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Abstract. We derive and analyse a normal form governing dynamics of Hopf bifurcations of
partial differential evolution equations on a square domain, We assume that the differential
opérator for the linearized problem decomposes into two one-dimensional self-adjoint operators
and a local ‘reaction’ operatar; this gives a basis of Le. of the form u(x;, x2) = filx) fa(x2)-
The normal form reduces to that investigated by Swift [23] for bifurcation of modes with odd
parity but is new for modes with even parity where the centre eigenspace carries a reducible
action of Dy x 8!, 'We consider the Brusselator equations as an example and discover that a
separable linearization introduces a degeneracy which causes the thre¢ new third order terms in
the normal form to be related in an unexpected but simple way.

AMS classification scheme numbers: 35B32, 58F14, 58F35, 58G28, 65G15

1. Introduction

Mathematical models of time-evolving physu:al systems are often parabolic partlal
differential equations of the form

a—=Au+g(u) , . : : (1. 1)
where 1 is in some suitable function space, A is a linear elliptic operator, and g is a (k-times
differentiable) nonlinear operator with zero linear part. This equation is assumed to have a
quiescent ‘trivial’ solution with « independent of space and time, say i = 0. In order to
investigate the stability of this trivial state, we need to know the location of the eigenvalues
of A on the complex plane; if they all have negative real part, the trivial state is stable to
smal} perturbations. If the equation is continuously dependent on a parameter A € R then
the trivial solution may lose stability if, at say A = 0, one or more eigenvalues of A have
real part equal to zero. This is a bifurcation of the trivial state, and typically the nonlinear
terms g mean that there will be new steady or time periodic solutions with small amplitude
at nearby values of A ~ 0. For the case where a complex pair of eigenvalues pass through
the imaginary axis at +iw with w > 0, there will typicaily be branches of time-periodic
spatially inhomogerieoué solutions near the bifurcation; a Hopf bifurcation [18].

§ Present address: Institut Non-Linéaire de Nice, 136 Route des Lucioles, 06560 Valbonne, France.
|| Department of Mathematics Xi'an liaotong University, Xi’an 710049, Psople’s Republic of China.

0951-7715/95/050715+20819.50 © 1995 IOP Publishing Ltd and LMS Publishing Lid 715



716 P Ashwin and Z Mei

For systems in “general position’ we should expect that there will only be one complex
pair of eigenvalues passing through =it at A = 0 (perturbing the linear part A will typically
split any multiple eigenvalues). Thus, we can use the centre manifold approach to reduce
the time-asymptotic dynamics to be conjugate on an ordinary differential equation on a
finite-dimensional submanifold of the original function space, which has the dimension of
and is tangent to the centre eigenspace of A at A = 0. Thus, Hopf blfurcauon typically
involves looking at dynamics on a manifold with two real dimensions,

If the system has extra symmetries, the situation is changed; we consider the case
of partial differential equations on square domains such that the boundary conditions and
equations reflect this symmetry. The theory of Golubitsky er af [12, 14] says that if the
system has a group of symmetries I, then the dimension of the centre eigenspace at Hopf
bifurcation must be either double the dimension of a real irreducible representation of T" or
it is the dimenston of a2 complex irreducible representation of I". The consequence of this is
that for systems with the symmetry D4 of transformations of a square to itself (the dihedral
group with eight elements), the only admissible dimensions of a centre eigenspace are two
and four. The two dimensional case is essentially the same as that for Hopf bifurcation
without symmetry, but the four dimensional case gives a larger dimensional space, and so
there can be many different types of periedic solution; even quasiperiodic solutions and
chaos bifurcating from the trivial solutions at Hopf bifurcation. This is discussed in detail
by Swift [23]. 7

However, this is not the end of the story. As has been found in many different contexts,
notably in the context of steady-state bifurcation, often partial differential equation have
centre eigenspaces which are too big from the ‘generic-with-symmetry” point of view. For
example, Crawford has found [5] that firstly, centre eigenspaces ‘at bifurcation can have
dimensions that are simply too big and secondly, they can have an admissible dimension,
but do not carry an irreducible representation of the symmetry group. The resolution of this
problem is to look at genericity within a suitable class of problerns; we can then get reducible
representations on the centre eigenspace [9]. This was noticed by Shaw [22] in the context
of solutions of Schridinger’s equation for a square-well potential. The centre eigenspace
may even be of arbitrarily large dimension due to the effects of rotational symmetry in the
extension of the problem to R2 [1, 17, 51.

The particular class of problems we consider here are Hopf bifurcations for systems on
square domains whose centre eigenspace is spanned by a basis of separable eigenfunctions;
roughly speaking, they have the property that they are products of odd or even functions of
x; and x; only. This includes classes of problems that are periodically extendible, or even
extendible problems on the plane with Euclidean symmetry. The research of Crawford et
al [5, 9] and Gomes et al [8, 15] has investigated the normal forms of problems where
the representation of the group on the centre eigenspace takes into account the presence of
hidden symmetries of the problem. They find that at low order, the bifurcation equations
have extra symmetry which is only broken to the genenc symmeu'y at an order depending
on the mode numbers at bifurcation.

The problems we consider do not typically have hidden translation symmetry.
Nevertheless, we find centre eigenspaces that are not irreducible for Dy symmetry and
therefore not generic in the usual sense of equivariant bifurcation theory. The reason for
this lies in the special structure of the linear part of the problem. At bifurcation we take
explicit account of this structure and obtain a normal form on an eigenspace carrying a
reducible representation of the symmetry group. More precisely, bifurcations of modes
with odd parity (think of sinkx sinly with k + [ odd) give rise to a complex irreducible
action of D4 x $' on the centre eigenspace (typically isomorphic to C?) whereas those with
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even parity (k + 1 even) give rise to a reducible action, as noted by Shaw [22]. Under the
assumption that there are no further linear degeneracies we find a normal form for bifurcation
problems where there is a reducible action of D4 on the centre eigenspace caused by even
parity of the bifurcating modes. We concentrate on the problem for Hopf bifurcation, which
after reduction to normal form gains an extra 8! symmetry to arbitrary order [14].

Qur work is a generalisation of the normal form of Swift [23] for Hopf bifurcation with
the generic action of D4 xS! on C? which is in turn a normal form derived by Golubitsky and
Stewart [13]. We derive a Birkhoff normal form and analyse its generic (codimension one)
bifurcation behaviour as a function of the third order coefficients. Although we cannot locate
the periodic solutions analytically, we give an algorithm to find the number of branches and
their symmetries. ’

" The problems we consider include a large class of physically interesting equations, for
example those with translational symmetry of the equation in the xy and xz directions when
extended to the infinite plane, with the domain being a square [0, #]* and Neumann, Dirichlet
or Robin boundary conditions imposed on the boundaries. For the case of Euclidean
symmetry of the equations, a result of Melbourne [1, 6, 7] gives complex exponential spatial
dependence of the eigenfunctions. For such problems, we show that the natural action of Dy
can be reducible on the centre sigenspace, the tangent space to the centre manifold where
local bifurcation takes place. For Hopf bifurcation, this action gives structure to the normal
form that we derive. The normal form on C? has equivariance under an action of Dy x §!
irreducible for odd parity but reducible for even parity mode numbers.

This normal form has six complex coefficients at third order, reducing to that of Swift
(with three complex coefficients) for the case of an irreducible action of Dy x S!.” We
analyse the normal form to give the number and symmetry of the bifurcating solutions. The
notation follows Swift [23] as far as possible, to allow easy comparison with that paper.
We give a set of conditions on the normal form coefficients cnsurmg genenc branching
behaviour at Hopf bifurcation,

Ag an example, we use the normal form analysis to interpret the bifurcation diagram
of the Brusselator equations with mixed (Robin) boundary conditions, .teduced by a
numerical/computer algebraic Liapunov—Schmidt method detailed. in [4, 2]. Surprisingly,
we find that the three new third order monomials in the reduced bifurcation equation appear
only in a very simple combination. We show that this is caused by the fact that there is a
basis of separable eigenfunctions for the linearized problem.

2. Reaction—diffusion equations and domain symmetries

Consider the following parameterised semi-linear (e.g. reaction-diffusion) partial differential
equation
. anu :

vl A(A)u +gu, A) : : (2.1a)
for AQLY € £(X,Z), g € C®(X x R, ¥) with continuously embedded Banach spaces
X Y < Z and A € R as a bifurcation parameter. Moreover, we assume g{0, 1) =0
and Dg(0, \) = 0 and shall restrict our discussion to the domain being a square 2 = [0, #]*
and X, ¥ and Z will usvally be spaces of functions on $2 taking valves in R™. For reaction—
diffusion equations we can decompose the lmear operator A into a spatial differential
operator and a reaction operator

A=L;+ L,
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Moreover, Ly is often self-adjoint and L, acts on functions U f{x) with f € C(2, R) and
U e R™ simply as a matrix operation on {J.

Definition 1. A self-adjoint linear operator L, is separable if it can be written as the sum
of two operators:

Ly=Li+ L

such that the L, and Ly have identity action in the x, resp. x; directions (and are therefore
self-adjoint as one-dimensional operators).

Because the operator L, commutes with the sﬁmmetry wlxy, x2) = (x2,x) of the
square, we have Ly = pL; while the self-adjointness means that the eigenfunctions of L,
form a basis for C({0, ], R™). If this eigenbasis is given by

{f(xl)ﬂ‘l}

w1th Ap real then L has an eigenbasis for Z given by

{Sfi(xn) frCxa), M + Mg}

Note also thé; the square symmetry and the Z; symmetry u(x) = —u(x) of the linear
operator means that the fi(x;) will be either odd or even.

Definition 2. A continuous function u : Q = [0, #)> — R”™ is separable if it can be written
in the form .

u(xy, x2) = Uf(x))gle) forall x i=(x,x)eQ

for a constant vector U € R™ and two continuous function f, g : [0,n] — R with
Flr —x)==xf(x)and g(m — x) = £g(x). '

We remark that the square domain does not force symmetries of the form f(r —x) =
— f(x) for the full nonlinear equations. Howewer, this is the case for solutions of the
linearized equations at a trivial solution.

Definition 3. Consider f:[0,m] =R Ifthere isa p € {0, 1} such that
flw = x)= (D" fxn),

we say that f has parity p. For a separable function u{x) = f(x1)g(x2) we define its parity
to be the sum of the parities of [ and g. Note that the parity is deﬁned modulo two and so
we refer to parity as being even or odd. :

Linear parts of problems (2.1a) with homogeneous boundary conditions are typically
separable. Consider X, ¥ and Zg to be spaces of functions & : & — R™ with boundary
conditions on X of the form

au,(x)+b-—(x) 0 forall xed, iell,...,d. (2.16)

Here 2 4 is the outward normal derivative on the boundary. The constants 2 > O and & € R
satlsfy [a| + |bf > 0 and are so-calied Robin (or Cauchy) boundary conditions on 4$2. To
ensure the problem is well-posed, it is necessary that = m for a second order differential
- operator A. The cases @ = 0 and & = 0 correspond to Neumann and Dirichlet boundary
conditions respectively. It is possible to generalise the boundary conditions to having a and
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b dependent on i, but this requires restriction of the bifurcating modes and introduces more
complexity without illuminating the discussion here. N
For steady state or Hopf bifurcation at A = 0 we assume that A(D) has an eigenvalue
with zero real part and an eigenspace of finite dimension. For steady state bifurcation there
are eigenvalues (which may be multiple) of A(L} acrossing the imaginary axis at A = 0
through zero only. For Hopf bifurcation, we assume there are eigenvalues of A(A) which
across the imaginary axis when A = 0 at ®ie with non-zero rates. These eigenvalues must
be isolated.- Assuming A to be sectorial (see Henry [16]), extra hypotheses on g can ensure
focal existence of time-dependent solutions. Another approach is that of Vanderbauwhede
and Tooss [24] who work with Banach spaces of functions Rt — X, ¥, Z exponentially
bounded in time and prove existence and smoothness of a centre manifold under weaker
assumptions than Henry by not considering the dynamics away from the centre manifold.

Instead of taking one or other of these approaches, we are concerned with the structure
of the normal form on the generic centre eigenspaces. Because the centre manifold can be
chosen to be invariant under any symmetry acting on the centre eigenspace, we examine
the action there for generic nonlinear terms. For our example, we do not perform a centre
manifold reduction but instead use the Liapunov—Schmidt method to gain information about
the branching of periodic solutions. Thus, although we are motivated by problems of the
form (2), we only need discuss the functional analytic setting of the linear problem.

2.1. Euclidean symmetries

For many physwally interesting problems, especially reaction—diffusion problems, the
governing equation can be extended from Q to the whole plane and becomes equivariant
under the Euclidean group on the plane, ie. the group &£(2) of transformanons on R?

generated by :
X Y. cosy —siny
Pel e )T sia ¢ cosy x2
X1 _f *2
#(2)=(2)
- yY._fx+n
O\ 2 )TN ke )

Here the p are rotations about the origin, w« is reflection in the line x; = xo and the 7 are
translations. This induces an action of O(2) on the tangent space (also R?) by the o and
4 acting as above and the 7 acting trivially, For » € £(2) we denote the former action
by «(y) and the latter by &(y). As noted by Crawford 6. 7] we can write any element in
y e &(2) as A .
¥ = tapttpy.

These actions of £(2) on R? induce a natural action on functions # € Xge dcﬁned on

the plane .

| ¥ - u(x) = ulo(y " )x).
The action on the operator F : X — Z defining the partial differential equation %*ti = F(u,r)
is given by 7
Y Fu(x), )= a(y)F(y - u(x), 1)
for all ¥ € £(2). Turning back to thc original equauon (2), we shall usually be interested
inuwe XoN{ulo : ueXgl)
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The action of D4 on the domain 2 = [0, 7)? is generated by

o (1, x2) = (2, T —x1)
i (X, X2} = (X2, x1). L

and we note that these group elements can be trivially extended to act on the plane RZ and
can be seen as a subgroup of £(2).

A result of Crawford [6, 7] states that the centre eigenspace for linear problems with
£(2) symmetry is spanned by exponentials of the form

u(x) = Ue¥™ + coc.

for k| = x, the critical wavenumber at bifurcation and I/ a constant vector. Here c.c.
represents the complex conjugate of the first term. Generically there is a unique critical
wavenumber for one parameter problems. Imposing Robin boundary conditions (2.15) leads
to a basis for the centre eigenspace consisting of eigenfunctions '

Zaktfkcosal,kxl + b1.e) cos_cz:;.,kxz + ¢24) 2.2)

with I/, € R™ constant and |U; || =1, €Rad?, +12 2, =4k% The constants ik lmk
the mode numbers of the Neumann and Dirichlet problems whereas ¢;.. are phase shifts to
ensure the Robin boundary conditions (2.14) are satisfied, more precisely, [, satisfy

2ab g cos(lir) + (@ — b2,y sin(lipmr) = 0

and ¢ 1, are solutions of

cos(Pi ) = Bli 4

prEwETN nyET sinl@re) = ~———m7- TP,

in [0 2m), where a and b are given constans in the boundary condmons {2.15). Both these
sets of constants are calculated numericaily (see Ashwin and Mei {2] for a discussion of
this). An important property is that parity of eigenfunctions is defined for Robin boundary
conditions and stays constant on varying @ and b. '

For corank two steady state bifurcations, the centre eigenspace can be identified with
(a1, a2) € RZ, and the action of D4 on the basis (2.2) is given by

p(cos(ls xx1 + ¢y 1) cOsUa X2 + d2,4)) = (—1)P coslloxy + Po.k) cosly w¥z + P1.4)
plcos(fzex1 + d1.u) cos(h kX2 + ¢2.0)) = (—1)7 cos(ly e + ¢4 COS(lz wXa + o)
@f (x1, xz) f(xa, x1) forall fe cwE,

where p; € {0,1},i =1, 2. If py + p2 is even then the bifurcating mode has even parity,
otherwise it has odd parity. Moreover, these modes have a separable form.

Separability of bases of eigenspaces holds for such equations which have the subgroup
of symmetries £(1) x £(1) xX; Zz < £(2) in the extension to the plane (for example, a
subgroup of the former group is the Dy %, I considered by Crawford [5]; ‘%’ denotes
the semidirect product). Imposing periodic boundary conditions in both directions gives the
symmetry group T2 < £(1) x £(1).

i=1,2

3. The action of D, on the centire eigenspace

3.1. Steady-state bifurcation

For the case of corank two and odd parity, the action of D, induces an irreducible action on
R2, otherwise it is reducible; it action is isomorphic to either Z; or Z; xZ,. As discussed by
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Ashwin and Mei [2], Robin boundary conditions generically remove any number theoretic
degeneracies (i.e. bifurcations with corank higher than two), but they preserve the corank
two degeneracies. It is interesting then to note that the work of Crawford et a! [9] also shows
that one cannot remove such degeneracies by considering Robin boundary conditions. They
do succeed in removing them by perturbing the boundaries away from straight edges whilst
retaining the square symmetry. We suggest that the degeneracy would also be removed by
making the boundary conditions (2.15) non—homogeneous {(for example, takmg a(x) and
b(x) in (2.15)).

3.2. Hopf bifurcation

For Hopf bifurcation the linearization A(0) has an even dimensional centre eigenspace
corresponding to eigenvalues +iw, and generically these eigenspaces are spanned by
functions of the form

{Ug cos(ly gx1 + ¢1.6) coslapxz + ¢z0)e +e.c. I+ 15, =«
with U/, € C™ constant up to multiples in C. We assume that for A near zero, A(A) has
eigenvalues

Atiw

which is satisfied after appropriately rescaling of the bifurcation parameter if this complex
pair of eigenvalues goes through the imaginary axis with a non-zero rate. '

By [2] we can generically exclude ‘number-theoretic’ degeneracies and assume there
is a Hopf bifurcation at A =. 0 with critical wavenumber « and centre cigenspace is of
dimension 2 or'4. For this case we denote. p == [, (, g = I1, ¢ = ¢ and ¢ = ¢21.
We note that the case p = g gives a normal form on C which is that for standard Hopf
bifurcation without symmetry, and so concentrate on the case p # g. We define the spatial
dependence of the eigenvectors to be

S1(x) = cos(px; + ¢1) cos(gxz + ¢z}
S,(x) = cos(gx) + ¢2) cos(pxs + ¢1).

The exponential of the adjoint A(0)* induces an action of S' on the centre eigenspace
[10] given by &4® for 5 € [0, 2zrw) and so there is a natural complex structure on the
eigenspace by T = e?A®"/2_ For the generic case, choosing U € R™ such that

USi(x)e™ +cec. k=12
is in the centre eigenspace, we define V = ZU and coordinates (z4,z—) & C? for the centre
eigenspace by
w(x, 1) = 2SIV + iS2x) Ve .
+ 2 (S(DU +iS1(x) V)™ + c.c. (3.1
We remark that this differs from the coordinates (Z4,Z—) in our previous work [4] by a
transformation (z,,2_) = (—iZ,, Z_). The induced action of D4 on C? is given by
0:(z4,2-) = (kizy, Fiz.)
Bz, z-) = {z-, 24)
for odd parity modes and
o (ze,2-) = £z, z4)
fLa (Z-I-v Z—) - (z—y Z+)'
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for even parity. We shall fix on the case where p(z;,z-)} = (iz4., —iz_) for odd parity and
p(Z+.2-) = (2, z4) for even parity. The case p(z4,z-) = —(z—, z..) leads to the same
normal form, just with a slightly different interpretation of the solution branches.

The natural S! action on the centre cigenspace becomes a symmetry of the Birkhoff
normal form to all orders, although there will typically be error terms not in Birkhoff normal
form which break this symmefry. As in Golubitsky ez af [14] we shall take the approach
of examining the bifurcation by using the Birkhoff normal form of the vector field on the
centre manifold and so including this extra §' symmetry. The bifurcation behaviour in
the full system is then the normal form bifurcation behaviour perturbed by a generic S!
symmetry breaking perturbation. Such perturbations will cause hyperbolic structures (for
example, hyperbolic periodic orbits) in the dynamics to persist. As before, the action of
D, x §! is reducible for even parity and irreducible for odd parity.

This 8' symmetry acts via temporal phase shift as indicated before. The mduced action
on C? is

Ty : (e 2-)— (ei‘pz.;_,ei"’z_)

for Hopf bifurcations with both odd and even parity mode. Note that the action of Dy x 8!
on C2 is the same as Swift’s for the case of odd parity and gives an action of Zo x §' for
even parity. Upon performing a centre manifold reduction we get that the dynamics on the
centre manifold is determined by an ordinary differential equation on C?:

4 = (A +iw)zy + filzy, 22)
= (A +iw)z- + f(z4,2-)

where fi(zy, z-) are k times differentiable functions with zero linear part, and equivariant
under the appropriate action of D4 x 8! [24]. For a smooth operator equation, we can choose
k arbitrarily large.

4. The normal form

The ring of invariants for both actions of D x 8' on C? are generated by
lzl® +l2- P |z Plz-]?
for odd parity, and the extra generators
24T + 224, [zaleeZ- + 2o 274
for even parity. The equivariants are the module gver this ring generated by
( Z+ ) ( |24 %24 ) ( A% )
— )7 \lz-Pz- )7\ z-23
for odd parity and three additional generators
z-. lz—|?z- zZ-z2
(5) (i )- (52)
for even parity. This is proved by definirig
. { z forzz 0

=t

z fort <0

“and considering the action of the groups on sums of homogeneous monomials of the form
zhz™zy PPz [2:, For the invariants, the S' action means that p, ¢ are arbitrary and
I+m = 0. A minimal set of generators is then given as above. “For the equivariants,
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the & action swaps the components, so considering monomials in the first component gives
again p, g arbitrary and I -+m = [. It is a routine calculation then to show the equivariants

are as above.
Thus, C* (for k > 4) vector fields commuting with the action of Dy x S! can be written

in the form
iy 4 |z |23+ E+ZE
. = A A =
() '(z- )+ ( e )T 24

z_ lz-|%z~ 7-z%
+A4( it )+AS( {Z+|2Z+ )+Aﬁ( 3+Zi '
with A, € C*! and A4; € C*2 (i = 2,...,6) complex valued functions of the invariants
(A; = As = Ag = 0 for odd parity), in particular, A4(0) = 0. Truncating at cubic order
gives
2o = (A +iw)zy + [Alze + |z-1%) + Blzyf*lzs + C2+z_
+ X1z P+ [z )+ Xziz-l ]Z-—+X32 2
{4.1)
= i)z + AUz + 12 + Ble—Ple- + C7-22
+ X (2 P + |22 + Xalz4Plzs + X5Z422
with six complex coefficients A, B, C, X, X and X3. For odd parlty, X1=%=X3=0
and the cquatlons rcduce to Swift's [23, eqaation (25)]. :

5. Analysis of the normal form

Table 1 shows the isotropy lattices for the two different actions of Dy x 8! on C?; as
usual, the isotropy subgroups are classified up to conjugacy. Note that there are three
maximal isotropy subgroups for the odd parity (irreducible) case, but cnly one maximal
isotropy subgroup for the even parity case. In both cases, the kernel of the action is Z,(0%
corresponding to equivariance under temporal phase shift of half a period and spatial rotation
by half a period. This equivariance will be lost in the original equations by the introduction
of terms that are not in the centre eigenspace at bifurcation.

Table Z gives the size of and some representative elements in the fixed point spaces of
the isotropy subgroups displayed in table 1, as well as the names assigned by Swift. By the
Equivariant Hopf Lemma [13], there are generically branches at bifurcation with isotropy
¥ if dimg fix(X) = 2 (This implies that £ is maximal for the actions discussed). For
odd parity, we get the three maximal isotropy types of Golubitsky and Stewart while for
even parity we get gnly one. This is a noticeable difference in the branching behaviour of
bifurcation; we only get branches with 23002y x Zo( 1) symmetiy for even parity. However,
for even parity we may get up to four distinct group orbits of periodic solutions with
submaximal symmetry, as opposed to only one group orbit of submaximal solutions for odd
parity. '

Using the following transformation of {z,, z.) to (u, v, w, ¥):

w=lzs|* =z
v = 2m(g47.) = = S i S
w=2Re(z47_) =247+ 72-Z+
LAY :
Jzsz-|

e =
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Table 1. Isotropy lattices for the actions of Dg x 8! on C2.

D4 e S1 ‘ D4 x Sl
B v A N ) 1
Zy(p) Z(p%) x Zp(u) Z2(0%) x Za(up) Zy(p*) x Zo (1)
N ' g U+
Zo(p%) Z>(p%)
(2) odd parity (b) even parity

Table 2. Representative fixed point spaces for the actions of Dy x S' on C2,

(2) odd parity,
Isotropy Fix dime Fix  Name ofsolutions N
1}4 x 8§t {0,0) 0 homogeneous equiltbrivm
Za(p) (2,0 sotating wave
ZoloD) x Lolp)  (z,z) 1 edge oscillation
Zo(p?) x Za(up)  (z.iz) 1 vertex oscillation
Za(p®) (z.w) 2 submaximal solution
(b) even parity
Dy x 8! ©mn 0
C B x T (D) |

Z2(%) (z.w) 2

it is possible 10 write (4.1) as

tr = (At iw)zy + ouuzy Fieyvz- +aywzo + Buuz- +if,vze + fuwis
7= (M +iw)z_ — @z — loyvzy + Wz, — Butize — 1Byuz_ + Bywz_. (5.1)

At this point, we depart from Swift [23] in which # and w are interchanged. The reason
for this will become clear; it is to ensure that the coordinate singularity is at a point
of maximal isotropy. The parameters ¢, &y, @y, Bu. By, Bw are complex numbers and
Ar Ay ..., X3, X3 are real and imaginary parts of A, B, C and X1, X3, X; respectively.
They are related by

A=A, +iA; = —o,to, oy,
B=B, +iB = 20—y —aty
C=C, +lici = —oy oy

Xi=Xy,+iXy =5 — B+ Bu
Xo=Xor +iXo =284+ v — Bu
X3 = Xa +iX5 = By + Pu.

We denote the real and imaginary parts of the «’s and §’s by
o, =R, +il, ow,=R,+il, a,=R,+il,
Bu=Su+ily By =Sp+ify Bu= Su+idy
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and define r by
A= et wt
We rewrite (5.1) in the form of a modified ‘Euler equation”: -

- .
=it = u(Ryr + A) + (Ly ~ Bvw — Jyur + (S, + 3y)uw

2
I,
EU =v{Ryr + Ay + (I, — I)uw + Jur -+ (S, + Syvw 5.2)
1
. Eu'u = w(Ryr + 1)+ (I, = L)uv + S,w? — S,u® — §,0°
¥ =0+0() (5.3)

{when all parameters are zero except for I,, I, and I, this is Euler’s equation for the
motion of a rigid body). The ¥ equation uncouples from those for #, v and w (this is a
consequence of the S! symmetry of the normal form) and so periodic solutions in (24, z_)—
space correspond to fixed points in (u, v, w)-space.

Because (5.2) is homogeneous except for the A term, we can further reduce it to an
associated spherical system, still following Swift [23]. To do this, we change the coordinate
from (, v, w) into (r, 6, ¢) via the transformation ' |

%+ iv = rsin e
w =rcosf.

Note that for siné = 0, ¢ is not defined; this coordinate singularity is the ‘pole’ of the
sphere. This leads to the following system for r, & and ¢

;= %[zu +r (4A, +3B, — C + (B 4+ C,)sin®0 cos 2¢ — (Xa: + X37) sin? 0 sin 2¢
+(3C, — B,)cos20 -+ (4X 1, + 2Xa, + 2X3,) cOS 9)] (5.4)
. rsiné

6 =- 5 [cos@[(—Xg,- — X3)singcosg + (B, + C,)cos’ ¢ — ZC,]

| +(B; -+ C;) sing cos ¢ — (X, + X3,) cos® ¢ — 2X1, — Xop + X3,} (5.5)
é= %{[{Xg, 4 X3,)cos8 — (B, + c,,)] sin2¢
+[(B,- +C;ycosf — (Xq + X;,-)] cos2¢ o (5.6)
7 +(B, — 3C;) 088 — 4X3; — 3Xz + X3 }
This system is defined for r 2 0, 8 € [0, 27) and ¢ € [0, ). The action of the reflection

and rotation is given by
w6, 0)— (r2r —0,¢) .
p:(rn6,¢)— (rnm —0,m —¢) (odd parity only).

As noted by Swift, the equations for 8 and ¢ can be made independeni of r > O by
rescaling time, and then we can find periodic solutions of the full problem (steady state

solutions for (r, 8, ¢)) in two stages:

1. Solve the associated steady state spherical system @, @) = (0,0) for r > 0.
2. Solve the radial equation 7 = 0 at zeroes of the associated spherical system.
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For A,, B, and C, asymptotically close to zero compared to the other coefficients and
X, = 0, this system describes the motion of a rigid body. Van Gils and Silber [11] have also
investigated 2-tori for this system with X; = 0 using other techniques. In addition to those
found by Swift, we believe there may be new types of heteroclinic orbit or quasiperiodic
behaviour near bifurcation but we have not pursued this idea. The equation 6 = 0 is always
satisfied if

sinf =0. .7

This corresponds to there always being a branch with maximal symmetry Z; that bifurcates,
(this corresponds to « = v =0 and w = r. Our reason for choosing u, v, w differently from
Swift is to ensure that this maximal solution is at the pole of the coordinates). Alternatively,
6 = 0 has a root at

(B; + C;)singcos ¢ — (Xor + X3,)cos? ¢ — 2Xy, — Xor + X,
(—Xq — X3)singpcosd + (B, + C,ycos? ¢ — 2C,
corresponding to periodic solutions with trivial symmetry; i.e. submaximal symmetry
solutions. Note that this is different from Swift’s equation for cos & due to our interchanging
the definitions’of u and w. If we were to keep to Swift’s coordinates, problerns begin at this

point as there is no easy solution giving cos @ when terms X, # 0 are included. Substituting
(5.8) into ¢ = 0 we get the following equation for ¢

cosd = —

(5.8)

wcosdgp + Bsindg + ycos2¢ +8sin2¢p+e=0 5.9
where the constants o, ..., € are given by

a= —Im[(B + C)(Xa + X3)] (5.10)
= tlIBP +CP — X — | X5 +2Re(BC X.X3)] (5.11)
=Im[(B + C)X; + CX;5 + BX3) (5.12)

s = 0B + X5 — 3(C1* + X2/
—2Re(BC + 2X1 (X2 + X3) + X2 X3)] ©(5.13)
¢ = 1m[(B — 30)(4X +3X2 — X3)]. ‘ (5.14)

For odd parity (X = 0), we have o == ¥ = ¢ = 0 and so either sin 2¢ = 0 (corresponding
to maximal branches) or

8
cos2¢p = ——
="
Equatmn {5.9) for ¢ can be written as a fourth order polynomial of exp(:2¢) and as such
there exists a closed form solution to this equation. There may be zero, two or four
nondegenerate (isolated) solutions ¢ in the interval [0, ) which we write as ¢y < ¢, (and
.ty < iy < 3 < ¢y if they exist).

Having solved this equation, we solve (5.8) with ¢ = ¢; which will have zero or two
(symmetrically placed) solutions accordmg as the right-hand side has modulus greater than
or less than unity.

Given a pair (6;;, ¢;) that solves these equations, the equation 7 = 0 (5.4) implies there
Wlll be a branch of soluuons in the direction swn(l )

I; == —4[4Ar +3B, —C, + ((B + Cp)cos2¢; — (Xy; + X3;)Sll’12¢;) sin? Bij

. -1
+(3C, — B,)cos?8; + (AX,, +2Xa, + 2Xs,) cos e,-,-} (5.15)
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and
r = l"l.

Since the selutions indexed by j are symmetrically related, ; is independent of j.

3.1. Procedure to find branching information

We summarise the calculations already performed to find the number and dlrectlon of
branching of periodic solutions at a Hopf bifurcation point

e Find the complex normal form coefficients (A B,C.X,, X, X35) using centre,
manifold or Liapunov—Schmidt reduction. :

o Use these to calculate o, .. . , € via equations (5.10)-(5.14).

s Determine the solutions (mcludmg multiplicities) ¢; of equat:lon (5.9). We exclude
the case that

(I) the solutions ¢); are not isolated.

o Determine the solutions 8;; of equation (5.8), i.e. such that |cos ;] < 1. We exclude

the case
(IT) |cosB;| = 1.

o Compute /; using equation (5.15) and observe that the bifurcating branch comresponding
to submaximal solutions with (6;;, ¢;) is subcritical for ; > 0 and supercritical for I; < 0,
The value of r is then given to lowest order by r = LA. We exclude the case

i 5 = 0.

This procedure will work for normal form coefficients which do not_ satisfy any of the
degeneracies marked (I)}~(III). It is clear that there is an open everywhere dense set of
parameters for which none of (I}-(II} satisfied, and so we have a procedure that will work
for a generic set of third order coefficients. :

6. Application to Brusselator equations

As an example of a normal form derived from a partial differential equation on the square,

we briefly present some Liapunov—Schmidt reduced bifurcation equations for the Brusselator

on a square. Because an analytical reduction is not possible for the boundary conditions

assumed, a hybrid numerical-analytical reduction is used [4, 2]. :
We consider the following equations with diffusive coupling:

du; _

% =a — (b+r—+ D + wuz + Vus : (6D
; _

% = (b+ Ay — u%ug—l—dvzuz

on the square domain 2 := [0, w]* with Robin boundary- conditions
. - o1; '
uwy — )+ {(1— M)a—l: =0 on dQ2. (6.2)

(uf is the homogeneous state (i, us) = (a, (b + A)/a) and n is the outward normal
derivative). Setting (u1, 2) = (a, (b + A)/a) + (i1, i2) and rescaling time ¢ < (wp+T)t
we get the following operator equation for periodic solutions wear the trivial state after
dropping the &: '

®(u, A, T) 1= [Lu-wo%f—]ﬂe(u,x,r)__—‘o_ (63
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where 1 1= (u;, 427,

A4+b—1 2

and

1 b+ A
R, 4, 1) 1= (_1) ( _: uf+2au1uz+u%uz+lu1) —r%‘}. (6.5)

The operator L maps X := (C;""(EZ))2 into ¥ := (C%*(R))? (functions with Holder
condition, exponent 0 < & < 1 and suitable boundary conditions). Let

Coum ={u( e CR,Y) : uls+27) =uls)}
and

Cl = (u(), -2—:(-) €CR, X) : uls +27) = u(s)).

The operator ® maps C) into Co, and
&0, A, 7) =0 forall A, 7 €0, ).

Fixing the parameters a, b and 4 at a Hopf bifurcation point, we study the periodic solution
branches of (6.1) bifurcating from the trivial solution curve upon varying X, i.e. steady
solutions of the operator equation ® = 0.

6.1. Linear stability analysis

As discussed in [2], the eigenvalue problem is solvable for (@) =« (w)? + :c,,(;x)z with
eigenfunctions ' '

&1 = [ sinfie, (1) x) + (1 — phicx () cos(kz (1) x)]
[ sin(reyp () y) + (1 — piey () cosliey (1) y)]
$2 1= L sin(iey () + (1 — p)xy (i) cos(ry ()x)]
- [ sin(uex (L) ¥} + (1 — p)rex () cos(kx (1) ¥)]
(¢1 = ¢, if and only if «; = &y, implying the multiplicity is one), and «y, ky each satisfy
2u(1 — )i cos(er) + [ — (1 — )%k sinfkn) = 0. (6.6)

Since the Laplacian operator in Cy*(RQ) is self-adjoint and elliptic, the set of its
eigenfunctions make up a basis for Cé‘“ (£2). Consequently, the operator L leaves the
spaces spanned by eigenfunctions of the Laplacian invariant. This means that there is Hopf
bifurcation at A = 0 if for an eigenvalue « (i) of —A the parameters aq, b, dp satisfy

bo—1—af — (1 +dg)e(p) =0 6.7a)
wf := (14 x(u))(af + do (1)) — bodorc (1) > 0. (6.7b)

For further details of the linear analysis, we refer the interested reader to [2]; we merely
pause to mention that if the eigenvalue « (i) has multiplicity 2, the null space Ker(3®) is
4 dimensional and belongs to the case considered in the first part of the paper.

‘We use the method described in [4] to numerically approximate the complex quantities
A, B, C, X, X; and X5 at a Hopf bifurcation point and then the procedure summarised
in section 5.1 to find branching behaviour at the bifurcation. The branches found were
checked to be solutions of the normal form equation (4.1).
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We define

PPN O 40T 7 ¢ B
P =(Pjli=12:= w_o ( —byg - —dor () — ﬂg

¥ = (ejcost + Pesint)g; Yz := (—Pej cost + e, sint)g,
Y3 1= (ejcost + Persint)gy ¥4 :=(—Pejcost + e sint)¢y

‘where e; = ( (1) ) ey 1= (1) was used to compute the Liapunov-Schmidt reduced

equations by writing elements in the null space as

4 . .
= Z ;. , ©8)

i=]

The inner product

{u, v) -——f f{u vy dxdyds . (6.9)

in Cyy was used to define the adjoint problem. Via this, we obtain the dual basis {{*} and
define the projection
4 .
Ow:=w —Z‘(w;‘, w)y; w e Cop.
i=1

This is a projection from C}, into Range(3®) N CL .

Writing the operator ¢ as a power series in 7 = (¢, 7, A) about the trivial solution, that
is ©(n) = D®(y) + Rz, 9) + Rs(m, 1, 1) from [4] we note that the Liapunov—Schmidt
reduced equation at third order is given by '

_ (I — O)(Ra(n, w2(m)) + Ra(mom,m)) =0
with w;(;7) being the solution in Kerd @' of

3, Pow2(n) = — QRa(n, n).
We refer the reader to [2, 4] for details.

7. Results

Tables 3 and 4 show the third order coefficients obtained as a function of s, the homotopy
parameter in boundary condition for dg = 0.05 and dy = 0.01 respectively. We show results
for the even parity branches going from the (1, 3) and (2, 4) Neumann modes to the (2, 4)
and (3, 5) Dirichlet modes (tables 3 and 4 respectively). It can be checked that there are
no mode interactions which might complicate the bifurcation scenario.

It can be seen from the results that very surprisingly, X == —2X, = 2X; in all of these
cases. Numerical experiments on other mode bifurcations imply that this is always the case
for these equations. This means that instead of the three additional third order equivariants,
there is a degeneracy that forces them to always appear in the combination

( lz_Pz_ + 2]z %2 + Z_zi_ )

fzelP2s 4+ 2|2 P2y + 2422 )
Dr Gabriela Gomes has pointed out that this i§ the gradient of the invariant function

et Plz-P(Esz- +7-24).
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In section 8 we discuss the source of this degeneracy.

For the case of Neumann boundary conditions, there is a hidden symmetry arising from
the fact that solutions can be smoothly extended to doubly periodic solutions on the torus
obtained by identifying opposite edges of the square. By looking at the Neumann boundary
conditions as a symmeiry restriction of the problem with periodic boundary conditions, it
becomes generic by symmetry arguments that the centre eigenspace of even parity Hopf
bifurcation can be two {complex) dimensional: This explains why X; = X = X3 =0 in
the results-for g = 0. ' . .

Consequences of the presented values of A, B, C and X, = —2X,; = 2X; for the
branching are described in tables 5 and 6. '

Table 3. This table shows the calculated values of the third order complex coefficients that
determine the branching behaviour in the A direction of periodic sofutions near Hopf bifurcation.
The homotopy parameter g vares from Neumann boundary conditions (u = ) to Dirichlet
boundary conditions (;r = 1) and dy = 0.05, ap = 1 for the computations presented here.
The results were caleulated using a 40 by 40 grid for the spatial discretisation for the branch
connecting the (1, 3} Neumann mode to the (2,4) Dirichlet mode. Note how the coefficients
Xy = —2X2 = 2X3 are zero at the Neumann kimit (where there is a hidden symmetry of
translation) and become non-zero for u # 0.

I A B C X1 ==-2X2=2X3

0 —2.28506 — 0.02634i.
1/9 --2.28660 — 0.02773i
2/9 —2.28642 — 0.02545i
3/9  —2.28496 — 0.01901i

4/9 - —2.28403 — 0.00853i- -

5/9  —2.28877 4 0.00382i

6/9 —2.31316 4 0.010661

7/9 -~2.39389 — 0.00803i

1.40773 — 0.06248i
1.43026 — 0.08191i
1.45898 ~ (.10496i
1.49673 — 0.13175i
1.54805 -~ 0.16133t
162067 — 0.19015i
L. 72865 — 0.209661
1.90197 — 0.20602i
2.21470 — 0.170071

0.14184 + 0.00928i
0.12962 + 0.01898i
0.11620 + 0.03116t
0.10126 + 0.04623i
0.08396 + 0.06409
0.06244 + 0.08307i
0.03353 + 0.09821i

" —0.00358 4- 0.101901

0.00000 4 0.00000i
—0.00920 — 0.0098 i
20.02063 — 0.02246i
—0.03452 — 0.03861i
—0.05059 — 0.05872i
—0.06727 — 0.082651
—0.08063 — 0.109[4i
—0.08415 ~ 0.13767i
—0.06981 — 0.178774

8/9 —2.61188 — 0.10182i
1 -2.07648 — 0.380481

—0.03309 + 0.10064i -

2.75807 — 0.10249i —0.02528 + 0.13237 —0.01403 — 0.25490i

Table 4. As in table 3 except these results are calculated for the branch connecting the (2, 4)
Neumann mode to the (3, 5) Dirichlet mode and ap = 1, dy = 0.01.

7 A B C Xi=-2X>=2X,
0 - 459443+ 0.96305% 2.95487-0.74399i -0.13504-0.334051 0.00000+ 0.00000i
19 -4.73780+ 0.99776i 2.99837-0.793501 -0.14463-0.316771 -0.00100-0.00081i
2/9 -4.79001+ 1.04133i 3.03536-0.85072i -0.15651-0.28904i -0.00511-0.003901
3/9 -4.85233+ 1.095671 3.13034-0.91711i -0.17197-0.246391 -0.01487-0.01064i
4/9 -4.92590+ 1.16299i 3.22953-0.99450i -0.19315-0.183341 -0.03446-0,02279i
5/9 =5.01349+ 1.245521 3.36253-1.08434i -0.22375-0.095181 -0.07005-0.04195i
6/9 -5.12985+ 134472 3.54877-1.18923i -0.27006+ 0.016361 -0.12838-0.06760i
79 -5.34685+ 1.463281 3.84318-1.30675i -0.34310+ 0.13068i -0.21002-0,09442i
89 594761+ 1.63661 4,42698-1.4578T1 -0.45809+ 0209791 -0.30365-0.12271i

1 -7.49637+ 2.001041 5.66954-1.75650i -0.61536+ 0.280481 -0.41589-0.19121i
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Table 5. This table shows the possible solutions ¢, ¢ and / zlong the homotopy path
corrésponding to the values in table 3. The signs of ! determine the bifurcation direction
on changing A. We denote no solution by ‘n.s.’. On this branch, there are two group orbits
of submaximal solutions up ustil & = 5/9; the solutions ¢3 and ¢4 of the ¢-equation are
annihilated. From u = 7/9 there are again two group orbits of solutions.

T 71 e B2 L . ¢ - TR i 5

@3 31 ) I ¢ Ba1 Gs2 Iy

0 [ 1.570796 4,712380  1.139826 . 1.120473 n.s. ms. .. nsg,’
1.570796 1570796 4712389 1.139826 20121197  ns. LS. ns.

/9 0.006723%64 1.577545 4705641 1.167746  1.15194] n.s. n.s. ns.
1.565340 1.536620 4746565 0.6110883 1.988384 n.s. NS . ns,

2/9  (.01551817 1.585313 4607872 1208514 1:177226 .S, n.s. n.s,
1.559913 1.485305 . 4.797880 0.6188707 1.959732 I.S. ©ons. . ng,

39 0.02674702 1.593917 4689269  1.268420 1.205644 1n.s. n.s. n.s.
1.556158 1.405484 4877699  0.6289309 - '1.923841 ns. ns n.s.

4/9  (.04042870 1.602720 4680456 1357882 1.237870 _ ns. . ns. s
1.357934 1.272077 5011109 06412422 1.876156 n.s. n.s. - ns.

5/9 005562084  1.610207 4672888 1494196 1276148 ns. ns. ns.
1.575267 0.9971433 5286042 0.65455[¢ 1.805353 .. ns. n.s. .s.

&/9  0.06969786 1.614028 4669158 - 1.703950  .1.326229 n.s. " ns. IS,
ns. ns. ns. n.S. - ms. . . ns, - n.s. s,

7/9  0.07934294 - 1.610901 4672285 2.015995 1.389855 2.849157 3.434028 0.7346098
n.s. ns. ns, . ns. ns. ns. . 0. .y

8/9 0.08591220 1.599423 4683762 2474485 1.434446  2.174610 4.108575 0.69[8723
n.s. ns. - ns. " ns. ns. ns. ns. . ns.

1 0.094360633 1.576897 4706289 4338267 1456928  1.774929 4508256 0.6385345
.5, n.s. n.s. I.5. . n.s. -, DS, - 0.8, . n.s.

§. Discussion

In summary, we have shown that the analysis of Swift [23] for D4 Hopf bifurcation can
be extended to cover generic Hopf bifurcation problems of PDEs on the square where the
spatial parts of the eigenfunctions are separable. For Hopf bifurcations with odd parity (or
with even parity and Neumann boundary conditions), the normal form of Swift applies, but
for even parity there are extra third order terms in the normal form for the bifurcation; these
are important for determining the branching behavipur.

For the example presented, the Brusselator equations on a square with Robin boundary
conditions, we have found that there is an extra degeneracy of the new third order terms. We
now. show that this arises because the linearized problem has a basis of eigenfunctions that
are separable. This is in turn implied by the fact that the linearized problem has separable
spatial part. ,

It turns out that a different coordinate system enables one to investigate this degeneracy
more easily. We define

ze 2o
a=21E
=T '

and we note that elements in the centre eigenspace (3.1} can be written

= z_x“px + Zy"py + C.c.
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Table 6. This table is generated with the values in table 4. There are up to 4 solutions for
¢-equation, and for each of these there are up to two solutions of & along the homotopy path
starting from (2,4) mode of Neumann problent to (3,5) mode of Dirichlet problem. The signs of {
determine the direction of branching. Note that in this case, the solutions with maximal isotropy
type for 4 = 0 all have unique continuations to x = 1; there are no secondary bifurcations o

this branch. )

B 11 f12 I ) a1 7753 2]
i3 Ba1 ) I [ Bay Ba b

0 0 1570796 4.712389 (.5748576 1.570796 1570796 4.712389 0.5748576
n.s. LS, n.s. ns n.s. n.s. n.s. n.s.

/9 0.0003176902 1.571003 4.712183 05748991 1.574077 1586851 4.606324 (.3158247
n.s. n.s. n.s. ns. n.s. n.s. n.s. n.s.

219 0.001548596 £571839 4711346 05764834  [.577760 1.612483 4670702  0.3140639
n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

379 0.004275930 1.573794 47709391 0.5807234 1579042 1.641955 4.641230 0.3124132
.5. ns. .s. IL.s. n.s. n.s. n.s. n.s.

4/9  0.009336105 1L.577652 4.705533 0.5895024 ° 1.575964 [.673929 4.607257 0.3112329
n.s. n.s. ns. .5 f.5. n.s. .5, n.s.

59 001769188 1.584513 4.698672 0.5057593 1.566185 1715654 4.567532 0.3110555
ns. n.s. .5, n.s. n.s. n.s. I.5. n.s. .

5/9  0.02964825 1.595335 4.687851 0.6327034 1.548260 1.760115 4.523070 0.3120083
ns. n.s. 8. n.s. n.s. n.s. n.s. n.s.

79 004271166 . 1.609049 4674136 0.6658259 1526578 1.800929 4.482256 0.3105186
n.s, .S, ns. n.s. n.s, LS. n.s. n.s. :

89  0.05160103 1.619921 4.663264 (.6592501 L.513119 1.822905 4.460281 0.2897166
5. n.s. n.s. n.s. ns. n.s, n.s. n.s.

i 0.05906714 1.623301 4.659884 0.5487133 1.504274 1.827378 4455808 0.2337731

’ n.s. ’ n.s. ns. n.s. n.s. n.s. n.s. n.s.

where
W = (8 + S)(U +iV)e 2
W, = (S; — SHHU —iV)elet /2.
with §; = fi(x1)fi(x2) and §; = fi(x;) fi(x2) as before. In this case, equation (4.1)
transforms to give
Ze = (A +iw)zr + fi(zx, Zy)
1= (A +iw)ze + QA + B+ O)lzsl’zc +2(4 + B — Oz, 2, + (B + O)Z2?
+Q2X1 + Xo + X)|exl*2x + 2(X1 + Xz — X3)lzy [Pz + (X2 + X3)Zx22
' 8.1
zy = (A +iw)zy + fi(2s, Zy)
= (A +iw)zy + A+ B + Olzgyl’zy +2(4 + B — O)|z: %z, + (B + 0)7,22
—(2X) + X2+ X3)lzy P2y — 2(X1 + X2 — XMz P2y — (X2 + X3)Z,22

In these coordinates, the degeneracy X; = —2X, = 2X; means that the only term that
breaks the symmetry of the odd parity representation is of the form

( szlz'fx
—lzytzy

We can see that this is the case by considering the spatial dependence in the inner product
giving these coefficients. Noting that complex conjugation does not affect the spatial
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dependence of the eigenfunctions, we use (|z;[*z)y to signify the coefficient of [zx %2z,
in fy. The Liapunov—Schmidt reduction gives rise to the following formulae defining C;,
i=1-.--,3

C1 = (lzePz0)x — (2 P2y)y = Ko fﬂ 4((53’- + SHY P51 Sy + Si Sy P (SE + Sg))dxdy
Ca = (s l2e)s = (), = Ka [ (4515:Pa(5F + 5 = (5T + SHPaS1 1) dxdy

Cs = (z37:)x — (2iTy)y = K3 f (431 S5 P3(ST + 53) — (57 + SHPsS: S’z‘) dxdy.
Q

where P; are linear operators that are of the form ¢/ + ¢2A(0)~! with ¢;, ¢, € R and A(Q)
in (2.1a) (and therefore the P; are separable). In section 6.1 the P; are the spatial parts of
the linear operators used to calculate the coefficients of w,{x). The constants X; come from
the reaction terms and the temporal parts of the eigenfunctions. Similarly as in section 2
we rewrite the linear operator into Py = Ly + L, with Ly := L, + Ly representing the
self-adjoint spatial operator and L, the reaction operator, in particular, Z; is self-adjoint,
giving an eigenbasis {fi(x1), A:}, and L, behaves like a matrix operator, moreover

(1, Lyuz)o = UerUzLﬂ(x)fz(x)dxl dx;

for all u (x) = Uy fi(x) € C(8,R™), f, € C($, R). By (-}, we denote the L2-product in
C([0, #)*, R™). Based on this and the self-adjointness of I.;, we derive.

Ca = K3[{48 52, Po(SE+ D)2 — ((SE+ 52), P2SiSy)4]
= 2K3[{5185, LaST)2 — (5%, Ly8152)a]

= Go{ [0 A, LN — (A, L file) il | () fitxa), S2Cehy

e i), RGN [ (Al fitwad, LafPGeas — (i), Lafelea) el ]}
=0 ( due to the self-adjointness of L;, i = 1,2).

Similarly C; can be shown to be zero and these imply that 2X; - X3 — X5 = 0 and
Xo+ X3 =0, giving

X, =-2X>=2X5.

We note that the above argument cannot be adapted to get C; = 0 and this is supported by
the numerical results we have presented. :

The linear degeneracy discussed in section 3.2 will always occur for branching from
a trivial solution of a reaction—diffusion problems with Laplacian spatial coupling and
homogeneous boundary conditions on the square. We have found that there is also a
nonlinear degeneracy in this case, Fortunately, the normal form is still determined by third
order terms even with this degeneracy and so this does not mean that we need to consider
any higher order terms.

We are not aware of specific examples where the linear degeneracy occurs but the
nonlinear degeneracy does not. In order to get this, it seems that we need to consider
problems were there is no separable basis for the spatial part of the eigenfunctions but
the eigenfunctions for the centre clgenspacc are separable. This seems possible although
exceptional.

We conjecture that degeneracies in nonlinear terms will also appear at orders higher
than third but have not attempted to find them.
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~ Finally, we remark that the analysis here may be of use when examining mode
interactions of Hopf bifurcations with Z, symmetry; in-this case, the normal form (8.1)
will naturally arise, but with an extra parameter at the linear level,
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