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Abstract—Semi-supervised clustering (i.e., clustering with
knowledge-based constraints) has emerged as an important
variant of the traditional clustering paradigms. However, most
existing semi-supervised clustering algorithms are designed for
partitional clustering methods and few research efforts have
been reported on semi-supervised hierarchical clustering meth-
ods. In addition, current semi-supervised clustering methods
have been focused on the use of background information in the
form of instance level must-link and cannot-link constraints,
which are not suitable for hierarchical clustering where data
objects are linked over different hierarchy levels. In this paper,
we propose a novel semi-supervised hierarchical clustering
framework based on ultra-metric dendrogram distance. The
proposed framework is able to incorporate triple-wise relative
constraints. We establish the connection between hierarchical
clustering and ultra-metric transformation of dissimilarity ma-
trix and propose two techniques (the constrained optimization
technique and the transitive dissimilarity based technique) for
semi-supervised hierarchical clustering. Experimental results
demonstrate the effectiveness and the efficiency of our proposed
methods.

Keywords-Hierarchical clustering; semi-supervised cluster-
ing; triple-wise relative constraints;

I. INTRODUCTION

The clustering problem arises in many disciplines and has

a wide range of applications. Basically clustering aims to

group the given samples into clusters such that samples in

the same cluster are similar to each other while samples in

different clusters are dissimilar [1]. Based on the way the

clusters are generated, clustering methods can be divided

into two categories: partitional clustering and hierarchical

clustering [2] [3]. Generally partitional clustering decom-

poses the dataset into a number of disjoint clusters which

are usually optimal in terms of some predefined objective

functions. Hierarchical clustering groups the data points into

a hierarchical tree-like structure using bottom-up or top-

down approaches.

In many situations when we discover new patterns us-

ing clustering, there are known prior knowledge about the

problem. Recently, semi-supervised clustering (i.e., cluster-

ing with knowledge-based constraints) has emerged as an

important variant of the traditional clustering paradigms [4]

[5]. Given the data representation, existing semi-supervised

methods have utilized background knowledge to learn a dis-

tance/dissimilarity measure, to modify the objective criterion

for evaluating clustering, and to improve the optimization

procedures [6]–[11].
There are two limitations in current studies of semi-

supervised clustering. First, most of these existing semi-

supervised clustering algorithms are designed for partitional

clustering methods and few research efforts have been re-
ported on semi-supervised hierarchical clustering methods.

Different from partitional clustering where the clustering

results can be easily represented using vectors, clustering

indicators, or connectivity matrices for optimization [10],

the results of hierarchical clustering are more complex and

typically represented as dendrograms or trees. In addition,

hierarchical clustering methods have no global objective

functions. These properties have made the semi-supervised

hierarchical clustering problem more challenging.
Another limitation is on the types of constraints. Existing

semi-supervised clustering methods have been focused on

the use of background information in the form of instance

level must-link and cannot-link constraints. A must-link

(ML) constraint enforces that two instances must be placed

in the same cluster while a cannot-link (CL) constraint

enforces that two instances must not be placed in the same

cluster. However, both ML and CL constraints are not
suitable for hierarchical clustering methods since objects
are linked over different hierarchy levels [12] [13].

In this paper, we propose a semi-supervised hierarchical

clustering framework based on the ultra-metric dendrogram

distance. The characteristics of our proposed framework are

summarized below:

1) Triple-wise relative constraints: In the proposed frame-

work, we consider the triple-wise relative constraints

in the form of (xi, xj , xk) which indicates the dis-

similarity (or the distance) between xi and xj , noted

as d(xi, xj), should be smaller than d(xi, xk). The

relative constraint, also referred as must-link-before

(MLB) constraint, specifies the order in which the

objects are merged (or linked) and can be naturally

incorporated into the hierarchical clustering process.

2) Ultra-metric dendrogram distance: Our proposed

framework is based on ultra-metric dendrogram dis-
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Figure 1. An illustrative example of semi-supervised hierarchical clustering with triple-wise relative constraints. The original data dissimilarity matrix
is shown in (A). (B) shows a standard transitive dissimilarity matrix obtained from the original dissimilarity and (C) is the corresponding hierarchical
clustering result without constraints. The triple-wise relative constraints are given in (D). By combining both (A) and (D), the constrained ultra-metric
distance matrix is shown in (E) with its corresponding hierarchial clustering result in (F).

tance. Note that the results of hierarchical clustering

can be represented using ultra-metric distance matri-

ces [14]. Using the ultra-metric distance matrices, we

propose two techniques for solving semi-supervised

hierarchical clustering problem: the optimization-

based technique and the transitive dissimilarity based

technique.

3) Effectiveness and efficiency: Extensive experimental

results demonstrate the effectiveness and efficiency of

our proposed framework.

An illustrative example of semi-supervised hierarchical clus-

tering is given in Figure 1. The original dissimilarity is

shown in Figure 1(A). Its ultra-metric distance matrix is

shown in Figure 1(B) and the corresponding hierarchical

clustering result (without constraints) is shown in Fig-

ure 1(C). Four triple-wise relative constraints are given in

Figure 1(D). A constrained ultra-metric distance matrix is

obtained in Figure 1(E) and its corresponding hierarchical

clustering result (with constraints) is shown in Figure 1(F).

To sum up, different from existing research efforts on

semi-supervised (hierarchical) clustering, in our work, we

explicitly establish the equivalence between ultra-metrics

and hierarchical clustering and also provide a unified frame-

work integrating both ultra-metric fitting and triple-wise

relative constraints. Our proposed framework seeks an ap-

proximate dissimilarity metric (ultra-metric) which repre-

sents a tuned dendrogram that satisfies the given constraints.

Two different solutions based on iterative projection and

heuristic (modified Floyd-Warshall) algorithms are proposed

and empirically evaluated. The rest of the paper is organized

as follows: Section II discusses the related work; Section III

formally defines the semi-supervised hierarchical problem;

Section IV explicitly establishes the connection between

ultra-metric distance matrix and hierarchical clustering den-

drogram; Section V presents two different techniques for

semi-supervised hierarchical clustering based on ultra-metric

distance; Section VI describes the experimental results; and

finally Section VII concludes the paper.

II. RELATED WORK

A. Hierarchical Clustering

Hierarchical clustering algorithms are unsupervised meth-

ods to generate tree-like clustering solutions. They group

the data points into a hierarchical structure using bottom-

up (agglomerative) or top-down (divisive) approaches [3].

The typical bottom-up approaches take each data point as

a single cluster to start with and then builds bigger clusters

by grouping similar clusters together until the entire data set

is grouped into one final cluster. The divisive approaches

start with all data points in one cluster and then split the

largest cluster recursively. Many research efforts have been

reported on algorithm-level improvements of the hierarchical
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clustering process and on understanding of hierarchical

clustering [15] [16].

B. Semi-supervised Clustering

Integrating background knowledge into the clustering

process has been investigated extensively. Many researchers

have explored the use of instance-level background informa-

tion, such as pairwise must-link and cannot-link constraints

for learning a distance/dissimilarity measure, or modifying

the objective criterion, or improving the optimization pro-

cedures [6]–[11]. Other types of knowledge hints (such as

size of the clusters, partial labels of the data points, and

user-provided external prototypes/representatives) have also

been used for clustering [17]. However, most of these works

are designed for partitional clustering and few research

efforts have been reported on semi-supervised hierarchi-

cal clustering methods. We note the very recent works

of Zhao et al. [18] and Bade et al. [12] which perform

hierarchical clustering with order constraints and partially

known hierarchy. Conceptually our triple-wise constraints

are special cases of the order constraints. However, different

from their works, our proposed semi-supervised hierarchical

clustering framework is based on ultra-metric dendrogram

distance. Experimental studies demonstrate the effectiveness

and efficiency of our proposal.

C. Metric Fitting

The problem of fitting a tree metric to the (dis-)similarity

data on pairs of objects from a given set has been studied

quite extensively [19]. Ultra-metric is a special kind of

tree metric where all elements of the input dataset are

leaves in the underlying tree and all leaves are at the same

distance from the root. Ultra-metric naturally corresponds to

a hierarchy of clusterings of the data. Given a dissimilarity

D on pairs of objects, the problem of finding the best ultra-

metric du such that ||D−du||p is minimized is NP-hard for

L1 and L2 norms (e.g., when p = 1 and p = 2) [20]. In this

paper, we propose two techniques for fitting an ultra-metric

using the given relative constraints.

III. PROBLEM STATEMENT

A. Problem Definition

Given set of instances X = {x1, x2, · · · , xn}, their pair-

wise dissimilarities D = {d(xi, xj)|xi, xj ∈ X} and a

set of constraints C = {(xi, xj , xk) |d(xi, xj) < d(xi, xk)
, xi, xj , xk ∈ X}. The semi-supervised hierarchical cluster-

ing problem aims to output a clusters hierarchy/dendrogram

H to satisfy as many constraints as possible and meanwhile

to maintain the merge order based on sample dissimilarities
as close as possible.

Note that hierarchical clustering results can be represented

graphically on dendrograms as shown in Figure 2. The

vertical line along with the clustering dendrogram is labeled

by the value of the updated dissimilarity between the merged

Figure 2. Triple-wise relative constraints for samples a and b in 4-point
sample set.

clusters, which can be treated as a measure of separation

of paired samples. The dissimilarity of sample a and c
in the dendrogram is noted by level(a, c). Note that some

relative constraints (e.g., constraint (a, b, c) in Figure 2) are

consistent with the given dissimilarity matrix while many

constraints are not (e.g., constraint (a, d, b)).

B. Constraint Pre-processing

Transitive Closure: Constraints given by human experts

or by partially known data hierarchy may be incomplete.

Some constraints are not explicitly given, for example, two

given constraints c1 = (xi, xj , xk) and c2 = (xi, xk, xl)
imply an additional constraint c3 = (xi, xj , xl) which might

not be explicitly stated. In our framework, given the initial

constraint set, we perform Floyd-Warshall algorithm to find

its transitive closure and extend the constraint set.

Conflict Removal: In practice, the given constraints

may be conflicting. For example c1 = (xi, xj , xk) and

c2 = (xj , xk, xi) are explicitly conflicting with each other

or c1 = (xi, xj , xk) , c2 = (xi, xk, xl) and c3 = (xi, xl, xj)
form a circle of merge orders. Conflicts in the constraint set

can form deadlocks, and the clustering algorithm may fail to

identify a valid merging pair of clusters. To remove conflicts,

we randomly and iteratively remove one of the conflicting

constraint until there is no conflict.

IV. ULTRA-METRIC DISTANCE

Our proposed framework is based on ultra-metric distance

matrices. In this section, we establish the connection be-

tween hierarchical agglomerative clustering and ultra-metric

transformation of pairwise dissimilarity matrix.

A. Ultra-metric Interpretation of Hierarchical Clustering

In each merge of an agglomerative hierarchical clustering,

the algorithm finds two closest clusters to merge as a new

one. So, the merged clusters Ci and Cj satisfy:

d(Ci, Cj) ≤ min(d(Ci, Ck), d(Cj , Ck)), (1)

and it also implies

∀i, j, k,min(d(Ci, Ck), d(Cj , Ck)) ≤ d(Ci ∪ Cj , Ck). (2)
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The above reducibility property has been studied in [21].

A brief interpretation is that each merge of clusters always

combines the pair of reciprocal nearest neighbors and does

not change the initial merge orders. Once the reducibility

condition holds, the updated dissimilarities satisfy the ultra-

metric inequality [21]:

d(xi, xj) ≤ max(d(xi, xk), d(xj , xk)), ∀xi, xj , xk ∈ X.
(3)

Therefore, a hierarchical clustering transforms the original

dissimilarity matrix D into an ultra-metric distance D̂. In

other words, hierarchical clustering can be understood as a

ultra-metric transformation D̂ on the original dissimilarity

matrix D which uniquely characterizes a ultra-metric tree.

Such transformation can be formulated as using mathemat-

ical programming. For simplicity, let Dij denote the ij-

th entry of D, i.e., d(xi, xj). The hierarchical clustering

problem can be modeled as seeking for an optimal ultra-

metric distance matrix D̂:

argmin
D̂

∑

xi,xj∈X

(Dij − D̂ij)
2. (4)

The above least-squares loss (L2) optimization prob-

lem is known to be NP-hard [22]. Many approximation

approaches from both combinatorial/regression [23] and

gradient-based [24] [25] perspectives have been proposed

to identify the local optimal solution.

B. Transitive Dissimilarity

The ultra-metric distance matrix can also be obtained

using transitive dissimilarity. In order to construct the tran-

sitive dissimilarity on D, we first treated D as the transition

matrix on a graph in which each column/row represents

an sample/node in the graph and each entry represent the

edge weight associated with a pair of nodes. The idea of

transitive dissimilarity is to preserve transitivity of graph.

For example, the transitivity of three nodes x1 → x2 → x3

in terms of dissimilarity can be defined as

d13 ≤ max(d12, d23),

For simplicity, d(xi, xj) is noted as dij in this section, so

the distance d13 should be no worse than either d12 or

d23, which clearly enforces a tighter bound than triangle

inequality. In general, such relation refers to the ultra-metric

inequality:

dij ≤ max(dik, dkj), ∀xi, xj , xk.

To extend this definition, we consider a(any) path Pij

between xi and xj . The transitive dissimilarity on path

Pij can be defined as

T (Pij) = max(di,k1
, dk1,k2

, dk2,k3
, · · · , dkn−1,kn

, dkn,j).
(5)

Among all existing paths for any given pair of vertices xi

and xj , the minimal transitive dissimilarity is defined as:

mij = min
Pij

(T (Pij)), for given vertices xi and xj . (6)

It is clear that mij ≥ dij , ∀xi and xj , which implies

that minimal transitive dissimilarity extends vertices further

than the original distance matrix and the minimal transitive

dissimilarity between any pair of vertices holds the ultra-

metric inequality [26]:

Proposition 1: For any weighted dissimilarity graph, the

minimal transitive dissimilarity between any pair of vertices

holds the ultra-metric inequality:

mij ≤ max(mik,mkj), ∀xi, xj , xk.
Proof: Let Pij is a set of all paths in which each

element indicates an existing path connecting Vi and Vj as

its end points. (Pik, Pkj) is describing a path starting from

Vi to Vj via Vk in a weighted graph. It is clear that (Pik, Pkj)
is a subset of Pij . We define W (Pij) as edge weights of any

directly connected vertices in all possible paths Pij.

mij = min
Pij

max[W (Pij)]

≤ min(Pik, Pkj)max(W (Pik, Pkj))

= min(Pik, Pkj)max[max[W (Pik)],max[W (Pkj)]]

= max[min
Pik

(max[WPik
]),min

Pkj

(max[WPkj
])]

= max(mik,mkj).

C. Cluster Separation Enhancement and Transitive Dissim-
ilarity

Here we demonstrate the enhancement of cluster separa-

tion due to the transitive dissimilarity. We use a small dataset

shown in Figure 3, where the two clusters (i.e., (1,2,3) and

(4,5)) are reasonably visible.

�

�

�

�

�

Figure 3. Illustration of cluster separation due to the transitive dissimilarity
for a simple dataset of 5 points in 2D space.

The original distance of the dataset is shown in Table I

and the transitive distance is shown in Table II. The distance

985



Table I
ORIGINAL DISTANCE AMONG THE 10 OBJECTS SHOWN IN FIGURE 3.

i, j 1 2 3 4 5

1 0 138 300 262 230
2 138 0 164 289 272
3 300 164 0 400 384
4 262 289 400 0 85
5 230 272 468 85 0

Table II
TRANSITIVE DISTANCE AMONG THE 10 OBJECTS SHOWN IN FIGURE 3.

i, j 1 2 3 4 5

1 0 138 164 230 230
2 138 0 164 230 230
3 164 164 0 230 230
4 230 230 230 0 85
5 230 230 230 85 0

is computed using Euclidean distance and the value is scaled

by multiplying 1000 for readability. It is clear that the

distance in Table II provides an enhanced/improved 2-cluster

structure, because the diagonal block (points 1-3) and (points

4 and 5) elements (distance among the same cluster) are

visibly reduced. while the distance between the two clusters

remain at the fixed value 230.

For example, the original distance between x1 and x3

(they are in the same cluster) doriginal13 = 300, while the

original distance between x1 and x4 or x1 and x5(they are

in different cluster) doriginal14 = 262, doriginal15 = 230. This

is not normal because it implies that members of the same

cluster could have larger distance than the distance between

members of different clusters.

With transitive distance, this abnormal situation is cor-
rected because now dtranstive13 = 164, while doriginal14 =
doriginal15 = 230.

V. SEMI-SUPERVISED HIERARCHICAL CLUSTERING

We propose two approaches for semi-supervised hierar-

chical clustering based on ultra-metric distance matrices: the

optimization-based approach and the transitive dissimilarity

based approach. The optimization-based approach models

the semi-supervised hierarchical clustering as a constrained

optimization problem of constructing an optimal distance

matrix satisfying both the ultra-metric constraints and rela-

tive constraints. The transitive dissimilarity based approach

aims to incorporate the relative constraints into the process

of constructing the transitive dissimilarity.

A. Constraint-based Optimization

In semi-supervised hierarchical clustering, besides satisfy-

ing ultra-metricity, the clustering results should also consider

relative constraints. We assume the dissimilarity matrix is

non-negative and symmetric in our proposed algorithm, so

we can adopt a vector representation. Suppose we have n
samples and r relative constraints. For simplicity, the n×n

symmetric dissimilarity matrix D can be represented by an

m × 1 vector �d with m = n ∗ (n − 1)/2 entries of D’s

upper/lower triangle elements. Thus, each relative constraint

(xi, xj , xk) ∈ C can also be represented by an m×1 vector

�c where the index corresponds to Dij is set to 1 and the

index of Dik is set to −1. So, for any constraint c that is

not consistent with the given dissimilarity matrix, we have

dT c ≥ 0. An illustrative example is shown in Figure 4.

Following the vector representation of dissimilarity and

constraints, semi-supervised hierarchical clustering problem

can be represented in the form below:

argmin
d̂

(�d− �̂
d)TE(�d− �̂

d), (7)

subject to

D̂ij ≤ max{D̂ik, D̂jk}, ∀xi, xj , xk ∈ X, (8)

C�d ≤ �0, (9)

where �d and
�̂
d are vectors representing pair-wise dissimilar-

ities, E is a m×m identity matrix, and C = [cT1 ; c
T
2 ; · · ·; cTr ]

is an r ×m matrix containing all r relative constraints.

Figure 4. Utilizing constraints in the optimization framework.

The above optimization problem can be solved by con-

ducting iterative projection approach which provides optimal

solution to minimize the least-square loss function under

inequality constraints [27] [28] [29]. Different from related

approaches, our problem formulation considers both ultra-

metric and triple-wise relative constraints and seeks an

approximate dissimilarity metric (ultra-metric) that satisfies

the given constraints. The ultra-metricity of the dissimilarity

is taken as the underlying constraints to generate a tree-like

hierarchy. Iterative projection can be generally conducted

by repeatedly following the iterative “augmenting” steps.

At each iteration, the parameter estimates are first projected

onto closed convex sets defined by the inequality constraints

C�d ≤ �0, and are then updated by subtracting a vector of the

changes made in the previous projection. Iterative projection

carried out with this augmentation step is guaranteed to

converge to the least squares optimal solution for a given

fixed set of constraints [30].
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Algorithm 1 shows a simple implementation of iterative

projection used in [31]. The procedure simultaneously gen-

erates sequence of estimated solutions a(t) and a sequence

of Kuhn-Tucker vectors u(t) where a(t) and u(t) denote the

�a and �u in iteration t [32].

Algorithm 1 Iterative Projection to minimize least-square

error

Input: �d, C,E

Output: �̂
d

Init: �a = �d and �u = �0.

1: while not converge do
2: p = t mod r
3: �s = �a(t− 1) + E�cp�u(t− 1)p/2
4: for q = 1 to r do
5: if q = p then
6: �u(t)q = max(0, 2 ∗ �cTq �s/

�cTq E�cq))
7: else
8: �u(t)q = �u(t− 1)q
9: end if

10: end for
11: �a(t) = �s− E�cq�u(t)q/2
12: t = t+ 1
13: end while
14: return �̂

d = �a

Note that the iterative projection approach can be extended

to an L1 minimization algorithm by using iteratively re-

weighted least-squares (IRLS) framework [28] [33].

B. Transpositive Dissimilarity

The Floyd-Warshall algorithm can be used to compute the

minimum transitive dissimilarity. In this paper, we modified

the Floyd-Warshall algorithm to fit the original dissimilarity

matrix to a ultra-matrix and at the meantime to incorporate

the given relative constraints. Algorithm 2 shows the algo-

rithm procedure to incorporate the relative constraints into

the ultra-metric transformation process. Its difference from

standard Floyd-Warshall algorithm is that the updated value

for mij is not only determined by the pairwise dissimilarities

related to xi and xj , but also restricted by any constraints

specifying merge orders about them (see Lines 4-7).

VI. EXPERIMENTS

In this section, we conduct experiments on various

datasets to evaluate our proposed semi-supervised hierar-

chical clustering framework. We compare our proposed

techniques in Section V (the iterative projection algorithm

(IPoptim) and the transitive dissimilarity transformation

algorithm (UltraTran)) with two baseline algorithms: the

standard agglomerative hierarchical clustering(HAC) with-

out constraints and the constraint-based HAC (denoted as

HACoc) proposed in [18].

Algorithm 2 Modified Floyd-Warshall algorithm to compute

the minimum transitive dissimilarity of weighted graph G

Input: G: Pair-wise distance matrix of data set.

C: Merge order constraints.

Output: M: Minimum Transitive dissimilarity matrix clo-

sure of G.

Init: M = G.

1: for k ← 0 to N do
2: for i← 0 to N do
3: for j ← 0 to N do
4: for all c = (xi, xj , xl) do
5: minCon = min(minCon, d(xi, xl))
6: end for
7: mij = min{mij ,max(mik,mkj),minCon}
8: end for
9: end for

10: end for
11: return M

A. Dataset Description

Name # samples # attributes # classes
Iris 150 4 3

Wine 178 13 3
Protein 116 20 6

Ionosphere 351 34 2
CSTR 475 1000 4
Log 1367 1000 8

WebACE 2340 1000 20
Reuters 2900 1000 10

Table III
DATASET DESCRIPTIONS

Table III shows the summary of the datasets used in the

experiments. We use 8 datasets with the number of classes

ranges from 2 to 20, the number of samples ranges from

116 to 2900 and the number of dimensions ranges from 4

to 1000. The details of the datasets are: (1) Four datasets

(Ionosphere, Iris, Protein and Wine) are from UCI data

repository [34]. (2) Four datasets (CSTR, Log, Reuters, We-

bACE) are benchmark text datasets for document clustering.

Each document is represented as a term vector using vector

space model. All document datasets are pre-processed by

removing the stop words and unnecessary tags and headers.

More information of the datasets can be found in [35].

B. Evaluation Measures

All the eight datasets have data labels which will be

used in clustering performance evaluation. The accuracy of a

hierarchical clustering is evaluated by considering the entire

hierarchy [16]. A single cut on the hierarchy produces a

possible partition of the data set and such partition can be

measured by FScore proposed in [36]. Supposing Gi is one

of the clusterings generated by cutting on the hierarchy H
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Figure 5. Results on Iris, Protein, and Wine datasets. The performance as a function of the number of constraints.

and Dj is a group of data sharing the same label over L
classes, then

FScore(Gi, Dj) =
2 ∗Recall(Gi, Lj) ∗ Precision(Gi, Lj)

Recall(Gi, Lj) + Precision(Gi, Lj)
.

(10)

The FScore of group Gi is defined as the maximum FScore

over all L classes

FScore(Gi) = max
j∈L

FScore(Gi, Dj). (11)

For a hierarchical clustering with |D| samples. Totally N =
(1+|D|)∗|D|

2 possible groups can be generated by cutting at

different levels. The FScore defined on the entire hierarchy

is computed as the weighted sum of each group’s FScore:

FScore(H) =
N∑

i=1

|Gi|
|D| FScore(Gi). (12)

We also compare the running time of different algorithms.

The running time is recorded at milliseconds (1/1000s).

C. Experiment Setup

According to the given class label of each sample, we

randomly select three samples from two different classes to

generate a constraint. For example, if xi, xj ∈ Class1 and

xk ∈ Class2, then c = (xi, xj , xk) is a relative constraint.

So each generated constraint is based on the actual class

label information and should reflect the domain knowledge.

As a result, we can expect the clustering performance should

be generally improved when these constraints are utilized.

In our experiments, the reported results are computed by

averaging 10 runs. For the first five small datasets (the

number of samples ≤ 1000), we randomly generate 100

constraints for each run. For the other three large datasets,

we randomly generate 200 constraints for each run. All

constraint sets are preprocessed to eliminate the conflicts.

The experiments are conducted under the environment of

Linux 2.6 plus 8 Intel(R) Xeon(R) CPU E5420 2.50GHz

and 16 GB of RAM.

D. Result Analysis

The experimental results are shown in Table IV. Note

that the running time of HACoc is much longer than the

other algorithms, especially on large datasets. So we do not

include the results of HACoc on Log, WebACE and Reuter

datasets for comparison. From Table IV, we observe that:

• By incorporating relative constraints, semi-supervised

988



38 40 42 44 46 48 50 52 54 56

0.74

0.742

0.744

0.746

0.748

0.75

0.752

0.754
FScore Results on Ionosphere

# randomly generated constraints

F
S

co
re

 

 

HAC

HACoc

UltraTran

IPoptim

(a) Ionosphere FScore.

38 40 42 44 46 48 50 52 54 56
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

# randomly generated constraints

Ti
m

e 
(in

 m
illi

se
co

nd
s)

Time Results on Ionosphere

 

 

HAC
HACoc
UltraTran
IPoptim

(b) Ionosphere Time.

18 20 22 24 26 28 30 32 34 36
0.652

0.654

0.656

0.658

0.66

0.662

0.664

0.666

0.668
FScore Results on CSTR

# randomly generated constraints

F
S

co
re

 

 

HAC

HACoc

UltraTran

IPoptim

(c) CSTR FScore.

18 20 22 24 26 28 30 32 34 36
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Time Results on CSTR

# randomly generated constraints

Ti
m

e 
(in

 m
illi

se
co

nd
s)

 

 

HAC

HACoc

UltraTran

IPoptim

(d) CSTR Time.

Figure 6. Results on Ionosphere and CSTR datasets. The performance as a function of the number of constraints.

dataset Algorithm FScore Time

Iris

HAC 0.8906 107
HACoc 0.96 233694
IPoptim 0.9293 18917
UltraTran 0.9211 18490

Wine

HAC 0.7614 109
HACoc 0.9346 573002
IPoptim 0.86 30034
UltraTran 0.8456 32636

Protein

HAC 0.4669 196
HACoc 0.5131 53580
IPoptim 0.4730 8889
UltraTran 0.4669 8342

Ionosphere

HAC 0.7401 361
HACoc 0.7446 1392259
IPoptim 0.7503 270198
UltraTran 0.7501 251164

CSTR

HAC 0.653 784
HACoc 0.6524 4911106
IPoptim 0.6632 577451
UltraTran 0.6631 570320

Log
HAC 0.8871 3255
IPoptim 0.9001 1.984e+7
UltraTran 0.8973 1.9698e+7

WebACE
HAC 0.5471 19580
IPoptim 0.5492 1.0081e+8
UltraTran 0.5514 1.0090e+8

Reuter
HAC 0.6154 33000
IPoptim 0.6187 1.7682e+8
UltraTran 0.6178 1.7694e+8

Table IV
PERFORMANCE COMPARISON ON 8 DATASETS.

hierarchical clustering outperforms hierarchical clus-

tering without constraints. In all datasets, the Fscore

values of HAC are consistently lower than those of

other semi-supervised hierarchical clustering frame-

works with constraints. The performance improvement

is significant on Iris, Wine and CSTR as shown in

Figure 5.

• Although HACoc achieves the best clustering perfor-

mance on three small datasets (Iris, Wine, Protein), it

is not efficient and needs long execution time.

• Our proposed techniques (IPoptim and UltraTran) are

much more efficient than HACoc. In terms of clus-

tering performance, IPoptim and UltraTran outperform

HACoc on Ionosphere and CSTR datasets as shown in

Figure 6.

• In general, IPoptim outperforms UltraTran in clustering

performance while UltraTran is more efficient than

IPoptim.

To further investigate the performance of semi-supervised

hierarchical clustering, we conduct experiments by varying

the number of relative constraints. Figure 5, Figure 6 and

Figure 7 plot the clustering performance and execution

time as a function of the number of constraints on six

datasets (Iris, Protein, Wine, Ionosphere, CSTR, and Reuter).

Note that the computation time of the algorithms does not

increase much as the number of constraints increases. We

also observe that the performance enhancement obtained by

the semi-supervised clustering is generally greater as the

number of constraints increases. However, the performance

is not monotonically increasing with the number of con-

straints. There are two possible reasons. First, our proposed

framework is not aiming to satisfy all constraints but to find a

good approximation of the constrained ultra-metric. Second,

the clustering performance is also depending on the quality
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of generated constraints. It is intuitive to say that not all

constraints have the same importance to the performance of

semi-supervised hierarchical clustering. And the constraints

we applied are directly generated from the instance similar-

ities and the true class labels. How to discover important

constraints would be a valuable consideration in our future

work.

VII. CONCLUSION

In this paper we propose a semi-supervised hierarchical

clustering framework based on ultra-metric dendrogram dis-

tance. The triple-wise relative constraints are introduced,

particularly for hierarchial clustering, to describe the merge

preference among instances. Two techniques are developed

to solve semi-supervised hierarchical clustering problem.

The optimization-based technique minimizes the distance

between the original dissimilarity matrix and the target ultra-

matrix using the ultra-metricity and relative constraints. The

transitive dissimilarity based technique takes those relative

constraints into the ultra-metric transformation process. Ex-

periments are conducted to demonstrate the effectiveness and

efficiency of our proposed methods.
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