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Abstract

Ethernet line rates are projected to reach 100 Gbits/s
by as soon as 2010. While in principle suitable for
high performance clustered and parallel applications,
Ethernet requires matching improvements in the sys-
tem software stack. In this paper we address sev-
eral sources of CPU and memory system overhead
in the I/O path at line rates reaching 80 Gbits/s (bi-
directional), using multiple 10 Gbit/s links per system
node. Key contributions of our work are the design
of a parallel protocol that uses context-independent
page-remapping to reduce packet processing over-
heads, thread management overhead and synchroniza-
tion in the common case, and reduce affinity issues in
NUMA multicore CPUs. Our design result in the full
40 Gbits/s of available one-way Ethernet bandwidth
and in about 57.6 Gbits/s (72%) of the 80 Gbits/s max-
imum bi-directional throughput (limited only by the
memory system), while leaving ample CPU cycles for
application processing.

1 Introduction

Historically, high performance applications satisfy
their communication needs through the use of spe-
cialized (and thus expensive) communication net-
works [4] that offer high-bandwidth, low-latency com-
munication. Recent improvements in Ethernet tech-
nologies [1] however, promise link rates in the range
of 40-100 Gbits/s, matching those of traditional high-
performance interconnects. This paper explores the
possibility of leveraging Ethernet as a cost-effective
commodity solution for high-performance communi-
cation.

One of the challenges with using Ethernet as a high

performance interconnect is the CPU and memory
overhead typically associated with data transfer over
protocols such as TCP/IP. Packet protocol processing,
device interrupt handling, and memory copies for data
movement are potential consumers of CPU and mem-
ory bandwidth, reducing the effective network band-
width seen by applications.

A urry of recent work on overhead reduction tech-
nologies that are applicable to Ethernet networks in-
cludes application programmer interface (API) and
protocol improvements via remote direct memory ac-
cess (RDMA) [16]; protocol ofoading [13]; and new
network interface card (NIC) designs [22]. While
these approaches have been successful in demonstrat-
ing efcient data transfer over 1-10 Gbits/s data rates,
improved capabilities of next-generation Ethernet net-
works demand new techniques in order to leverage
increased network bandwidth while simultaneously
freeing processor resources for application use.

In this paper we investigate efcient network data
transfer over Ethernet networks in the 10-100 Gbits/s
range assuming standard NIC programming interfaces
and using multiple 10 GBit/s links to form a single
logical connection. Our aim in expecting no special
support from the network, either at the core (switches,
routers, etc.) or its edge (NICs), is to take advan-
tage of economies of scale in standard Ethernet NICs.
Given technology trends in network, CPU, and mem-
ory systems we believe that higher network speeds
can be sustained at the application level by leverag-
ing processing power in emerging multicore proces-
sors and by reducing memory bandwidth used for pro-
tocol processing. Also, we believe that future commu-
nication protocols will make use of spatial parallelism
over multiple physical links to achieve high end-to-
end throughput.

The system we present in this paper combines an



appropriate networking API with RDMA semantics
at kernel-level with an efcient implementation of a
network communication protocol over Ethernet. The
contributions of this paper are:

• An Ethernet transport protocol efciently paral-
lelized over multiple CPUs and cores on modern
processors;

• A novel context-independent copy reduction
technique based on VM page remapping that re-
duces packet processing cost and thread manage-
ment overhead and synchronization; and

• An identication of challenges in parallel com-
munication protocol design in NUMA multicore
processors.

Both features require no special hardware support.
This paper extends earlier work [14, 18] describing a
non-parallel version of our Ethernet network transport
protocol, named MultiEdge, which has the following
characteristics:

• API support for RDMA and mixed, in-order and
application-specic order message delivery.

• Lightweight ow-control optimized for inter-
domain topologies.

• Transparent use of multiple physical links for
data transmission.

Our results show that a base protocol that uses a
more traditional page-remapping technique and is not
parallel achieves a maximum one-way throughput of
about 27.9 Gbits/s out of ideal 40 Gbits/s, whereas
two-way throughput increases to about 37.3 Gbits/s
out of ideal 80 Gbit/s. Parallelization of the trans-
port protocol and using context-independent remap-
ping improves one-way aggregate link bandwidth to
38.9 Gbits/s while leaving 62.5% of the total proces-
sor cycles (5 out of a total 8 cores) available for appli-
cation processing. In terms of bidirectional through-
put, our protocol achieves about 57.6 Gbits/s (74% of
ideal) at 50% of total CPU utilization. Finally, our
work is a rst step towards mapping network proto-
cols on emerging heterogeneous multicore CPUs and
breaking the traditional bounding between CPU and
NIC.

The rest of this paper is organized as follows. Sec-
tion 2 provides background on our Ethernet-based
communication protocol and on standard copy avoid-
ance mechanisms. Section 3 presents our networking
protocol parallelization on multiple cores of a modern
multiprocessor. Sections 4 and 5 present and discuss

our experimental platform and results. We discuss re-
lated work in Section 6. Finally, we draw our conclu-
sions in Section 7.

2 Background

The high-performance communication protocol used
in this paper [14] is geared towards high-speed
Ethernet-based local-area networks. It offers reli-
able transfer semantics using window-based ow con-
trol with positive and negative acknowledgments, and
packet retransmits in case of packet loss, similar to
TCP/IP [23]. MultiEdge additionally supports fram-
ing, with a choice of in-order or out-of-order delivery,
and the simultaneous utilization of multiple physical
links, features found in more advanced transport pro-
tocols such as SCTP [2]. MultiEdge is a fully end-to-
end protocol that does not require any support from
the network core.

In a departure from traditional socket (send/receive)
based APIs over Ethernet,MultiEdge presents applica-
tions with a remote read/write memory API [16]. The
initiator of the operation identies the remote buffer
using either a remote virtual memory address or a
buffer id and an offset within this buffer. Both should
be registered explicitly by the application through a
system call. Once registered a buffer may be used in
multiple communication operations. It is important to
note that theMultiEdgeAPI does not require any hard-
ware support for RDMA and is implementable over
standard Ethernet NIC hardware.

We assume the reader is familiar with the function
and operation of the network I/O path in traditional
implementations of kernel-level communication pro-
tocols [23]. Such implementations typically require
a number of memory copies during protocol process-
ing and when crossing the user-kernel boundary in the
send and receive paths. Several techniques to miti-
gate the cost of copying have been proposed in the
past, a prominent one being virtual memory (VM)
page remapping [5, 8]. According to it, data move-
ment between two buffers can be achieved through
the use of virtual to physical address translation, page
pinning, and page remapping in the operating sys-
tem VM structures. In our current prototype we use
specially-adapted VM page remapping and associated
techniques to eliminate memory copies in sending and
receiving data and discuss the implementation of each
direction separately.

A key challenge in the send path is transferring data
directly from application buffers. Using a user-level



buffer for communication requires that the buffer be
pinned in physical memory throughout the duration of
the I/O operation. Previous approaches have imple-
mented such pinning as part of a copy-on-write oper-
ation during each write system call [5]. To reduce the
per-I/O overhead associated with this mechanism we
chose to instead expose the pinning operation through
a system call and perform it either by the application
as part of an initialization procedure or through an I/O
library. Our mechanism works for both synchronous
and asynchronous I/O semantics. In the former case,
the system call does not return before the I/O is com-
plete. In the latter case, the semantics of asynchronous
I/O already prohibit the application from accessing the
user buffer before I/O completion.

In the receive path, the goal of any copy avoidance
mechanism is to achieve direct deposit of the incom-
ing data to its destination user buffer without inter-
mediate copies. Previous research on programmable
NICs [4, 16] showed that enabling application pre-
posting of receive buffers directly with the NIC of-
fers such a mechanism. However this capability re-
quires extensive NIC support and is thus expensive
and outside the scope of our work. Our mechanism,
which does not require special NIC support, relies
on initially appropriately depositing incoming packets
to kernel buffers and subsequently using page remap-
ping to trade the physical pages underlying the kernel
buffer with those of the targeted user-level buffer.

3 Parallelization of Protocol Processing

Parallelization of the send path is typically straight-
forward, as multiple user contexts (threads or pro-
cesses) that initiate communication operations can be
mapped to different CPUs, cores, and NICs. We now
focus on the parallelization of the receive path, which
conceptually includes the following steps (Figure 1):

• Packets arrive in per-NIC (network) rings that are
located in host memory. Each Ethernet ring may
contain packets from different connections at the
same time, as we would like to use all available
physical throughput for a single connection.

• Packets are removed from the Ethernet rings and
are placed to a per-connection (Rx) ring structure
(possibly using the sequence number for index-
ing to avoid synchronization).

• Depending on message order semantics, in the

common path, where there are no acknowledge-
ments or retransmissions:

– With out-of-order message delivery, pack-
ets are removed from the connection ring
and processed. Processing involves remap-
ping the buffers to the application address
space for avoiding copying and doing all
protocol book-keeping.

– With in-order delivery message semantics,
before packets are processed as above, the
receiver needs to ensure that all packets of
previous messages have been received.

• If the processed packet is the last segment of a
message carrying a notication, send a notica-
tion to the application process.

• When necessary (uncommon path), send an ac-
knowledgment based on certain conditions of
packet ordering and system thresholds.

• Poll NICs for more work and start over.

These steps typically mandate specic mechanisms
in the protocol design and implementation. First, re-
moving packets from the Ethernet rings has to occur in
per-NIC (network) threads that are woken up by NIC
interrupts at packet arrival. Second, packet processing
occurs in per-application threads that require access
to application memory structures for page-remapping
purposes. Third, for scaling protocol processing, the
system needs to employ both multiple network as
well as per-application protocol threads. Fourth, re-
moving packets from the Ethernet rings and placing
them in the connection rings, as well as removing
them from the connection rings requires synchroniza-
tion among concurrent contexts1. These implications
result in (a) a higher number of threads than nec-
essary, (b) more complex afnity characteristics be-
tween thread scheduling and protocol meta-data place-
ment, and (c) synchronization in the common packet
processing path.

In this paper we present a design that improves
on these issues. A main challenge is to perform
page-remapping directly by the network threads. This
is challenging because these threads have no default
knowledge of application VM structures and essen-
tially need to take a new personality for each packet.

1This synchronization, depending on the protocol semantics
and implementation can be optimized to use only atomic instruc-
tions as opposed to locks in the common path.
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Once this is possible, then packet processing can
happen at the network threads, eliminating the per-
application process threads altogether. This, in turn,
allows for removing all synchronization in the com-
mon, out-of-order delivery, case and simplies to
some extend afnity issues.

Figure 2 shows the main structures and common-
path operations in our protocol. Solid lines corre-
spond to out-of-order processing mode, which is the
common path in the protocol, while dashed lines cor-
respond to in-order processing, which is the uncom-
mon path. In the common case, network threads re-
move packets from ethernet rings independently, di-
rectly remap them to user buffers, and mark the packet
as delivered in the connection ring. The uncommon
path requires rst placing packets in the connection
ring, and then processing packets of single messages
in parallel by scanning the ring using a block atomic
increment operation (atomic increment by N).

Next, we discuss how our design achieves ef-
cient network packet handling relying on (and bene-
ting from) use of context-independent VM remap-
ping, how it handles synchronization issues arising
from network threads to shared protocol states, and
how it limits resource afnity challenges in NUMA
architectures.

3.1 Context-independent VM remapping

Network threads have their own contexts, which dif-
fer from application contexts shared by per-process
threads. Performing VM remap operations on applica-

tion memory from system-level threads is a key chal-
lenge in our system.

A receive thread must be able to manipulate the vir-
tual address space of the application where the packet
is delivered. To achieve this, when a process initial-
izes the device we store a pointer to the kernel�’s mem-
ory manager structure. During data packet processing,
when the need arises to access a process�’s user ad-
dress space we appropriately restore the correspond-
ing memory manager. For x86/x86 64 architectures it
sufces to replace the cr3 register to point to the page
table of the process we need to access and change cer-
tain system variables to leave the system in a consis-
tent state.

As a further optimization to this mechanism, each
time the application registers explicitly a buffer we
store the kernel�’s page table stucture (usually the dif-
ferent levels of the page table entries, if they exist).
During the VM remapping, we use the cached page ta-
ble structures to locate the page table entry that points
to the old page manually and replace it with the new
page. This prevents invalidation of the proper page
entry and causing a software page-fault to put the new
page into the page table. On both places we explicitly
ush the TLB to prevent reading stale data by the ap-
plication. Finally, we update our cached page tables to
keep our data consistent with the kernel�’s page tables.

3.2 Thread Synchronization

In our parallel design we ensure that threads synchro-
nize over access to the connection ring to avoid con-
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Type Description
trylock (1) Protect accesses per buffer entry
trylock (2) Protect accesses per memory page
trylock (3) Prevent concurrent tx. completions
trylock (4) Prevent concurrent tx. of explicit acks
trylock (5) Prevent concurrent retransmissions due to nacks
trylock (6) Prevent concurrent scanning of the ring in-order
atomic all shared ow control sequence numbers

Figure 4. Summary of synchronization points.

icts in the following cases (Figures 3 and 4):

1. When a data packet is assigned to a protocol
thread, that thread must determine whether the
incoming packet is a duplicate. To serialize on
accesses to the connection receive ring, threads
use atomic instructions to update shared variables
such as the maximum sequence number and indi-
vidual entries on the receive ring.

2. In the (uncommon) case that overlapping mes-
sages are processed concurrently, a per-buffer
lock is required to avoid concurrent remapping
of a single buffer.

3. When multiple threads concurently poll the de-
vices for transmission completion events, ensure
a single thread is processing all such events.

4. In the case of a positive or (uncommon) nega-
tive acknowledgment, the protocol uses a per-
connection try-lock to ensure that only a single
thread transmits the ack.

5. In the (uncommon) case of retransmitted packets,
the same packet may end up being processed by
multiple threads. This case requires a try-lock per
entry on the connection receive ring to ensure that
only one of the duplicates is processed.

6. In the (uncommon) case that in-order processing
is dictated by message semantics, a try-lock is

required to ensure that packets are processed in-
order. This effectively allows a single thread to
do the in-order processing, while the remaining
threads are free to process other pending work.

3.3 NUMA Affinity Issues

The NUMA architecture of recent multicore proces-
sors such as the one used in this study (Figure 5) re-
sults in possible variations in memory throughput de-
pending on the relative placement (or affinity) between
host and NIC buffers as well as between application
and protocol threads. The main types of afnity are
between:

• Application threads and cores;
• Interrupt handlers and cores;
• Protocol receive threads and cores;
• Memories and NICs;
• DMA direction and memory modules;

We obtained results corresponding to application
threads running on separate CPUs, interrupt handlers
running on any core of the CPU where the NIC is at-
tached, and protocol receive threads running on dif-
ferent cores of the CPU where the NIC is attached.
Memory-NIC and DMA direction-memory afnities
are more involved. Memory-NIC afnity means that
each NIC performs DMAs only to the memory on the
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same CPU where the NIC is attached. DMA direction
afnity means that the protocol operates in a manner
such that it performs only read (write) DMAs from
(to) each memory module. Our protocol conguration
so far does not try to exploit afnities to a signicant
degree, as such tuning would not be expected of typi-
cal applications.

4 Experimental Platform

Our experimental platform consists of two systems
connected back-to-back with multiple NICs. Both
nodes have two, quad core, Opteron 2354 CPUs run-
ning at 2.2 GHz and a Tyan S2915 motherboard. The
operating system is the 64-bit version of Debian test-
ing with Linux kernel version 2.6.18.8, compiled with
GCC version 4.1.2. Each node is equipped with four
Myricom 10G-PCIE-8A-C cards. Each card is ca-
pable of about 10 Gbits/s throughput in each direc-
tion for a full-duplex throughput of about 80 Gbits/s.
Each Opteron 2354 CPU has a TLB size of 1024 en-
tries and per core L1, L2, and shared L3 cache sizes
of 4x32 KBytes, 4x512 KBytes and 1x2 MBytes re-
spectively. Each processor is equipped with 4 DIMMs
of 512 MByte DDR-667 for a total of 4 GBytes of
main memory. Linux is congured with NUMA (Not-
Uniform Memory Access) features enabled. Figure 5
shows a schematic of the internal data paths in each
node from various memories to network links and the
maximum throughput in each component of the path.

We conduct experiments using MTU size of 9000

8K 32K 128K 512K 2M 8M 32M

Buffer Size (bytes)

1 

2 

4 

8 

16 

32

64

128

Th
ro

ug
hp

ut
 (G

By
te

/s)

1 Thrs
2 Thrs
1+1 Thrs
4 Thrs
2+2 Thrs
4+4 Thrs

Figure 6. Memory copy throughput.

bytes (Ethernet Jumbo frames). This MTU size is
widely used in high-performance systems and is in
line with current technology trends.

We evaluate the system using three micro-
benchmarks: one-way, where one of the two nodes
reliably sends messages back to back using remote
writes without waiting for any response from the re-
ceiver. This benchmark exercises the send path at the
sending and the receive path at the receiving node.
two-way, where both nodes simultaneously transmit
data back to back using remote writes. The through-
put in this case reects all trafc in the system, includ-
ing both the send and receive paths that are exercised
simultaneously. ping-pong is a request-reply bench-
mark using remote write. Both request and reply are
of the same size.

To understand system behavior, we use the follow-
ing metrics: (a) Throughput, which is calculated over
the amount of application data that has been delivered
to the remote node; (b) One-way, end-to-end latency;
and (c) CPU utilization breakdowns. CPU utilization
is approximate as we cannot account for the time be-
tween a NIC issues an interrupt and until the interrupt
handler executes on the host CPU and consists of the
following components: IRQ is the cost for interrupt
handling or polling; TxCopy/Translate is the overhead
spent on preparing the payload in the send path. This
component includes either the pinning and transla-
tion overheads or the data copy; RxCopy/SetupRmap is
the overhead of packet processing in the receive path,
including copying, where appropriate. This compo-
nent does not include the actual overhead for remap-
ping, which is measured separately; Remapping is the
page remapping cost in the receive path; Packet is
the packet processing overhead. This includes header
preparation, ordering of packets, and ow control; De-
vice is the cost for communicating with the NIC both
at the send and receive paths.



local memory (MBytes/s) remote memory (MBytes/s)
1 core 1+1 2+2 4+4 1 core 1+1 2+2 4+4

read 2004 4008 7760 14344 1862 3724 6680 9536
write 2600 5200 7480 8336 2000 4000 5240 5280

Table 1. Memory throughput when cores access data lo-
cated on local or remote memory.

operation time (µ s)
ioctl 0.28 - 0.35
alloc buffer 0.1 - 0.3
pin page 2.2 - 7.6
remap page 0.1 - 1.0

Table 2. Basic kernel costs.

Finally, in our experiments we use the following
protocol congurations: CP: This is our base version
where the protocol uses one copy in the send and one
copy in the receive path. Map: This is the protocol
version with copies eliminated in the send and receive
path using address translation and page remapping.
NoCP: This is an �“ideal�” version with both copies ar-
ticially removed, showing the maximum achievable
performance without copy, remapping, and translation
overheads. In all experiments, we report the average
of ve measurements for each data point.

Figure 6(b) shows memory copy throughput in each
node. The knees at 32 KBytes, 256 KBytes, and
1 MByte correspond to the L1, L2, and L3 cache sizes.
In all these runs each core accesses only memory at-
tached to its CPU. Sustained memory copy throughput
for a single core is about 920 MBytes/s, while for all
8 cores it is about 4.56 GBytes/s. With 2 and 4 cores,
throughput is signicantly higher when cores are split
between the two CPUs (memories) rather than placed
in a single CPU (memory). Table 1 shows throughput
for memory read and write separately. For one core ac-
cesses to local memory have a sustained rate of about
2 and 2.6 GBytes/s for reads and writes respectively,
but it drops signicantly when accessing remote mem-
ory.

Table 2 shows the overhead of certain basic oper-
ations we use in our design. An empty ioctl costs
about 0.3 µs. Allocating a kernel buffer (MTU size)
costs about 0.2 µs. This cost could be higher if we had
memory fragmentation. In addition to both pinning
and remapping costs increase almost linearly with the
number of pages. Pinning is fairly expensive as it
requires locating the corresponding virtual memory
area, walking the page table to locate the requested
physical pages, and nally increasing their reference
count. Pinning the rst page is more expensive than
the rest, because consecutive virtual pages are placed
in consecutive locations in the page table. For page
remapping the average overhead is about 0.5 µs. The
overhead is lower than pinning, because the virtual

memory area for each page is stored in a protocol
cache during receive buffer registration. This allows
us to walk directly the page table, nd the table entry,
and update it.

5 Results

We structure results around the following questions:
(a) The benets from page remapping in the range
of 40-80 Gbits/s; (b) Protocol scaling with multiple
CPUs and protocol threads; (c) Afnity issues; and
(d) The impact of different TLB invalidation schemes
and buffer alignment.

5.1 Benefits of page remapping

Figure 7(a-b) shows throughput and CPU utilization
when using copy (CP) vs. page remapping (Map)
and contrasts them with the ideal version that arti-
cially avoids both (NoCP). We see that CP, which
uses one copy on the send and one copy on the re-
ceive path, is limited by CPU in both one-way and
two-way, reaching a maximum bi-directional through-
put of about 1.5 GBytes/s over all NICs. Moreover,
copy overhead dominates in all cases, except for the
smaller message sizes. CPU utilization for CP in two-
way reaches up to 180% for larger messages, saturat-
ing both the send and receive path CPUs.

Replacing copies with remapping in Map results
in a large performance improvement: Throughput in-
creases by almost a factor of three in one-way and two-
way and by a factor of two in ping-pong. In one-way
we see that receiver path utilization is almost 100%
and throughput reaches up to 3.5 GBytes/s. Results
are similar in two-way where bi-directional through-
put is about 4.5 GBytes/s, however, CPU utilization
is about 150%, reecting the saturation of the receive
path. Thus, any further improvement in throughput
can mainly come from better distributing receive path
protocol processing to multiple cores in future CPUs.

Figure 7(a) shows the performance improvement
when using context-independent remapping (Map) vs.
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Figure 7. Impact of copy avoidance on throughput and CPU utilization. For CPU utilization (b) we
show one bar per protocol configuration (left to right): CP, Map, NoCP.

remapping that uses per-connection threads (MapSim-
ple). We see that especially in one-way and two-way,
throughput improves by up to 34%. In the rest of
our evaluation, we use only the context-independent
remapping technique.

Overall, delivering end-to-end wire throughput can
be limited by two factors: (a) maximum memory
throughput in our systems or (b) high CPU require-
ments for protocol processing and especially the re-
ceive path. If we articially remove data copies and
remapping (NoCP) throughput increases in all bench-
marks to saturate either available link (one-way) or
(single) memory bandwidth (two-way).

Figure 9(a) shows the system�’s latency for one-way
and ping-pong. Ping-Pong exhibits a latency of 11.7-
13.4 µs for 4 Byte messages and reaches 16.5-21.2 µs
for 2 KByte messages. One-way shows the overhead
of posting a write request to be about 2µs for 4 Byte
messages for all congurations and increase slightly
with message size. We see that for messages up to
2 KBytes Map performs better due to the lack of copy
on the send path. The smallest packet size in Ethernet
is 60 bytes. Packets of this size are required from our
hardware to t in a single hardware descriptor. Our

header size is 48 bytes, thus, if the payload size is less
or equal to 12 bytes, we need to perform a copy when
creating each packet. We see that Map performs al-
ways equal or better compared to CP, thus, there is
no need to set a larger threshold to regulate between
copying and creating the gather list on transmit side.

5.2 Protocol scaling

Next we examine the scaling of the network protocol
with increasing number of processing threads. Fig-
ure 8 shows throughput and CPU utilization for dif-
ferent protocol congurations. First we consider the
case of a single send thread with an increasing number
of receive threads. In this case, one-way throughput
scales from 3.5 GBytes/s to about 4.9 GBytes/s (Fig-
ure 8(a)) reaching the maximum one-way throughput
achievable on four NICs. We see that two receive
threads are almost adequate for achieving this maxi-
mum throughput. Figure 8(b) shows that CPU utiliza-
tion on the receive path for 1RT, 2RT, and 4RT is about
100%, 200%, and 300%, respectively. Thus, 2RT sat-
urates two cores while managing to service all four
NICs at link speed. In two-way, throughput scales
from 4.5 GBytes/s to about 6.0 GBytes/s, with 2RT
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Figure 8. Protocol scaling with the number of protocol threads. For CPU utilization we show one bar
per configuration (left to right): 1RT, 2RT, 4RT, 4RT-NoCP, 2ST-4RT.

almost reaching maximum throughput. Similarly to
one-way, in 2RT CPU utilization is about 280%, indi-
cating that the two receive threads saturate two cores
with the rest of the CPU utilization attributed to the
sending thread. In 4RT, although there are spare CPU
cycles available, throughput does not increase signi-
cantly beyond 6.0 GBytes/s since the bottleneck is the
single memory throughput when using a single send
thread.

Increasing the send threads to two for two-way
(2ST-4RT-Map) results in a maximum throughput of
about 7.2 GBytes/s at similar CPU utilization levels
as in 4RT-Map. The increased throughput is a re-
sult of using both memories the system as opposed to
mostly one memory when using a single send appli-
cation thread. We discuss this issue more in the next
subsection.

5.3 Affinity issues

Our protocol conguration used so far does not try
to exploit afnities to a signicant degree, as such tun-
ing would not be expected of typical applications. Our
highest achieved throughput of 7.2 GBytes/s in cong-
uration 2ST-4RT-Map uses essentially send memory-

NIC afnity but no receive memory-NIC afnity.

To explore further the impact of afnity we con-
sider two additional congurations: one featuring
DMA direction-memory afnity and another featur-
ing (both send and receive) memory-NIC afnity.
First, we note that these types of afnity are mu-
tually exclusive if one desires the simultaneous use
of all available NICs and memories. For instance,
DMA direction-memory afnity, where the protocol
performs only read or write DMAs to each of the two
memories in the system, requires that send and re-
ceive buffers of all NICs be located in separate mem-
ory modules, breaking memory-NIC afnity. A test
with DMA direction-memory afnity results in max-
imum bidirectional throughput of about 6 GBytes/s,
similar to single-memory performance, while a test
with memory-NIC afnity results in maximum bidi-
rectional throughput of about 7 GBytes/s underlining
a measurable impact to overall performance. A more
detailed evaluation of different afnity types and con-
gurations as well as dynamic protocol adaptation is
beyond the scope of this work and we leave it for fu-
ture work.
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Figure 9. Message latency (a), impact of TLB invalidation mechanisms (b), and impact of data align-
ment (c).

5.4 Impact of TLB invalidation mecha-
nism

After remapping a receive buffer, TLB entries may
be invalidated either selectively or by ushing the full
TLB. In addition, TLB entries may be invalidated ea-
gerly as soon as a page is remapped, or lazily, only
after all pages related to a single packet or message
are remapped. Our previous results use lazy-full TLB
invalidations. Figure 9(b) shows two additional cases,
eager-full and eager-selective TLB invalidations for
two-way. Lazy-selective invalidations are not interest-
ing as eager-selective would always result in less or
equal overheads. We also include a curve where we
articially do not ush any TLB entries, to illustrate
the best possible case.

We see that the overhead when ushing the en-
tire TLB depends on message size. Eager-full and
eager-selective TLB invalidations are 16% and 25%
worse than the ideal throughput with no invalidations.
Lazy-full TLB invalidations scale better as message
size increases, and for messages larger than 32 KBytes
reach the same throughput as the ideal case. Also, it
is important to note that when ushing the full TLB,
although it appears to incur a lower CPU overhead,
it may have an impact on overall application perfor-
mance as the TLB may need to be relled with ushed
entries, especially for compute intensive applications.

5.5 Impact of buffer alignment

Finally, until now we have presented results using ap-
propriate data alignment for send and receive buffers,
such that page remapping is possible on the receive

path for messages equal to or larger than 4 KBytes.
Also, message size is a power of two, resulting in full
page remappings for large messages. When send and
receive buffers are not page-aligned, there is a need
to copy part of the data and to use a larger number of
packets. To x alignment the rst packet is used to
align data appropriately and the last one to transmit
the remaining, non-aligned data. These two packets
have a total payload of 4 KBytes for messages larger
than 4 KBytes, since the transfer size is a multiple
of 4 KBytes. Figure 9(c) shows throughput for one-
way and two-way when source and destination buffers
are not aligned. For unaligned addresses, through-
put increases with messages size, as more packets use
remapping on the receive path, asymptotically reach-
ing the maximum throughput of aligned buffers.

6 Related Work

The last two decades there has been extensive re-
search on communication subsystems for building
cost-effective, high-performance clusters. To a large
extent this research has focused on examining issues
in the host-NIC interface, such as eliminating data
copies, system call overhead in the communication
path, and context switches [9, 15, 20]. Through this
work, NIC architectures have evolved dramatically
to low-latency, high-throughput designs that are de-
coupled from the processor-memory architecture [4].
Similarly there has been extensive work in evaluating
various aspects of cluster interconnects and in differ-
ent contexts [3, 12]. Our work in this paper differs
from these efforts in that (a) we assume no protocol-
specic support from the network interface, (b) we tar-



get 40-80 Gbits/s Ethernet-based networks, and (c) we
take advantage of multicore CPUs in protocol design.

In [14], MultiEdge has been evaluated on a clus-
ter of 32 nodes, using multiple 1 Gbit/s and single
10 Gbits/s Ethernet links, running an optimized soft-
ware shared memory protocol and real applications.
The emphasis there is on examining the impact of the
lack of protocol support from the network switches on
out-of-order delivery and packet loss. In [18] we ex-
amine the scalability of MultiEdge up to eight 1 Gbit/s
links and present a detailed evaluation on the impact
of different protocol costs on CPU utilization. In this
work we design a protocol that avoids copying over-
heads without breaking existing APIs and scales on
multiple cores to achieve a maximum bidirectional
end-to-end transfer rate of more than 7 GBytes/s out
of a maximum bandwidth of about 10 GBytes/s.

Address translation and page remapping have been
proposed previously for eliminating the cost of cross-
ing the user-kernel boundary in various contexts [5, 8].
The authors in [8] present a mechanism for transfer-
ring data over this boundary and deals with alignment
issues and concurrent accesses. We use a similar tech-
nique in our receive path design. In addition we deal
with alignment issues that are induced by Ethernet and
the lack of protocol support at the NIC. Copy ofoad-
ing is also achieved using hardware support in some
processors [11]. While this approach results in deliv-
ering wire-speed for 10 Gbits/s link rates, CPU utiliza-
tion remains high.

The packet re-shufing technique we use is similar
to header patching proposed in [5]. The main differ-
ence is that a scatter-list mechanism can be used on
the receive buffers used by the hardware, and each seg-
ment of this list is able to be transfered to a user buffer.
However this cannot work on our operating system,
we can only avoid copies using page size scatter list
buffers. Moreover, we evaluate the effectiveness of
this technique at much higher network speeds.

Distributing packet processing over multiple cores
has been examined in [22]. The authors present the
design of a network interface that uses multiple CPUs
for 10 Gbits/s Ethernet processing. However, they fo-
cus on NIC design rather than the host CPU commu-
nication stack. In contrast in our work, we do not rely
on NIC support and we examine communication rates
up to 80 Gbits/s. We believe that our approach is in-
line with current technology trends of using multicore
CPUs as host processors.

Previous efforts that are related to our work in terms
of the underlying platform include [17, 21]. The au-

thors in [21] provide a communication protocol, UNet,
on top of Fast Ethernet and ATM interconnects. Their
goal is to provide high-bandwidth, low-latency com-
munication on top of commodity interconnects. They
focus on data transfers and describe how they can be
performed directly from user space when the NIC pro-
vides a programmable CPU and what support is re-
quired at the kernel-level for less aggressive NICs.
The authors in [17] present a user-level, zero-copy
protocol design and implementation on top of 1 Gbit/s
Ethernet, using a programmable Ethernet NIC. They
achieve a minimum latency of 23 µs and a maximum
bandwidth of 880 Mbits/s, close to our kernel-level
protocol over a single 1 Gbit/s link. In our work, our
goal is not to bypass the kernel. Instead, we are inter-
ested in eliminating the copy overheads while cross-
ing the user-to-kernel boundary for transparency pur-
poses.

The concept of end-to-end multi-link communica-
tion channels is similar to inverse multiplexing [10].
Inverse multiplexing has previously been applied to
wide area network communication [6]. Moreover, this
concept has been explored in the context of cluster
interconnects: Multi-rail communication tries to take
advantage of spatial parallelism and has been exam-
ined by previous work. The authors in [7] examine
rail allocation methods for multi-stage cluster inter-
connects.

Finally, there are recent efforts to build multi-stage
interconnects out of Gigabit Ethernet switches and
NICs. The authors in [19] build a multi-dimensional
hyper crossbar network using multiple Gigabit Ether-
net interfaces in each node. They nd that for a set
of micro-benchmarks the system delivers more than
90% of the peak throughput. This work is orthogonal
to our work in this paper as it focuses on the impact of
the multi-stage interconnect rather than the degree of
spatial parallelism.

7 Conclusions

In this work we examine the implications of host-
level copies for high-speed communication protocols
over Ethernet-based interconnects. We examine how
copies can be eliminated using page remapping and
how protocol processing on the receive path can scale
over multiple cores, taking advantage of current tech-
nology trends without at the same time imposing re-
strictions on existing APIs and buffer management se-
mantics.

We nd that eliminating copies with address trans-



lation and page remapping results in 2-3x improve-
ment and allows reaching a maximum of about 70%
of available throughput in one-way and two-way re-
spectively. After copy avoidance, the bottleneck is
mainly receive path processing. Interrupt process-
ing, page remapping, packet processing, and NIC ac-
cesses are important to the extent that they are essen-
tial processing steps in the receive path and cannot
be eliminated. Distributing receive protocol process-
ing over multiple cores allows the protocol to scale
to a maximum end-to-end throughput of 7.2 GBytes/s
(57.6 Gbits/s or 72% of maximum bidirectional band-
width of 80 Gbits/s). To our knowledge this is the
highest throughput achieved with commodity systems
and transparent, kernel-level communication proto-
cols.

Overall, we believe that our approach of using mul-
tiple NICs (and network links) for increasing end-to-
end throughput matches very well the current tech-
nology trends in building multicore CPUs and that
our protocol design is effective for delivering high
throughput through standard and well-dened kernel-
level APIs. We believe that the main issue remain-
ing for future work is a more detailed examination of
buffer and thread placement and techniques for dy-
namically adapting protocol behavior to application
requirements (with respect to locality issues) over het-
erogeneous multicore CPUs.
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