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Abstrad We derive and analyse anormal form governing dynamics of Hopf bifurwtions of 
paiial differential evolution equations on a square domain. We assume that the differential 
optmtor for the linearized problem decomposes into two one-dimensional self-adjoint operators 
and a local ‘reaction’ operator; this gives a basis of i.e. of the form  XI, xz) = fi (XI) fz(xz). 
The nor& form reduces to that invesfigated by Swift [23] for bifurcation of modes with odd 
parity but is new for modes with even parity where the centre eigenspace carries a reducible 
action of 0 4  x St. We consider the Brusselator equations as an example and discover that a 
separable linearization introduces a degeneracy which causes the three: new third order terms in 
the normal form to be related in an unexpected but simple way,. 

AMS classification scheme numbers: 35832, 58F14, 58F35.58628. 65G15 

1. Introduction 

Mathematical models of tune-evolving physical systems are often parabolic partial 
differential equations of the form 

where U is in some suitable function space, A is a linear elliptic operator, and g is a (k-times 
differentiable) nonlinear operator with zero linear part. This equation is  assumed to have a 
quiescent ‘trivial‘ solution with U independent of space and time, say U = 0. In order to 
investigate the stability of this trivial state, we need to know the location of the eigenvalues 
of A on the complex plane; if they all have negative real part, the trivial state is stable to 
small perturbations. If the equation is continuously dependent on a parameter A E R then 
the trivial solution may lose stability if, at say h = 0, one or more eigenvalues of A have 
real part equal to zero. This is a bifurcation of the trivial state, and typically the nonlinear 
terms g mean that there will be new steady or time periodic solutions with small amplitude 
at nearby values of A. x 0. For the case where a complex pair of eigenvalues pass through 
the imaginary axis at +io with o > 0, there will typically be branches of time-periodic 
spatially inhomogeneous solutions near the bifurcation; a Hopfbifurcation [18]. 
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For systems in 'general position' we should expect that there will only be one complex 
pair of eigenvalues passing through +iw at A = 0 (perturbing the linear part A will typically 
split any multiple eigenvalues). Thus, we can use the centre manifold approach to reduce 
the time-asymptotic dynamics to b2conjugate on an ordinary differential equation on a 
finite-dimensional submanifold of the original function space, 'which has the dimension of 
and is tangent to the centre eigenspace of A at A = 0. Thus, Hopf bifuscation typically 
involves looking at dynamics on a manifold with two real dimensions. 

If the system has extra symmetries,. the situation is changed; we consider the case 
of partial differential equations on square domains such that the boundary conditions and 
equations reflect this symmetry. The theory of Golubitsky er ai [12, 141 says that if the 
system has a group of symmetries r, then the dimension of the centre eigenspace at Hopf 
bifurcation must be either double the dimension of a real irreducible representation of r or 
it is the dimension of a complex irreducible representation of r. The consequence of this is 
that for systems with the symmetry D4 of transformations of a square to itself (the dihedral 
group with eight elements), the only admissible dimensions of a centre eigenspace are two 
and four. The two dimensional case is essentially the same as that for Hopf bifurcation 
without symmetry, but the fow dimensional case gives a larger dimensional space, and so 
there can be many different types of periodic solution; even quasiperiodic solutions and 
chaos bifurcating from the trivial solutions at Hopf bifurcation. This is discussed in detail 
by Swift [23]. 

However, ihis is not the end of the story. As has been found in many different contexts, 
notably in the context of steady-state bifurcation, often partial differential equation have 
centre eigenspaces which are too big from the 'generic-with-symmetry' point of view. For 
example, Crawford has found [5] that firstly,' centre eigenspaces 'at bifurcation can have 
dimensions that are simply too big and secondly, they can have an admissible dimension, 
but do not carry an irreducible representation of the symmetry group. The resolution of this 
problem is to look at genericity within a suitable class of problems; we can then get reducible 
representations on the centre eigenspace [9]. This was noticed by Shaw 1221 in the context 
of solutions of Schrodinger's equation for a square-well potential. The &ntre eigenspace 
may even be of arbitrarily large dimension due to the effects of rotational symmetry in the 
extension of the problem to R2 [l, 17, 51. , ' .  

The particular class of problems we consider here are Hopf bifurcations for systems on 
square domains whose centre eigenspace is spanned by a basis of separable eigenfunctions; 
roughly speaking, they have the property that they are products of odd or even functions of 
X I  and x2 only. This includes classes of problems that are periodically extendible, or even 
extendible problems on the plane with Euclidean symmetry. The research of Crawford et 
a1 [5. 91 and Gomes et d [8, U] has investigated the normal forms of problems where 
the representation of the group on the centre eigenspace takes into account the presence of 
hidden symmetries of the problem. They find that at low order, the bifurcation equations 
have extra symmetry which is only broken to the generic symmetry at an order depending 
on 'the mode numbers at bifurcation. 

The problems we consider do not typically have hidden translation symmetry. 
Nevertheless, we'find centre eigenspaces that are not irreducible for D4 symmetry and 
therefore not generic in the usual sense of equivariant bifurcation theory. The reason for 
this lies in the special structure of the linear part of the problem. At bifurcation we take 
explicit account of this structure and obtain a normal form on an eigenspace carrying a 
reducible representation of the symmetry group. More precisely, bifurcations of modes 
with odd parity (think of sinkx siniy with k + I odd) give rise to a complex irreducible 
action of D4 x SI on the centre eigenspace (typically isomorphic to C2) whereas those with 
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even parity (k + I  even) give rise to a reducible action, as noted by Shaw [22]. Under the 
assumption that there are no further linear degeneracies we find a normal form for bifurcation 
problems where there is a reducible action of D4 on the centre eigenspace caused by even 
parity of the bifurcating modes. We concentrate on the problem for Hopf bifurcation, which 
after reduction to normal form gains an extra S' symmetry to arbitrary order [14]. 

Our work is a generalisation of the normal form of Swift [23] for Hopf bifurcation with 
the generic action of D4xS' on C? which is in turn a normal form derived by Golubitsky and 
Stewart [13]. We derive a Birkhoff normal form and analyse its generic (codimension one) 
bifurcation behaviour as a function of the third order coefficients. Although we cannot locate 
the periodic solutions analytically, we give an algorithm to find the number of branches and 
their symmetries. 

The problems we consider include a large class of physically interesting equations; for 
example those with translational symmetry of the equation in the XI and x2 directions when 
extended to the infinite plane, with the domain being a square [0, RI' and Neumann, Dirichlet 
or Robin boundary conditions imposed on the boundaries. For the case of Euclidean 
symmetry of the equations, a result of Melboume [I, 6,7] gives complex exponential spatial 
dependence of the eigenfunctions. For such problems, we show that the natural action ofD4 
can be reducible on the centre eigenspace, the tangent space to the centre manifold where 
local bifurcation takes place. For Hopf bifurcation, this action gives structure to the normal 
form that we derive. The normal form on C? has equivariance under an action of D4 x Si 
irreducible for odd parity but reducible for even parity mode numbers. 

This normal form has six complex coefficients at third order, reducing to that of Swift 
(with three complex coefficients) for the case of an irreducible action of D4 x Si: We 
analyse the normal form to give the number and symmetry of the bifurcating solutions. The 
notation follows Swift 1231 as far as possible, to allow easy comparison with that paper. 
We give a set of conditions on the normal form coefficients ensuring generic branching 
behaviour at Hopf bifurcation. 

As an example, we use the normal form analysis to interpret the bifurcation diagram 
of the Brusselator equations with 'mixed (Robin) boundary conditions,. reduced, by a 
numericakomputer algebraic Liapunov-Schmidt method detai1.d in [4, 21. Su&singly, 
we find that the three new third order monomials in the reduced bifurcation equation appear 
only in a very simple combination. We show that this is caused by the fact that there is a 
basis of separable eigenfunctions for the linearized problem. 

2. Reaction-diffusion equations and domain symmetries 

Consider the following parameterised semi-linear (e.g. reaction-diffusion) partial differential 
equation 

for A(A) E L(X,  Z), g E Cm(X x R, Y )  with continuously embedded Banach spaces 
X ~f Y ~t Z and h E R as a bifurcation parameter. Moreover, we assume g(0, A) = 0 
and Dg(0, A) = 0 and shall restrict our discussion to the domam being a square 52 = [0, aJ2 
and X, Y and 2 will usually be spaces of functions on 52 taking values in Rm. For reaction- 
diffusion equations we can decompose the linear operator A into a spatial differential 
operator and a reaction operator: 

A = L d  + L, 
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Moreover, LA is often self-adjoint and L, acts on functions Uf  ( x )  with f E C(Q. R) and 
U E R"' simply as a matrix operation on U .  

Definition 1. A self-adjoint linear operator Ld is separable if it can be written as the sum 
of hvo operators: 

P Ashwin and Z Mei 

L< = LI + Lz 

such that the LI and LZ have identity action in the XZ,  'esp. X I  directions (and are therefore 
self-adjoint as one-dimensional operators). 

Because the operator L d  commutes with the symmetry w(x1,x~) H ( x z , x l )  of the 
square, we have Lip = pLz while the self-adjointness means that the eigenfunctions of LI 
form a basis for C([O, n], Rm). If this eigenbasis is given by 

IjXxd, j.1 I 
with AI real, then LA has an eigenbasis for Z given by 

(fk(xi)fr(xz). Ak 4- Ai l .  

Note also that the square symmetry and the 22 symmetry u ( x )  H -u(x) of the linear 
operator means that the fk(Xi) will be either odd or even. 

Definition 2. A continuous function U : Q = [O, z]' -+ Rm is separable i f i t  can be written 
in the form 

U ( X I , X ~ )  = Uf(xl)g(xz)  forall x := ( ~ 1 . ~ 2 )  E Q 

for a constant vector U E R"' and hvo continuous function f ,  g, : [O, n] -+ R with 
f (n - x )  = if ( x )  and g ( n  - x )  = zkg(x). 

We remark that the square domain does not force symmetries of the form f (z - x )  = 
- f ( x )  for the full nonlinear equations. However, this is the case for solutions of the 
linearized equations at a trivial solution. 

Definition 3. Consider f : [0, n] + R. If there is a p E (0, 1) such that 

f ( n - X l ) = ( - - I ) P f ( X l ) ,  

we say that f has parity p. For a separablefunction u ( x )  = f ( x ~ ) g ( x z )  we define its parity 
to be the sum of the parities o f f  and g. Note thus the parity is defined modulo two and so 
we refer to parity as being even or odd. ~~ 

Linear parts of problems (2.10) with homogeneous boundary conditions are typically 
separable. Consider XQ, YQ and ZQ to be spaces of functions U : Q -+ R'" with boundary 
conditions on X of the form 

aui 
an  

(2.Ib) 

Here is the outward normal derivative on the boundary. The constants a > 0 and b E R 
satisfy la1 + 161 > 0 and are so-called Robin (or Cauchy) boundary conditions on aQ. To 
ensure the problem is well-posed, it is necessary that d = m for a second order differential 
operator A. The cases U = 0 and b = 0 correspond to Neumann and Dirichlet boundary 
conditions respectively. It is possible to generalise the boundary conditions to having a and 

auj(x) + b-(x) = 0 for all x E an, i E (1,. . . , d ] .  
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b dependent on i, but this requires restriction of the bifurcating modes and introduces more 
complexity without illuminating the discussion here. 

For steady state or Hopf bifurcation at A = 0 we assume that A(0) has an eigenvalue 
with zero real part and an eigenspace of finite dimension. For steady state bifurcation there 
are eigenvalues (which may be multiple) of A(A) acrossing the imaginary axis at A = 0 
through zero only. For Hopf bifurcation, we assume there are eigenvalues of A(h) which 
across the imaginary axis when h = 0 at *io with non-zero rates. These eigenvalues must 
be iso1ated:Assuming A to be sectorial (see Henry [16]), extra hypotheses on g can ensure 
local existence of time-dependent solutions. Another approach is that of Vanderbauwhede 
and Iooss I241 who work with Banach spaces of functions R+ + X ,  Y, Z exponentially 
bounded in time and prove existence and smoothness of a centre manifold under weaker 
assumptions than Henry by not considering the dynamics away from the centre manifold. 

Instead of taking one or other of these approaches, we are concerned with the structure 
of the normal form on the generic centre eigenspaces. Because the centre manifold can be 
chosen to be invariant under any symmetry acting on the centre eigenspace, we examine 
the action there for generic nonlinear terms. For our example, we do not perform a centre 
manifold reduction but instead use the Liapunov-Schmidt method to gain information about 
the branching of periodic solutions. Thus, although we are motivated by problems of the 
form (2), we only need discuss the functional analytic setting of the linear problem. 

2.1. Euclidean symmetries 

For many physically interesting problems, especially reaction-diffusion problems, the 
goveming equation can be extended from C2 to the whole plane and becomes equivariant 
under the Euclidean group on the plane, i.e. the group E(2) of transformations on RZ 
generated by 

.( ::):=( ::) 
Here the p are rotations about the origin, I.L is reflection in the line x1 = x2 and the r are 
translations. This induces an action of O(2) on the tangent space (also Rz) by the p and 
,U acting as above and the r acting trivially. For y E E(2) we denote the former action 
by u ( y )  and the latter by G ( y ) .  As noted by Crawford [6, 71 we can write any element in 
y E E(2) as 

k Y = T o .  P*.  

These actions of E(2)  on R2 induce a natural action on functions U E XRZ defined on 
the plane 

The action on the operator F : X + Z defining the partial differential equation % = F(u ,  A) 
is given by 

y ' u ( x )  := u(u(y - ' )x ) .  

y ' F W ) ,  A) := q y m y  ' u(x ) .  A) 
for all y E E(2). Turning back to the original equation (2), we shall usually be interested 
in U E Xn n {uln : U E XR?] .  
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The action of D4 on the domain S2 = [0, 7rI2 is generated by 

P : (XI, xz) + (x2, A - 4 )  
lL:(XlrXZ)'(XZ,XI).. 

and we note that these group elements can be trivially extended to act on the plane Rz and 
can be seen as a subgroup of E(2). 

A result of Crawford [6, 71 states that the centre eigenspace for linear problems with 
E(2)  symmetry is spanned by exponentials of the form 

U@) = Ue'L.X -I- C.C. 

for Ik[ = K, the critical wavenumber at bifurcation and U a constant vector. Here c.c? 
represents the complex conjugate of the first term. Generically there is a unique critical 
wavenumber for one parameter problems. Imposing Robin boundary conditions (2.lb) leads 
to a basis for the centre eigenspace consisting of eigenfunctions 

(2.2) 

with U, E R"' constant and I[Llkll = 1 ,  at E R and Z& = K'. The constants lt.1 link 
the mode numbers of the Neumann and Dirichlet problems whereas $i,k are phase shifts to 
ensure the Robin boundary conditions (2.lb) are satisfied, more precisely, l j . ~  satisfy 

~ a k L l ~ c o s ( ~ l , k x l  + 41.d COS(12.lrX2 + h.d 
I 

2a b l i . ~  cos(lj.tx) + (az - b2&) sin(l;.rx) = 0 

and 6 i . k  are solutions of 

in [0,2r), where a and b are given constants in the boundary conditions (2.lb). Both these 
sets of constants are calculated numerically (see Ashwin and Mei [2] for a discussion of 
this). An important properly is that parity of eigenfunctions is defined for Robin boundary 
conditions and stays constant on varying a and b. 

For corank two steady state bifurcations, the centre eigenspace can be identified with 
(ul , az) E Rz, and the action of Dq on the basis (2.2) is given by 

P(cos(ll,rxl + $ I d  cos(~z.t~2 + $ Z d )  = ( - U P '  COS(~ZkXi + dJ2.t)  COS(~l.kX2 + $1.1) 
p(cos(l2.1x1 + $1.1) COS(Zl,k~Z + h 1 ) )  = (-IF COS(~I.kXI + $1.1) C O S l ~ Z . X ~ 2  + $2,1) 
~LJYXI,XZ) = f(xz.xd for all f E c(Q). 
where pi E (0, 11, i = 1.2. If pl + pz is even then the bifurcating mode has even parity, 
otherwise it has odd parity. Moreover, these modes have a separable form. 

Separability of bases of eigenspaces holds for such equations which have the subgroup 
of symmetries E ( 1 )  x E ( 1 )  x, 2 2  4 E(2) in the extension to the plane (for example, a 
subgroup of the former group is the D4 xI T2 considered by Crawford [5]; 'x,' denotes 
the semidirect product). Imposing periodic boundary conditions in both directions gives the 
symmetry group Tz < E(1) x E(1). 

3. The action of D4 on the centre eigenspace 

3.1. Steady-state bifircaion 

For the case of corank two and odd parity, the action of D4 induces an irreducible action on 
Rz, otherwise it is reducible; it action is isomorphic to either Z, or Zz xZz. As discussed by 
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Ashwin and Mei [2 ] ,  Robin boundary conditions generically remove any number theoretic 
degeneracies (i.e. bifurcations with corank higher than two), but they preserve the corank 
two degeneracies. It is interesting then to note that the work of Crawford eta/ [9] also shows 
that one cannot remove such degeneracies by considering Robin boundary conditions. They 
do succeed in removing them by perturbing the boundaries away from straight edges whilst 
retaining the square symmetry. We suggest that the degeneracy would also be removed by 
making the boundary conditions (2.16) non-homogeneous (for example, taking a(x )  and 
b(x) in (2.1b)). 

3.2. Hopf bifurcation 

For Hopf bifurcation the linearization A(0)  has an even dimensional centre eigenspace 
corresponding to eigenvalues f iw,  and generically these eigenspaces are spanned by 
functions of the form 

{U, cos(1I.kxI + +l.k) cos(l2,kxZ + $z,k)eiw' + C.C. : 1& + z ; , ~  = K'I 

with Uk E C" constant up to multiples in C. We assume that for h near zero, A(h) has 
eigenvalues 

I f i o  

which is satisfied after appropriately rescaling of the bifurcation parameter if this complex 
pair of eigenvalues goes through the imaginary axis with a non-zero rate. 

By [2]  'we can generically exclude 'number-theoretic' degeneracies and assume there 
is a Hopf bifurcation at h = 0 with critical wavenumber K and centre eigenspace is of 
dimension 2 or'4. For this case we denote p = 1,,1, q = 12.1. $1 = C1.1 and.$2 = $2.1. 
We note that the case p = q gives a normal form on C which is that for standard Hopf 
bifurcation without symmetry, and so concentrate on the case p # q .  We define the spatial 
dependence of the eigenvectors to be 

SI ( x )  = cos(Pxl + $1 ) cos(qx2 + $2) 

S d x )  = cos(qx1 + $2) cos(px2 + $1) 

The exponential of the adjoint A(0)' induces an action of SI on the centre eigenspace 
[ 101 given by esa('y for s E [O, 2x0) and so there is a natural complex structure on the 
eigenspace by Z = eoA(o)'/2. For the generic case, choosing U E Rm such that 

U&(x)eiw' + C.C. k = 1,2 

is in the centre eigenspace, we define V = ZU and coordinates (z+, z-) E C2 for the centre 
eigenspace by 

u(x .  t )  := z+(s~(x)u + iSz(x)V)e'"' 
+z-(s~(x)u +i~l(x)v)e"'+c.c. (3.1) 

We remark that this differs from the coordinates (Z+, 2-) in our previous work [4] by a 
transformation (z+, z-) = (-it+, 22). The induced action of Dq on C2 is given by 

p : (z+, z - )  --f (+iz+, Fiz-) 
p : (z+, z-) --f (z-, z+)  

P : (z+, z- )  + f(z-, z+) 
p : (z+. z-) + (z-, z+).  

for odd parity modes and 
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for even parity. We shall fix on the case where p(z+, z-) = (iz+, -iz-) for odd parity and 
p(z+, z-) = (z-, z+) for even parity. The case p(z+, z-)  = -(z-, z+) leads to the same 
normal form, just with a slightly different interpretation of the solution branches., 

The natural SI action on the centre eigenspace becomes a symmetry of the Birkhoff 
normal form to all orders, although there will typically be error terms not in Birkhoff normal 
form which break this symmetry. As in Golubitsky et QL [I41 we shall take the approach 
of examining the bifurcation by using the Birkhoff normal form of the vector field on the 
centre manifold and so including this extra S' symmetry. The bifurcation behaviour in 
the full system is then the normal form bifurcation behaviour perturbed by a generic S' 
symmetry breaking perturbation. Such perturbations will cause hyperbolic structures (for 
example, hyperbolic periodic orbits) in the dynamics to persist. As before,' the action of 
D4 x SI is reducible for even parity and irreducible for odd parity. 

This SI symmetry acts via temporal phase shift as indicated before. The induced action 
on Cz is 
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T, : (z+, z-) -+ (e'Pz+, e'"-) 
for Hopf bifurcations with both odd and even parity mode. Note that the action of D4 x S' 
on C2 is the same as Swift's for the case of odd parity and gives an action of Z2 x S' for 
even parity. Upon performing a centre manifold reduction we get that the dynamics on the 
centre manifold is determined by an ordinary differential equation on Cz: 

i+ ='(A + io)z+ + f+(z+, z-) 
i- = (A + io)z- + f-(z+. z-) 

where f+(z+ z-) are k times differentiable functions with zero linear part, and equivariant 
under the appropriate action of DaxS' [24]. For a smooth operator equation, we can choose 
k arbitrarily large. 

4. The n o r d  form 

The ring of invariants for both actions of D4 x SI on Cz are generated by 
2 2  lz+I2+ 1Z-l2* Iz+I Iz-I 

for odd parity, and the extra generators 
2 -  2 -  z+z- + z-z+> Iz+/ z+z- + Iz-I z-z+ 

for even parity. The equivariants are the module over this ring generated by 

( ;: ), ( Iz+l> ) , ( "Zf ) 
Iz-I z- 2-z+ 

for odd parity and three additional generators ( ;; ), ( Iz-1 2 "- ) ,  ( Z - z i )  

z' = 1: --, 
Z+l2Z+ z+z- 

for even parity. This is proved by defining 

for t 2 0 
for t < 0 

and considering the action of the groups on sums of homogeneous monomials of the form 
Z : Z " Z + ~ ~ P I Z - ~ ~ .  For the invariants, the S' action means that p. q are arbitrary and 
1 + m = 0. A minimal set of generators is then given as above. For the equivariants, 
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the p action swaps the components, so considering monomials in the first component gives 
again p, q arbitrary and l + m  = I. It is a routine calculation then to show the equivariants 
are as above. 

Thus, Cx (fork > 4) vector fields commuting with the action of D4 x SI can be written 
in the form 

( ! + ) = A , (  i- i- ' + ) + A 2 (  iz+I :z+)+A3(  z-I z -  " 2 : )  2-z+ 

with A, E Ck-l and Ai E CkW3 ( i  = 2, . . . ,6) complex valued functions of the invariants 
(A4 = As = A6 = 0 for odd parity), in particular. A4(0) = 0. Truncating at cubic order 
gives 

i+ = (A + i 4 i +  + [A(lz+l'+ lz-Iz) + Blz+121z+ + CZ+i? 

+lXl(lz+l*+ lz-12)+ X21z-l*lZ-+X3Z-Z:r' ' 

+ [X1(Iz+I2+ lz-I2) + X2lz+l~Ii+ + X3Z+zZ 

(4.1) 
2 z- = (A + io)z- + [A(lz+I + lz-12) + Blz-121z- + CZ-2: 

with six complex coefficients A, B ,  C, X I ,  X 2  and X3. For odd parity, X I  = Xz = X3 = 0 
and the equations reduce to Swift's [23,equation (25)l. 

5. Analysis of the normal form 

Table 1 shows the isotropy lattices for the two different actions of D4 x SI on C2; as 
usual, the isotropy subgroups are classified up to conjugacy. Note that there are three 
maximal isotropy subgroups for the odd parity (irreducible) case, but only one maximal 
isotropy subgroup for the even parity case. In both cases, the kernel of the action is Z2(p2)  
corresponding to equivariance under temporal phase shift of half a period and spatial rotation 
by half a period. This equivariance will be lost in the original equations by the introduction 
of terms that are not in the centre eigenspace at bifurcation. 

Table 2 gives the size of and some representative elements in the fixed point spaces of 
the isotropy subgroups displayed in table 1, as well as the names assigned by Swift. By the 
Equivariant Hopf Lemma [13], there are generically branches at bifurcation with isotropy 
C if dimRfix(C) = 2 (This implies that C is maximal for the actions discussed). For 
odd parity, we get the three maximal isotropy types of Golubitsky and Stewart while for 
even parity we get only one. This is a noticeable difference in the branching behaviour of 
bifurcation; we only get branches with &(p2) xZ, (p)  symmetry for even parity. However, 
for even panty we may get up to four distinct group orbits of periodic solutions with 
s u b m i m a 1  symmetry, as opposed to only one group orbit of submaximal solutions for odd 
parity. 

Using the following transformation of (z+, z-) to (U, U, w ,  $): 
2 2 u = Iz+I - Iz-I , 

z+z- - 2-z+ 
U = 2Im( i+E)  = 

i 
w = 2Re(z+2-) = z + X  + z 2 +  

- - 
.~ 
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Table 1. Isotropy lattices for the actions of D4 x S' on C2. 

Dq x SI D4 x S' 

Table 2. Representative fixed point spaces for the actions of D4 x S' on C2. 
(a) odd parity, 

it is possible to write (4.1) as 

z+ = (A + io)z+ + a&z+ + i w z -  + ( Y ~ W Z -  + @&z- + iP.uz+ + @,wz+ 
i- = (A + iok - auuz-' - ia,uz; + OL,WZ+ - j3.uz+ - ij3,uz- + .B,wz-. (5.1) 

At this point, we depart from Swift [23] in which U and w are interchanged. The reason 
for this will become clear; it is to ensure that the coordinate singularity is at a point 
of maximal isotropy. The parameters cu., a", a,, A, P., pw are complex numbers and 
A,, Ai . . . , X3,, X3i are real and imaginary parts of A, B ,  C and X I ,  XI, X.J respectively. 
They are related by 

A = A ,  + i A j  = -(Y,+(Y,+(I, 

B = B ,  +iB, = 24Y.-a,-aw 

c = c, + iCi = ~-au +a, 
XI = XI, + iXl i  = P. - P" + j3w 

X ,  = X> + iX2 =--2j3,, + p. - &, 
X3 = Xsr + iX3i = P. + p,. 

We denote the real and imaginary parts of the a's and P's by 

a. = R, + iZ. a" = R, + iZ, a, = R, + iZ, 
j3.=S,+iJU pu =S,+iJ, j3,=SW+iJ, 
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and define r by 

r2 = u2 + u z +  wz. 

We rewrite (5.1) in the form of a modified 'Euler equation': 

1 .  
-U = u(R,r + A) + ( I ,  - I,)uw - 3,ur + (S, + S,)uw 
2 
1 .  
-U = u(R,r + A) + (Iu - I,)uw + J,ur + (S, + S,)uw 
2 
1 .  -w = w(R,r + A )  + (I" - I,,)uu + Sww2 - Suu2 - Suuz 

' 2  

(5.2) 

t j r = w + o ( r )  (5.3) 

' 

(when all parameters are zero except for I n -  I ,  and I,, this is Euler's equation for the 
motion of a rigid body). The $ equation uncouples from those for U ,  U and w (this is a 
consequence of the S' symmetry of the normal form) and so periodic solutions in (z+,  L)- 
space correspond tofiredpoints in ( U ,  U, w)-space. 

Because (5.2) is homogeneous except for the A term, we can further reduce it to an 
associated spherical system, still following Swift [23]. To do this, we change the coordinate 
from (U,  U, w) into (r, 0, $) via the transformation 

u + iu = rsin8ei+ 
w =rcosQ.  

Note that for s in8 = 0, 9 is not defined; this coordinate singularity is the 'pole' of the 
sphere. This leads to the following system for r, 8 and @ 

i = '[4h + r(4A,  + 3B, - C, + (B ,  + C,) sinZ$ cos2@ - (Xzi + X 3 i )  sinz@ sin29 
2 

+(3Cr - Br) COS2 8 + (4x1, + 2Xzr + 2x3,) COS 8 (5.4) 

1 6 = E[ cose[(-x, - ~ 3 i )  sin$cos@ + (Br + c,) cosz+ - ZC, 2 
+ ( B ~ + c ~ ~ ~ ~ ~ + ~ ~ ~ ~ - ~ x ~ , + x ~ ~ ) c o s ~ + - ~ x ~ , - x ~ , + x ~ ~  } (5.5) 

4 = Z ( [ ( ~ z r + + 3 r ) c o s ~  . r  - ( ~ , + ~ , ) ] s i n 2 +  

+ [ ( ~ ~ + c ~ ) c o s e - ( x ~ ~  + x ~ ~ ) ] C O S W  (5.6) 

+(B, - 3ci)c0se - 4 x l i  - 3xz + xsi 1. 
This system is defined for r 2 0, 0 E [O, ZX) and + E [O, x). The action of the reflection 
and rotation is given by 

/I : (r, 8 ,  #) + (r, 2~ - e,@) 
p : (r, 8 ,  9) + (r, x - 8 ,  x - 9) (odd parity only). 

As noted by Swift, the equations for 8 and 9 can be made independent of r > 0 by 
rescaling time, and then we can find periodic solutions of the full problem (steady state 
solutions for (r, e,$)) in two stages: 

1. Solve the ussociutedsreudy state spherical system (e ,  4) = (0,O) for r > 0. 
2. Solve the radial equation i = 0 at zeroes of the associated spherical system. 
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For A,, E, and C, asymptotically close to zero compared to the other coefficients and 
xk = 0, this system describes the motion of a rigid body. Van Gils and Silber [ l l ]  have also 
investigated 2-tori for this system with X, = 0 using other techniques. In addition to those 
found by Swift, we believe there may I% new types of hetcroclinic orbit or quasiperiodic 
behaviour near bifurcation but we have not pursued this idea. The equation d7 = 0 is always 
satisfied if 

sin0 = 0. (5.7) 

This corresponds to there always being a branch with maximal symmetry 22 that bifurcates, 
(this corresponds to U = U = 0 and w = r .  Our reason for choosing U ,  U, w differently from 
Swift is to ensure that this maximal solution is at the pole of the coordinates). Alternatively, 
0 = 0 has a root at 
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(5.8) 
(Ei + Ci) sin4 cos 4 - (XZ, + X3r) cos’ 4 - 2x1, - X p  + X3r 

(-Xzi -X3r)sin4cos4+(E,+C,)cos’4 -2C, 
case = - 

corresponding to periodic solutions with trivial symmetry; i.e. submaximal symmetry 
solutions. Note that this is different from Swift’s equation for cos0 due to our interchanging 
the definitions of U and w. If we were to keep to Swift’s coordinates, problems begin at this 
point as there is no easy solution giving cos0 when terms Xk # 0 are included. Substituting 
(5.8) into 4 = 0 we get the following equation for 4 

01 cos44 + ,9 sin44 + y cos24 + 6 sin24 + E  = 0 (5.9) 
where the constants 01, ..., E are given by 

01 = iIm[(B + ?)(XI + x,)] 
p = k[lBI’ + IC]’ - IXzl’ - lX31z +2Re(SC - P z X ~ ) ]  

y = Im[(B + ?)x1 + cX, + S X ~ ]  

- 2Re(E? + 2X1(& + 2 3 )  + XzX3)l 
E = i h [ ( B  - 3?)(4x1 + 3x2 - Xd]. 

(5.10) 
(5.11) 

(5.12) 
s = arlE1’ + 1x312 - 3(ICI’ + 1x212) 

(5.13) 
(5.14) 

For odd parity (Xk = 0), we have 01 = y = E = 0 and so either sin24 = 0 (corresponding 
to maximal branches) or 

Equation (5.9) for 4 can be written as a fourth order polynomial of exp(i24) and as such 
there exists a closed form solution to this equation. There may be zero, two or four 
nondegenerate (isolated) solutions 4 in the interval [0, ?r) which we write as $1 c 4 2  (and 

< $2 e $3 e 4 4  if they exist). 
Having solved this equation, we solve (5.8) with 4 = @i which will have zero or two 

(symmetrically placed) solutions according as the right-hand side has modulus greater than 
or less than unity. 

Given a pair (Bij, &) that solves these equations, the equation i = 0 (5.4) implies there 
will be a branch of solutions in the direction sign@;) 

+ 3Er - C, + ((E, + C,) cosZ& - (Xzi + Xx) sin24i) sin’0jj 
1 .+ (3c, - B,)Cos2etj + (4x,, +2x2, + 2x3,) coseij]- (5.15) 
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and 

r = l jA.  

Since the solutions indexed by j are symmetrically related, 11 is independent of j .  

5.1. Procedure to find branching information 

We summarise the calculations already performed to find the number and direction of 
branching of periodic solutions at a Hopf bifurcation point 

Find the complex normal form coefficients ( A ,  B ,  C , X I , X 2 , X 3 )  using centre 
manifold or LiapunovSchmidt reduction. 

Use these to calculate a, . . . , E  via equations (5.10k(5.14). 
Determine the solutions (including multiplicities) #j of equation (5.9). We exclude 

the case that 
(I) the solutions #I are not isolated. 

Determine the solutions &j of equation (5.Q i.e. such that I cos bjj I < 1. We exclude 
the case 

(11) Icosbijjl = 1. 
Compute lj using equation (5.15) and observe that the bifurcating branch corresponding 

to submaximal solutions with ( O j j ,  # j )  is subcritical for li > 0 and supercritical for Z j  < 0. 
The value of r is then given to lowest order by r = &A. We exclude the case 

(111) lj  = 0. 
This procedure will work for normal form coefficients which do  not^ satisfy any of the 

degeneracies marked (I)-(III). It is clear that there is an open everywhere dense set of 
parameters for which none of (I)-gII) satisfied, and so we have a procedure that will work 
for a generic set of third order coefficients. 

6. Application to Brusselator equations 

As an example of a normal form derived from a partial differential equation on the square, 
we briefly present some Liapunov-Schmidt reduced bifurcation equations for the Brusselator 
on a square. Because an analytical reduction is not possible for the boundary conditions 
assumed, a hybrid numerical-analytical reduction is used [4, 21. 

We consider *e following equations with diffusive coupling: 

on the square domain C2 := [0, x]' with Robin boundary conditions 
aui 
an 

p(ut -U;) + (1 - p)- = 0 on aC2. (6.2) 

(us is the homogeneous state (U,, UZ) = (a, (b  + A ) / Q )  and n is the outward normal 
derivative). Setting (U,, U*) = (a, (b  + A) /Q)  + (il, i i2)  and rescaling time E t (00 + r)t 
we get the following operator equation for periodic solutions near the trivial state after 
dropping the %: 
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where u := (u1, U Z ) ~ .  

P Ashwin and Z Mei 

-b d A - a 2  
A f b - 1  L := 

and 

(6.4) 

The operator L maps X := (C,2"(Q))' into Y := (Co-"(Q))z (functions with Holder 
condition, exponent 0 c (Y c I and suitable boundary conditions). Let 

cz, := (U(.) E c(R, Y) : u(s + 2 x )  =U@)} 

and 
aU 

C& := [U(.), %(.) E C(R, X )  : U(S +ZZ) u(s ) ] .  

The operator 9 maps C& into C, and 

Q(0, A, 5 )  = 0 for all A, T E [O,w). 

Fixing the parameters a, b and d at a Hopf bifurcation point, we study the periodic solution 
branches of (6.1) bifurcating from the trivial solution curve upon varying A, i.e. steady 
solutions of the operator equation Q = 0. 

6.1. Linear stability analysis 

As discussed in [Z], the eigenvalue problem is solvable for ~ ( p )  = ~ ~ ( p ) *  + ~ ~ ( p ) '  with 
eigenfunctions 

$1 := [psin(Kx(p)x) + ( 1  - PMLL) COS(K&)X)I 

b := b.sin(KyQ)x) + (1 - LL)K~(CL) C O S ( ~ ~ ( P ~ ~ ) ~  
. [fiMKY(p)Y) + ( 1  - LL)K~(P)  COS(K~WY)I  

. [Msin(Kx(p)y) + ( 1  - I L ) ~ x ( ~ ) c o s ( ~ x ( ~ ~ ~ ~ I  

($1 = 4 if and only if K= = K ~ ,  implying the multiplicity is one), and K ~ ,  K~ each satisfy 

2p(1 - P ) K  COS(KX) + [pz - (1 - p)z~2]sin(rx) = 0. (6.6) 
Since the Laplacian operator in C:"(Q) is self-adjoint and elliptic, the set of its 
eigenfunctions make up a basis for C,2"(Q). Consequently, the operator L leaves the 
spaces spanned by eigenfunctions of the Laplacian invariant. This means that there is Hopf 
bifurcation at A = 0 if for an eigenvalue ~ ( p )  of -A the parameters a@, bo, do satisfy 

bo - 1 - 4 - (1 +d&(p) = 0 
U: := ( 1  + K@))(a," + G ' o K ( ~ ) )  - bodw(p) =- 0. 

( 6 . 7 ~ )  
(6.7b) 

For further details of the linear analysis, we refer the interested reader to 12.1; we merely 
pause to mention that if the eigenvalue K ( & )  has multiplicity 2, the null space Ker(a@) is 
4 dimensional and belongs to the case considered in the first part of the paper. 

We use the method described in [4] to numerically approximate the complex quantities 
A ,  B ,  C, XI, XZ and X, at a Hopf bifurcation point and then the procedure summarised 
in section 5.1 to find branching behaviour at the bifurcation. The branches found were 
checked to be solutions of the normal form equation (4.1). 
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We define 

@I := (el cost + Pel sint)@l *2 := (-Pel cost + e l  sint)@l 
@3 := (el cost + Pel sin t)@2 $4 := (-Pel cost + el sin t)& 

where el := ( ), e2 := ( ) was used to compute the Liapunov-Schmidt reduced 

equations by writing elements in the null space as 

The inner product 

in C b  was used to define the adjoint problem. Via this, we obtain the dual basis {@;I and 
define the projection 

This is a projection from C& into Range@@) n Ck. 
Writing the operator @ as a power series in q = (@, 5, A) about the trivial solution, that 

is WII)  = D@o(II) + RZ(II ,  II) + R3(% q. q) from [4] we note that the LiapunovSchmidt 
reduced equation at third order is given by 

(I - Q)(Rz( I I ,  W Z ( I I ) )  + R3(% II. 1111 = 0 

with wz(q) being the solution in Kera@ of 

%@oW(II )  = -QRz(% II). 
We refer the reader to [2,  41 for details. 

7. Results 

Tables 3 and 4 show the third order coefficients obtained as a function of f i ,  the homotopy 
parameter in boundary condition for 6 = 0.05 and Q = 0.01 respectively. We show results 
for the even parity branches going from the (1,3) and (2 .4)  Neumann modes to the (2.4) 
and (3,5) Dirichlet modes (tables 3 and 4 respectively). It can be checked that there are 
no mode interactions which might complicate the bifurcation scenario. 

It can be seen from the results that very surprisingly, X I  = -2X2 = 2X3 in all of these 
cases. Numerical experiments on other mode bifurcations imply that this is always the case 
for these equations. This means that instead of the three additional third order equivariants, 
there is a degeneracy that forces them to always appear in the combination 

IZ-IZZ- + 21z+l z- f z-z 
12+12z+ + 21Z-l2Z+ + i+z- ;>. ( 

Dr Gabriela Gomes has pointed out that this is the gradient of the invariant function 

1z+121z-12(2+z- + i-z+). 
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In section 8 we discuss the source of this degeneracy. 
For the case of Neumann boundary conditions, there is a hidden symmetry arising from 

the fact that solutions can be smoothly extended to doubly periodic solutions on the torus 
obtained by identifying opposite edges of the square. By looking at the Neumann boundary 
conditions as a symmetry restriction of the problem with periodic boundary conditions, it 
becomes generic by symmetry arguments that the centre eigenspace of even parity Hopf 
bifurcation can be two (complex) dimensional. This explains why X I  = Xz = X3 = 0 in 
the results for p = 0. 

Consequences of the presented values of A, E ,  C and XI = -2Xz = 2x3 for the 
branching are described in tables 5 and 6. 

Table 3. This table shows the calculated values of the third order complex coefficients that 
determine the branching behaviour in the A direction of priodic solutions near Hopf bifurcation. 
The homotopy parameter p varies from Neumann boundary conditions (& = 0) to Dirichlet 
boundary conditions (& = I )  and 41 = 0.05, qro = I for the computations presented here. 
The results were calculated using a 40 by 40 grid for the spatial discretisation for the bmch 
connecting the (1.3) Neumann mode to the (2.4) Dirichlet mode. Note how the coefficients 
XI = 4x2  = 2x3 are zero at the N e u m n  limit (where there is a hidden symmetry of 
translation) and become non-zero for ~r # 0. 

XI = -2xz = 2x3 & A  B C 

-2.28506 - 0.026341 
-2.28660 - 0.02773i 
-2.28642 - 0.02545i 
-2.28496 - O.'01901i 
-2.28403 - 0.008531 
-2.28877 + 0.003821 
-2.31316 +0.01066i 
-2.39389 - 0.00803i 
-2.61188 -0.10182i 
-2.97648 - 0.3804818 

1.40773 - 0.062481 
1.43026 -0.08191i 
1.45898 - 0.304961 
1.49673 - 0.131751 
1.54805 - 0.16133i 
1.62067 -0.19015i 
1.72865 - 020966i 
1.90197 - 0.20602i 
2.21470- 0.17007i 
2.75807 - 0.10249i 

0.14I84+0.00928i 
0,12962 + 0.018981 
0.11620 +O.O3116i 
0.10126+0.04623i 
0.08396 + 0.06409i 
0.06244 + 0.08307i 
0.03353 + 0.098211 

-0.00358 + 0.1019Oi 
-0..03309 +0.10064i 
-0.02528 + 0.132371 

0.00000 + 0.OOOOOi 
-0.00920 - 0.00981i 
-0.02063 - 0.M246i 
-0.03452 - 0.038611 
-0.05059 - 0.05872i 
-0.06727 - 0.08265i 
-0.08063- 0.10914i 
-0.08415 -0.137671 
-0.06981 - 0.17877i 
-0.01403 - 0.254901 

Table 4. As in table 3 except these results are calculated for the bnnch connecting the (2.4) 
Neumann mode to the (3.5) Dirichlet mode and on = I .  do = 0.01. 

& A B C XI = 4 x 2  = 2 x 3  

0 
119 
U9 
3/9 
4/9 
519 
6/9 
7/9 
8/9 
1 

-4.69443+ 0.96305i 
4.73780t 0.99776i 
-4.79001t I.04133i 
-4.85233+ I.W567i 
-4.92590t 1.162991 
-5.013491. 1.245521 
-5.12985+ 1.34472i 
-5.34685t 1.4632% 
-594761 t 1.63667i 
-7.49637t 2.00104i 

295487-0.743991 
2.99837-0.793501 
3.05536-0.85077.i 
3.13034-0.917lli 
3.22953-0.9945Oi 
3.36253- I.08484i 
3.54877-1.189231 
3.84318-1.306751 
4.42698-1.45787i 
5.66954-1.7565Oi 

-0.13504-0.33405 
-0.14453-0.31677i 
-0.1565 1-0.28904i 
-0.17 197-O.24639i 
-0.19315-O.18334i 
-0.22375-0.0951 Si 
-0.27006t 0.01638 
-0.34310+ 0.1306% 
445809t 0.209791 
-0.61536t 0.280483 

0.OOOOOt 0.OOOOOi 
-0.00100-0.0008 l i  
-0.0051 I-0.0039Oi 
-0.01487-0.01064i 
4.03446-0.02279i 
-0.07005-0.041951 
-0.12838-0.067601 
-0310020.09442i 
-0,30365-O.lU7li 
-0.41589-0.191211 
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Table 5. This table shows the possible solutions 9, 8 and I along the homotopy path 
corresponding to the values in table 3. The signs of 1 determine the bifurcation direction 
on changing A. We denote no solution by 'n.s.'. On this branch, there are two group orbits 
of submaximal solutions up until fi = 51% the solutions & and 94 of the +-equation are 
annihilated. From f i  = 719 there are again two group orbits of solutions. 

73 1 

P 91 ell e12 [I -, +l ell . . 022 12 

93 @3l 032 (3 94 041 041 I4 

0 0  1.570796 4.712389 1.139826 . -1:129473 ns. n.s. .. ~. n.s. , 

1.570796 1.570796 4.712389. 1.139826 2.0121197 n.s. ns. n.s. 
119 0.006723964 1.577545 4.705641 1.167746 . 1.151941 n.s. ".S. n.s. 

1.565340 1.536620 4.746565 ~0.6110883 1.988384 n.s. ns. ~ ~ n.s. 
U9 0.01551817 1.585313 4.697872 1.208514 1.177226 n.S. ".S. n.s. 

1.559913 1.485305 , .  4.797880 0.6188707 1.959732 n.S. n.s. n.s. 
3/9 0.02674702 1593917 4.689269 1.268420 1.205644 n.s. ".S. n.s. 

1.556158 1.405486 4.877699 0.6289309 1.923841 n.s. n.s. ns. 
$9 0.04042879 1.602729 .4.680456 1.357882 1.237870 ~ n.s. ".S. n s .  

1.557934 1.272077 5.0l1109 0.6412422 1.876156 ns. ".S. n.s. 
5/9 0.05562084 1.610297 4,672888 1.494196 1.276148 n.s. "5. n.s. 

1.575267 0.9971433 5.286042 0.6545510 1.805353 . n.S. n.s. ns. 
6/9 0.06969786 1.614028 4.669158 1.703950 1.326229 ns. ".S. n.s. 

".S. ILS. ns. ".S. ".S. n s .  ".S. n.s. 
7/9 0.07934294 , 1.610901 4.672285 2.015995 1.389855 2.849157 3.434028 0.7346098 

".S. ".S. ns. , n.s. ".S. n.s. . n . ~ .  ns. 
8/9 0.08591220 1.599423 4.683762 2.474485 1.434446 . . 2.174610 4.108571 0.6918723 

n.s. n.s. n s .  ".S. n.s. n.s. ' ns. n.s. 
I 0.09436033 1.576897 4.706289 4.338267 1.456928 1.774929 4.508256 0.6385345 

"S. ".S. ".S. n.s. . n.s. ".S. n.s. . ",S. 

~ ~~~~ 

S. Discussion 

In summary, we have shown that the analysis of Swift.[23] for Dq Hopf bifurcation can 
be extended to cover generic Hopf bifurcation problems of PDEs on the square where the 
spatial parts of the eipnfunctions are separable. For Hopf.bifurcations with odd parity (or 
with even parity and Nenmann boundary conditions), the normal form of Swift applies, but 
for even parity there are extra third order terms in the normal form for the bifurcation; these 
are important for determining the branching behavionr. 

For the example presented, the Brusselator equations on a square with Robin boundary 
conditions, we have found that there is an extra degeneracy of the new third order terms. We 
now show that this arises because the linearized problem has a basis of eigenfunctions that 
are separable. This is in turn implied by the fact that the linearized problem has separable 
spatial part. 

It turns out that a different coordinate system enables one to investigate this degeneracy 
more eas,ily. We define 

z t + z -  
2 

zx = - 
z+ - z- 

zy = 2 
and we note that elements in the centre eigenspace (3.1) can be written 

U = z,rIs, + zyYy + C.C. 
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Table 6. This table is generated with the values in table 4. There are up to 4 solutions for 
4-equation. and for each of these there are up to two solutions of 0 along the homotopy path 
starting from (2.4) mode of Neumann problem to (3.5) mode of Dirichlet problem. The signs of 1 
determine the direction of branching. Note that in this W. tho solutions with maximal isotropy 
type for fi = 0 all have unique continuations to fi = 1; there are no secondary bifurcations on 
this branch. 

fi 41 el I ell I1 +z 021 6 2  12 

, , ,  , 63 @I 031 h 44 edI e42 4 . . ,  

0 0  1.570796 4.712389 0.5748576 1570796 1.570796 4.712389 0.5748576 
n.5. us. n s .  n.s. ' n.s. n.s. n.s. n s .  

119 0.0003176902 1.571003 4.712183 0.5748991 1.574077 1.586851 4.696334 0.3158247 
n.3. n.s. ns. n.s. n.s. ns. n.s. ns .  

2/9 0.001548596 1.571839 4.71 1346 0.57648% 1.577760 1.612483 4.670702 0.3140639 
n.s. n.s. n.s. ".S. n.r. ns. n.s. ns. 

319 0.004275930 1.573794 4.709391 0.5807234 1.579042 1.641955 4.641230 0.3124132 
ns. n.s. ".S. n.s. n.s. n.s. n.s. n.s. 

419 0.009336105 1.577652 4.705533 0.5895024 1.575964 1.675929 4.607257 0.31 12329 
n.s. n.s. n.s. n.s. n.s. n.s. n.5. n.s. 

5/9 0.01769188 1.584513 4.698672 0.6057593 1.566185 1.715654 4.567532 0.3110555 
n.s. n.s. U J .  n.s. n.s. n.s. n.s. n.s. 

6/9 0.02964825 1.595335 4.687851 0.6327034 1.548260 1.760115 4.523070 0.3120088 
n.s. n.s. n.s. ns.  n.r. n.s. ns. n.s. 

7/9 0.04271166 . 1.609049 4.674136 0.6658259 1.526578 1.800929 4.482256 0.3105186 
n.r. n.s. ns. ns. ns. n.s. n.s. n.s. 

8/9 0.05160103 1.619921 4.663264 0.6592501 1.513119 1.822905 4.460281 0.2897166 
n.3. n.s. ns. ns. n s .  n.s. "3. n.5. 

1 0.05906714 1.623301 4.659884 0.5487133 1504274 1.827378 4.455808 0.2337781 
".S. n.8. ns. n.r. ns. n.s. ns. n.8. 

where 
qx = (SI +&)(U + iv)eicu'/2 
'v, = (SI -&)(U - iV)eicu'/2. 

with SI = fk(xl)fr(xz) and SZ = f i ( x ~ ) j $ ( x z )  as before. In this case, equation (4.1) 
transforms to give 

ir = (1 + iw)zx + fz(zx, z,) 
:= (A + iw)z, + (2A + B + C)lz,12z, + 2(A + B - C)lz,lzz, + ( B  + C)Z,z$ 

+(2XI + xz + X3)IZXlZZX + 2(XI + xz - X3)lz,I2zx + (XZ + x3)ixz; 
(8.1) 

z, = (1 + iw)z, + fr(zx, z,) 
:= (1 + iw)z, + (214 + B + C)lzy12z, + 2(A + B - C)lz,lZz, + ( B  + C)Z,z," 
4 2 x 1  + xz + XdIZ,12Z, - 2(X1 + xz - X3)1Z,12Z, - (X2 + x3)Zyz:. 

In these coordinates, the degeneracy XI = -2Xz = 2x3 means that the only term that 
breaks the symmeixy of the odd parity representation is of the form 

We can see that this is the case by considering the spatial dependence in the inner product 
giving these coefficients. Noting that complex conjugation does not affect the spatial 
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dependence of the eigenfunctions, we use (Iz,[zzx), to signify the coefficient of [zxIzz, 
in f,. The LiapunovSchmidt reduction gives rise to the following formulae defining Ci, 
i = 1, ... ( 3 
CI := (Izr12zx)r - (lz,lzz,), = K1/4((Sf+ S;)PlSlSz + SIS~P~(S: + S;))dxdy 

CZ := (Izy12zx)x - (1zx12zy)y = .2/ (4SiSzMS: + S;) - (S: + S;)PZ&SZ) dxdy 

R 

R 

C3 := (z,z,),-'(z:i,), 2- = K 3 /  ( ~ S ~ S Z P ~ ( S ~  + S;) - (S? + $)p3SiiZ)  dxdy. 
R 

where Pi are linear operators that are of the form c l l  +czA(O)-' with cl, cz E R and A(0) 
in (2.1~2) (and therefore the Pi are separable). In section 6.1 the Pi are the spatial parts of 
the linear operators used to calculate the coefficients of wz(q). The constants Ki come from 
the reaction terms and the temporal parts of the eigenfunctions. Similarly as in section 2 
we rewrite the linear operator into Pz = Ld + L, with Ld := L1 + L2 representing the 
self-adjoint spatial operator and L, the reaction operator, in particular, L; is self-adjoint, 
giving an eigenbasis [ f i ( x l ) ,  Ai}, and L, behaves like a matrix operator, moreover 

(u1. L r U 2 ) 2  = U I m %  f i ( x ) f z ( x ) d r I ~ z  s, 
for all U&) = U&(x) E C(Q, Rm), fK E C(Q, R). By (.)k we denote the L2-product in 
C([O, XI ' ,  R"'). Based on this and the self-adjointness of 4, we derive 

c2 = K2[(4SiS2. &(Sf + $))z - ((ST + S;), ~2SlS2)il 
= 2KZ[(SlS2r LdS:)2 - ($3  LdSlS2)21 

= ~ z (  [(fk(xi)fi(xi), LifiYxi))i - ( j ~ x i ) ~ ,  ~ i f ~ ( x i ) f i ( x i ) ) i ] ( f ~ ( ~ z ) f i ( ~ z ) ~  ~ ~ ( x z ) ) i  

+(fk(Xl) fi (Xl), $(x1)) 1 [ ( f K ( x 2 ) f i  ( X d .  L Z f : ( X 2 ) )  1 - ( A  ( X d Z ,  L Z f k ( X 2 ) f i  (Xd) 1 1  ] 
= 0 ( due to the self-adjointness of Li, i = 1,2). 

Similarly C3 can be shown to be zero and these imply that 2x1 + X2 - X3 = 0 and 
XZ + X3 = 0, giving 

X1 = -2Xz  = 2 x 3 .  

We note that the above argument cannot be adapted to get C1 = 0 and this is supported by 
the numerical results we have presented. 

The linear degeneracy discussed in section 3.2 will always occur for branching from 
a trivial solution of a reaction-diffusion problems with Laplacian spatial coupling and 
homogeneous boundary conditions on the square. We have found that there is also a 
nonlinear degeneracy in this case. Fortunately, the normal form is.stil1 determined by third 
order terms even with this degeneracy and so this does not mean that we need to consider 
any higher order terms. 

We are not aware of specific examples where the linear degeneracy occurs but the 
nonlinear degeneracy does not. In order to get this, it seems that we need to consider 
problems were there is no separable basis for the spatial part of the eigenfunctions but 
the eigenfunctions for the centre eigenspace are separable. This seems possible although 
exceptional. 

We conjecture that degeneracies in nonlinear terms will also appear at orders higher 
than third but have not attempted to find them. 
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Finally, we remark that the analysis here may be of use when examining mode 
interactions of Hopf bifurcations with Z, symmetry: in this case, the normal form (8.1) 
will naturally arise, but with an extra parameter at the linear level. 
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