of historic
data.

Jain et al. (2004) proposed a data reduction technique using classical linear filter
theory. They introduced the Dual Kalman Filter (DKF) architecture as a general lin-
ear solution to this problem. They evaluated the filtering performance of a Kalman
filter in the simulation testbed handling a single stream. PRIDE explores some of this
idea in the context of more sophisticated 2-tier sensor network architectures handling
massive amount of sensor streams.

In the database community, Deshpande and Madden’s work (Deshpande and Mad-
den 2006; Thiagarajan and Madden 2008) is quite related to our work. MauveDB
supports a declarative language for defining model-based views, allows querying
over such views using SQL, and supports several different materialization strategies.
While both MauveDB and PRIDE integrate models into databases, MauveDB pro-
vides a more general framework allowing different models and materialization strate-
gies. Unlike MauveDB, PRIDE focus on the timeliness and robustness in processing
queries. Hence, it extends the model-based approach to the problem of guaranteeing
the QoS using dynamic adaption of accuracy bounds of models.

Another relevant area is moving object databases (Wolfson et al. 1998; Jensen et al.
2004; Pelanis et al. 2006; Jeung et al. 2010). In these systems, an object’s location
is approximated using models without continuous updates. In Wolfson et al. (1998),
define a specific attribute for moving objects and predicts objects’ future locations
based on its velocity vector. However, as far as we know this area has focused on
different issues than the ones in this paper, e.g., efficient indexing mechanisms for
moving objects (Pelanis et al. 2006; Jensen et al. 2004) and exploiting geographic
information for better estimation of future locations (Jeung et al. 2010).

7.3 Data replication in distributed databases

Traditional replicated relational database systems focus on the problem of guaran-
teeing strong consistency of replicated data. Although strong consistency provides a
convenient programming model, these systems are limited in scalability and avail-
ability (Gray et al. 1996). Recently, distributed real-time databases (DRTDBs) focus
on data freshness and timeliness of transactions instead of providing strong logical
consistency (Peddi and DiPippo 2002; Wei et al. 2003). They primarily target busi-
ness application domains such as stock trades (Kang et al. 2007). PRIDE, however,
targets real-time sensor network applications, in which the semantics of data from
physical phenomena can be exploited.

7.4 Control-theoretic approach for QoS guarantees

Control theory, one of the most widely used mathematical frameworks to control be-
havior of dynamic systems (Hellerstein et al. 2004), is at the core of our sensor data
quality control. Control theory has been applied to QoS management and real-time
scheduling (Lu et al. 2002, 2005) due to its robustness against unpredictable operating
environments. However, these work do not consider sensor data quality management

Real-Time Syst (2012) 48:463–498 495

issues; therefore, they are not directly comparable to our work. Feedback control has
also been recognized as a viable approach to manage the real-time database perfor-
mance. They guarantee the desired transaction deadline miss ratio (Kang et al. 2004;
Amirijoo et al. 2006), CPU utilization (Oh and Kang 2007), and query processing la-
tency (Zhou and Kang 2009). They control either the freshness or precision of sensor
data by selectively allowing incoming sensor data updates. Most of the existing work
show the robustness of their feedback control mechanism by simulations. In contrast,
our work guarantees the prediction accuracy of models, not data itself. Further, our
work is also different from the existing work in that our work is implemented in a
real mobile device and evaluated on a realistic testbed.

8 Conclusions and future work

This paper introduced the design, implementation, and experimental evaluation of
PRIDE, a new data abstraction layer for collaborative 2-tier sensor network applica-
tions. By integrating an efficient predictive replication mechanism and adaptive data
quality control, PRIDE at the upper tier devices enables transparent access to global
sensor data in a timely, flexible, and robust manner in highly dynamic environments
of emerging distributed real-time applications interacting with pervasive sensors. We
showed that the proposed predictive replication mechanism and adaptive data control
mechanism can be integrated seamlessly into a general data management system by
applying it into a popular embedded DBMS. PRIDE was evaluated in a large-scale 2-
tier sensor network testbed, emulating search-and-rescue tasks for a building fire with
realistic workloads. Our experimental evaluation of PRIDE demonstrates the benefit
and feasibility of our approach in large-scale 2-tier sensor networks.

In the future, we plan to enhance PRIDE in several different directions. First,
PRIDE will be extended to include different modeling schemes. Currently, PRIDE
supports only a simple modeling scheme using state vectors, without exploiting the
correlation among distributed sensors. By utilizing the correlation among sensors, we
may further increase the accuracy of models in PRIDE. However, the cost of using
sophisticated models should be evaluated. Second, we are interested in building a
testbed that is more realistic. In the original design of PRIDE, storage nodes are sup-
posed to construct an ad-hoc mesh network. However, our current testbed uses a fixed
network of both wired and wireless connections, ignoring the effect of ad-hoc rout-
ing of a mesh network. We believe that different nodes in ad-hoc mesh networks have
very different resource usage (computing, communication, and power consumption).
This asymmetric resource usage pattern should be considered in real situations.

References

Communication and networking technologies for public safety (2008) National Institute of Standards and
Technology. http://w3.antd.nist.gov/comm_net_ps.shtml

Fire growth and smoke transport modeling with CFAST (2008). http://fast.nist.gov/
Fire information and rescue equipment (FIRE) project (2008). http://fire.me.berkeley.edu/
Nokia N-series (2008). http://www.nseries.com/
Oracle Berkeley DB (2008). http://www.oracle.com

http://w3.antd.nist.gov/comm_net_ps.shtml
http://fast.nist.gov/
http://fire.me.berkeley.edu/
http://www.nseries.com/
http://www.oracle.com

496 Real-Time Syst (2012) 48:463–498

IEEE portable applications (2009). http://standards.ieee.org/regauth/posix
Abbasi AA, Younis M (2007) A survey on clustering algorithms for wireless sensor networks. Comput

Commun 30:2826–2841
Abdelzaher T, Blum B, Cao Q, Chen Y, Evans D, George J, George S, Gu L, He T, Krishnamurthy S, Luo

L, Son S, Stankovic J, Stoleru R, Wood A (2004) Envirotrack: towards an environmental computing
paradigm for distributed sensor networks. In: Proceedings of the 24th international conference on
distributed computing systems (ICDCS’04)

Ahn GS, Hong SG, Miluzzo E, Campbell AT, Cuomo F (2006) Funneling-mac: a localized, sink-oriented
mac for boosting fidelity in sensor networks. In: Proceedings of the 4th international conference on
embedded networked sensor systems (SenSys ’06)

Akyildiz I, Wang X (2005) A survey on wireless mesh networks. IEEE Commun Mag 43(9):S23–S30
Amirijoo M, Hansson J, Son SH (2006) Specification and management of QoS in real-time databases

supporting imprecise computations. IEEE Trans Comput 55(3):304–319
Bonnet P, Gehrke J, Seshadri P (2001) Towards sensor database systems. In: Proceedings of the second

international conference on mobile data management (MDM ’01)
Cook SA, Pachl JK, Pressman IS (2002) The optimal location of replicas in a network using a read-one-

write-all policy. Distrib Comput 15(1):57–66
Deshpande A, Guestrin C, Madden SR, Hellerstein JM, Hong W (2004) Model-driven data acquisition in

sensor networks. In: Proceedings of the 30th VLDB conference, Toronto, Canada
Deshpande A, Madden S (2006) Mauvedb: supporting model-based user views in database systems. In:

Proceedings of the 2006 ACM SIGMOD international conference on management of data (SIGMOD
’06). ACM, New York, pp 73–84

Desnoyers P, Ganesan D, Shenoy P (2005) TSAR: a two tier sensor storage architecture using interval skip
graphs. In: Proceedings of the 3rd international conference on embedded networked sensor systems
(SenSys ’05)

Fall K (2003) A delay-tolerant network architecture for challenged Internets. In: Proceedings of the 2003
conference on applications, technologies, architectures, and protocols for computer communications
(SIGCOMM ’03), pp 27–34

Fife LD, Gruenwald L (2003) Research issues for data communication in mobile ad-hoc network database
systems. SIGMOD Rec 32:42–47

Gelb A (ed) (1974) Applied optimal estimation. MIT Press, Cambridge
Gnawali O, Jang KY, Paek J, Vieira M, Govindan R, Greenstein B, Joki A, Estrin D, Kohler E (2006) The

tenet architecture for tiered sensor networks. In: Proceedings of the 4th international conference on
embedded networked sensor systems (SenSys ’06)

Goel S, Imielinski T (2001) Prediction-based monitoring in sensor networks: taking lessons from mpeg.
Comput Commun Rev 31:82–98

Gray J, Helland P, O’Neil P, Shasha D (1996) The dangers of replication and a solution. In: SIGMOD ’96
Hellerstein JL, Diao Y, Parekh S, Tilbury DM (2004) Feedback control of computing systems. Wiley/IEEE

Press, New York
Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F (2003) Directed diffusion for wireless

sensor networking. IEEE/ACM Trans Netw 11(1):2–16
Jain A, Chang EY, Wang YF (2004) Adaptive stream resource management using Kalman filters. In:

Proceedings of the 2004 ACM SIGMOD international conference on management of data (SIGMOD
’04). ACM Press, New York, pp 11–22

Jensen CS, Lin D, Ooi BC (2004) Query and update efficient b+-tree based indexing of moving objects.
In: Proceedings of the thirtieth international conference on very large data bases (VLDB ’04), vol 30,
pp 768–779

Jeung H, Yiu ML, Zhou X, Jensen CS (2010) Path prediction and predictive range querying in road network
databases. VLDB J 19:585–602

Jiang H, Jin S, Wang C (2011) Prediction or not? An energy-efficient framework for clustering-based data
collection in wireless sensor networks. IEEE Trans Parallel Distrib Syst 22(6):1064–1071

Jiang X, Chen NY, Hong JI, Wang K, Takayama L, Landay JA (2004) Siren: context-aware computing for
firefighting. In: Proceedings of second international conference on pervasive computing

Kang KD, Oh J, Son SH (2007) Chronos: feedback control of a real database system performance. In:
RTSS

Kang KD, Son SH, Stankovic JA (2004) Managing deadline miss ratio and sensor data freshness in real-
time databases. IEEE Trans Knowl Data Eng 16(10):1200–1216

Lazaridis I, Mehrotra S (2003) Capturing sensor-generated time series with quality guarantees. In: Pro-
ceedings of 19th international conference on data engineering, 2003, pp 429–440

http://standards.ieee.org/regauth/posix

Real-Time Syst (2012) 48:463–498 497

Le Borgne YA, Santini S, Bontempi G (2007) Adaptive model selection for time series prediction in
wireless sensor networks. Signal Process 87:3010–3020

Lee EA (2008) Cyber physical systems: design challenges. Tech rep UCB/EECS-2008-8, EECS Depart-
ment, University of California, Berkeley

Li M, Ganesan D, Shenoy P (2006) Presto: feedback-driven data management in sensor networks. In:
Proceedings of the 3rd conference on networked systems design & implementation (NSDI’06)

Lu C, Stankovic JA, Son SH, Tao G (2002) Feedback control real-time scheduling: framework, modeling,
and algorithms. Real-Time Syst 23(1–2):85–126

Lu C, Wang X, Koutsoukos X (2005) Feedback utilization control in distributed real-time systems with
end-to-end tasks. IEEE Trans Parallel Distrib Syst 16(6):550–561

Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) Tinydb: an acquisitional query processing
system for sensor networks. ACM Trans Database Syst 30(1):122–173

Mathiason G, Andler SF, Son SH (2008) Virtual full replication for scalable and adaptive real-time com-
munication in wireless-sensor networks. In: Proceedings of the second intl conference on sensor
technologies and applications (SENSORCOMM 2008)

Mohapatra P, Gui C, Li J (2004) Group communications in mobile ad hoc networks. Computer 37(2):52–
59

de Morais Cordeiro C, Gossain H, Agrawal D (2003) Multicast over wireless mobile ad hoc networks:
present and future directions. IEEE Netw 17(1):52–59

Oh J, Kang KD (2007) An approach for real-time database modeling and performance management. In:
Real time and embedded technology and applications symposium, 2007 (RTAS ’07). 13th. IEEE
Press, New York, pp 326–336

Olston C, Loo BT, Widom J (2001) Adaptive precision setting for cached approximate values. SIGMOD
Rec 30(2):355–366

Padmanabhan P, Gruenwald L, Vallur A, Atiquzzaman M (2008) A survey of data replication techniques
for mobile ad hoc network databases. VLDB J 17:1143–1164

Pattem S, Krishnamachari B, Govindan R (2008) The impact of spatial correlation on routing with com-
pression in wireless sensor networks. ACM Trans Sens Netw 4:24:1–24:33

Peddi P, DiPippo LC (2002) A replication strategy for distributed real-time object-oriented databases. In:
Symposium on object-oriented real-time distributed computing, pp 129–136

Pelanis M, Šaltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of
moving objects. ACM Trans Database Syst 31:255–298

Ramamritham K, Son SH, Dipippo LC (2004) Real-time databases and data services. Real-Time Syst
28(2–3):179–215

Raniwala A, cker Chiueh T (2005) Architecture and algorithms for an IEEE 802.11-based multi-channel
wireless mesh network. In: Proceedings of 24th annual joint conference of the IEEE computer and
communications societies (INFOCOM 2005), vol 3. IEEE Press, New York, pp 2223–2234

Ratnasamy S, Karp B, Yin L, Yu F, Estrin D, Govindan R, Shenker S (2002) Ght: a geographic hash table
for data-centric storage. In: Proceedings of the 1st ACM international workshop on wireless sensor
networks and applications (WSNA ’02)

Santini S, Romer K (2006) An adaptive strategy for quality-based data reduction in wireless sensor net-
works. In: Proc INSS

Selavo L, Wood A, Cao Q, Sookoor T, Liu H, Srinivasan A, Wu Y, Kang W, Stankovic J, Young D,
Porter J (2007) Luster: wireless sensor network for environmental research. In: Proceedings of the
5th international conference on embedded networked sensor systems (SenSys ’07)

Sha K, Shi W, Watkins O (2006) Using wireless sensor networks for fire rescue applications: requirements
and challenges. In: IEEE international conference on electro/information technology

Son SH (1988) Replicated data management in distributed database systems. SIGMOD Rec 17(4):62–69
Stankovic JA, Lee I, Mok A, Rajkumar R (2005) Opportunities and obligations for physical computing

systems. Computer 38(11):23–31
Tatbul N, Çetintemel U, Zdonik S, Cherniack M, Stonebraker M (2003) Load shedding in a data stream

manager. In: Proceedings of the 29th international conference on very large data bases (VLDB ’2003)
Thiagarajan A, Madden S (2008) Querying continuous functions in a database system. In: Proceedings of

the 2008 ACM SIGMOD international conference on management of data (SIGMOD ’08). ACM,
New York, pp 791–804

Wang X, Jia D, Lu C, Koutsoukos X (2007) DEUCON: Decentralized End-to-End Utilization Control for
Distributed Real-Time Systems. IEEE Trans Parallel Distrib Syst 18(7):996–1009

Wei G, Ling Y, Guo B, Xiao B, Vasilakos AV (2011) Prediction-based data aggregation in wireless sensor
networks: combining grey model and Kalman filter. Comput Commun 34(6):793–802

498 Real-Time Syst (2012) 48:463–498

Wei Y, Son SH, Stankovic JA, Kang KD (2003) Qos management in replicated real time databases. In:
Proceedings of the 24th IEEE international real-time systems symposium (RTSS ’03)

Wolfson O, Chamberlain S, Dao S, Jiang L, Mendez G (1998) Cost and imprecision in modeling the posi-
tion of moving objects. In: Proceedings of the fourteenth international conference on data engineering
(ICDE ’98). IEEE Comput Soc, Los Alamitos, Washington, DC, USA, pp 588–596

Zhou Y, Kang KD (2009) Integrating proactive and reactive approaches for robust real-time data services.
In: Proceedings of the 30th IEEE international real-time systems symposium (RTSS ’09)

Woochul Kang received the Ph.D. degree in computer science from
the University of Virginia, Charlottesville, in 2009. He is a Research
Scientist at the Electronics and Telecommunications Research Institute
(ETRI), Korea. Currently, he is investigating a distributed middleware
architecture that enables efficient and timely access to realtime sen-
sor data in large-scale distributed cyber-physical systems (CPS). His
research interests include cyber-physical systems, real-time embedded
systems, large-scale distributed systems, sensor networks, and feedback
control of computing systems.

Sang H. Son received the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea, the M.S. degree from the Ko-
rea Advanced Institute of Science and Technology (KAIST), Daejeon,
and the Ph.D. degree in computer science from the University of Mary-
land, College Park, in 1986. He is a Professor with the Department of
Computer Science, University of Virginia, Charlottesville. His research
interests include real-time and embedded systems, database and data
services, QoS management, wireless sensor networks, and information
security. Prof. Son is on the Executive Board of the IEEE Technical
Committee on Real-Time Systems, for which he served as the Chair
during 2007-2008. He is currently serving as an Associate Editor for the
IEEE TRANSACTIONS ON COMPUTERS and the Real-Time Sys-
tems Journal.

John A. Stankovic is the BP America Professor in the Computer Sci-
ence Department at the University of Virginia. He served as Chair of the
department for 8 years. He is a Fellow of both the IEEE and the ACM.
He won the IEEE Real-Time Systems Technical Committee’s Award for
Outstanding Technical Contributions and Leadership. He also won the
IEEE Technical Committee on Distributed Processing’s Distinguished
Achievement Award (inaugural winner). He has five Best Paper awards,
including one for ACM SenSys 2006. Stankovic has an h-index of 87
and an i10 index of 225. He has also won Distinguished Faculty Awards
at the University of Massachusetts and the University of Virginia. He
has given more than 30 Keynote talks at conferences and many Dis-
tinguished Lectures at major Universities. He was the Editor-in-Chief
for the IEEE Transactions on Distributed and Parallel Systems and was
founder and co-editor-in-chief for the Real-Time Systems Journal. His
research interests are in real-time systems, distributed computing, wire-

less sensor networks, and cyber physical systems. Prof. Stankovic received his PhD from Brown Univer-
sity.

	Quality-aware data abstraction layer for collaborative 2-tier sensor network applications
	Abstract
	Introduction
	Motivation
	Our contribution

	Overview of PRIDE
	System model
	Mobility of entities

	Usage model
	Supported query types
	Quality of data and quality of service

	Quality-aware predictive replication in PRIDE
	System architecture
	Filter and prediction engine
	Models, estimation, and prediction
	Impact of model inaccuracy

	Adaptive data quality control
	Local feedback control to guarantee the system specification
	Coordination among replication group members

	Query processing in PRIDE
	Spatial queries
	Temporal queries

	Implementation and testbed
	Implementation details
	Snapshot management
	Feedback control

	Emulation testbed

	Evaluation
	Performance evaluation goals
	Baselines
	Experiment 1: Performance of predictive replication-based 2-tier architecture
	Scalability and timeliness
	Mobility
	Energy consumption
	Quality of data

	Experiment 2: Trading data freshness for scalability
	Experiment 3: Adaptability
	Effects of varying precision bounds
	Average performance
	Transient performance

	Related work
	Storing and querying sensor data
	Data reduction using models and filters
	Data replication in distributed databases
	Control-theoretic approach for QoS guarantees

	Conclusions and future work
	References

