
Establishing User Profiles in the MediaScout
Recommender System

Guy Shani∗, Lior Rokach†, Amnon Meisles∗, Lihi Naamani†, Nischal Piratla‡, and David Ben-Shimon†
∗Computer Science Department, Ben Gurion University, Israel

shanigu/am@cs.bgu.ac.il
†Department of Information System Engineering, Ben Gurion University, Israel

liorrk/ln/dudibs@bgu.ac.il
‡Deutsche Telekom AG Laboratories, Berlin, Germany

Nischal.Piratla@telekom.de

Abstract— The MediaScout system is envisioned to function as
personalized media (audio, video, print) service within mobile
phones, online media portals, sling boxes, etc. The MediaScout
recommender engine uses a novel stereotype-based recommen-
dation engine. Upon the registration of new users the system
must decide how to classify the new users to existing stereotypes.
In this paper we present a method to achieve this classification
through an anytime, interactive questionnaire, created automat-
ically upon the generation of new stereotypes. A comparative
study performed on the IMDB database illustrates the advantages
of the new system.

I. INTRODUCTION

Recommender Systems — systems that recommend items
to users — can be found in many modern web sites for various
applications such as helping users find web pages that interest
them, recommending products to customers in e-commerce
sites, recommending TV programs to users of interactive TV
and showing personalized advertisements.

There are a number of different approaches to recommen-
dations (Montaner [6] presents a good survey on recom-
mendation approaches), yet all methods use some type of a
user profile (or user model) for recommendation. We suggest
creating a set of stereotype profiles and using an affinity
vector of stereotypes as the user profile. These stereotypes
are automatically created during an update process the system
undergoes.

In this paper we briefly review the details of our recommen-
dation system; How stereotypes are created and updated, and
how recommendations are generated. We mainly concentrate
on the task of classifying users to clusters.

We suggest to classify new users to clusters through a ques-
tionnaire, that is generated automatically from the stereotypes
after each update. Existing users are automatically classified
to new stereotypes through the update process and do not need
to undergo the questionnaire again.

Our questionnaire is created as an interactive, easy to use
process. At each stage the user is presented with a question
and a small number of answers to choose from. The answers
are presented as pictures to make the answering process easier
to use. The questionnaire is an anytime algorithm, meaning
that at each stage the user may choose not to continue, but
the system is still able to offer some classification. The more

answers the user provides, the more specific the classification
becomes.

II. RECOMMENDER SYSTEMS

With the explosion of data available online, recommender
systems [10] became very popular especially in web sites.
While there are many types of recommender systems ranging
from manually predefined un-personalized recommendations
to fully automatic general purpose recommendation engines,
two dominating approaches have emerged - Collaborative
Filtering and Content Based recommendations1.

A. Collaborative Filtering

Collaborative filtering stems from the idea that people
looking for recommendations often ask for the advise of
friends. While on the internet the population that can supply
advises is very large, the problem shifts into identifying what
part of this population is relevant for the current user.

The greatest advantage of CF is that it is independent
of the specification of the item and can therefore provide
recommendations for complex items which are very different
yet are often used together. The major drawback of this
approach is the inability to create good recommendations for
new users that have not yet rated many items, and for new
items that were not rated by many users (known as the cold-
start problem).

B. Content-Based recommendation

The ideas of content-based (CB) recommendations originate
in the field of information filtering, where documents are
searched given some analysis of their text. Items are hence
defined by a set of features or attributes. Such systems define
a user using preferences over this set of features, and obtain
recommendations by matching user profiles and item profiles
looking for best matches. Researchers sometimes [6] separate
methods that learn preferred attributes from rated items (called
content-based) from methods that ask the user to specify her
preferences over item attributes (called demographic filtering),

1Some researchers (e.g. [4]) further divide these classes, but we restrict
ourselves to the definitions below.

470

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

1-4244-0705-2/07/$20.00 ©2007 IEEE

but we refer to all methods that recommend based on item
attribute preferences as content-based recommendation.

CB systems can easily provide valid recommendations to
new users, assuming that their profile is specified, even if
they never used the system before. CB engines can provide
recommendations for new items that were never rated before
based on the item description and are therefore very useful in
environments where new items are constantly added.

C. Hybrid approaches

As we see above, the disadvantages of the CF and CB
approaches can be solved by combining the two into a hybrid
method [4]. Many hybrid approaches use two recommendation
algorithms and combine their results in some manner, such as
combining the results by their relevance, mixing the output
of the two algorithms, switching from CB into CF once the
cold-start phase is over, or using the output of one algorithm
as input to the second algorithm.

It seems that a more appropriate combination would be to
create an algorithm that is by nature a hybrid of CF and CB,
not an ad-hoc combination of two independent algorithms.

As was noted by Burke [4], most hybrid recommendation
systems combine two algorithms, a CB algorithm and a CF
algorithm by either filtering the input of one algorithm into the
other [1], executing the two systems in parallel and combining
their lists and other combinations. There is only a handful
of algorithms that combine features from various approaches
together.

Our questionnaire approach for initialization dates back to
Rich [11], but we are unaware of other systems that imple-
ment a decision tree based, anytime, interactive questionnaire
similar to the one we use. Also, many systems are designed
to recommend web pages, where expert data is less easy to
mine, and as such, an expert input for initialization is not very
common.

The system that is perhaps the most similar to our own is the
Doppelganger system [7] — a generic user-modeling system
that collects various data over users, creates user models in
the form of affinity vectors of stereotypes (called communi-
ties). The system can be used to generate recommendations
and employs similar ideas about stereotypes and clusterings.
Doppelganger, however, does not have our questionnaire ini-
tialization mechanism although it uses some expert data to
create initial communities. It does not use an ontology, as it
is considered usable for any type of items, and can therefore
supply less focused content-based data and probably needs
more information to generate good user models. It also does
not have our light update mechanism for rapid online model
updates.

D. Stereotypes

Modeling users by stereotypes (or communities) is a well
studied concept [11]. Stereotypes are a generalization of users
— an abstract user entity that provides a general description
for a set of similar users (a community).

In CF systems stereotypes are described by a set of ratings
over items, and user similarity can be identified by their
affinity to various stereotypes. In CB systems stereotypes are
a set of preferences over item attributes, and users can belong
to a single stereotype [11] or to multiple stereotypes [7].
Recommendations are computed based on the stereotype and
then normalized given the user affinity to a stereotype.

E. Feedback

In order to adapt and refine recommendations to changes
in user tastes, most recommender systems rely on some
mechanism of feedback from users. Feedback is usually in
the form of a rating over an item that can be either numeric
(on a scale of, e.g., 1 to 5) or binary (like/dislike).

As users are usually reluctant to rate items explicitly, some
research focused on obtaining implicit ratings (e.g. [12]) —
estimating the user ratings through her observable operations.
For example, in the domain of web browsing, if the user
scrolled down the article, or clicked on a link inside the article,
then we can assume that the article was useful for her. If the
user, however, only read the title and then went back to the
former page, we can assume that the web page was not useful.

III. MEDIASCOUT

This paper presents the MediaScout system, designed to
deliver media content recommendations over mobile phones.
The system uses a stereotype approach combining elements
from both content-based and collaborative filtering approaches.
We briefly explain below how the system is constructed, how
recommendations are generated and how to update the model2.

We specifically focus on the task of classifying new users to
stereotypes through a questionnaire process. We explain how
the questionnaire is automatically created and updated, and the
process of answering the questionnaire.

A. Stereotype Model

We take the content-based approach here, defining an on-
tology over media items, defined by an expert in the field. It
is reasonable to assume that an expert will be able to identify
the key features relevant for people when they choose which
movie to see. A media item profile is an instantiation of this
ontology, and a stereotype profile assigns relevance values
for various attribute values of the ontology. For example, a
movie profile may have Bruce Willis and Samuel L. Jackson
as actors, and a stereotype profile may assign to Bruce Willis
as an actor the value 0.97 and to Mel Gibson as an actor the
value 0.85 while assigning to Mel Gibson as a director the
value 0.67.

Receiving recommendations for stereotypes can be done by
matching item profiles with the stereotype profile, resulting in
relevance values over media items.

A user in our domain is modeled by an affinity list of
stereotypes. A user may belong for example to a stereotype
titled ”Action” with relevance 0.8 and to a stereotype titled
”Comedy” with relevance 0.7.

2For farther details on the process of recommendation we refer the reader
to [14].

471

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

B. Initialization

Our initial stereotypes are manually defined by an expert.
An expert in the field of movies is able to identify several types
of movie watchers, such as people who like action movies
and people who prefer Sci-Fi. Identifying the relevant actors,
directors and other attributes of these stereotypes will also be
done by the expert.

C. Recommendations

As users are defined in the form of an affinity vector over
stereotypes, we shall generate recommendations based on the
relevant stereotypes.

First, we need to compute recommendations for the stereo-
types. As a stereotype describes a content-based profile, ex-
plicitly stating preferences over the possible values of item
attributes, we activate a matching engine that computes the
relevance of a media item to a stereotype. As the number of
stereotypes is not expected to be too high, these lists can be
persistent in the database. Moreover, it is expected that many
items will have low relevance to stereotypes so the lists can
be truncated after some threshold.

Once a request for a recommendation for user u with affinity
vector v is received, we compute the relevance of media item
i to user u as follows:

relevance(i, u) =
∑

s∈stereotypes

v(s)relevance(i, s) (1)

when relevance(i, s) is the persisted relevance of item i
to stereotype s. Note that this process is much faster than
matching each user with all items in the database using the
matching engine, and therefore can scale up much better.

D. Feedbacks

Our system supports both positive and negative feedbacks.
As we believe that users find it easier to specify binary,
like/dislike feedbacks rather than numeric values, we use
binary feedback, but our system can be easily adapted for
numeric feedbacks as well.

We use two different types of feedbacks — explicit and
implicit ratings. For explicit ratings the user can select while
watching a media item whether she likes or dislikes it. When
a user is presented with a list of 5 items and selects the 3rd
item we assume that she did not like the first two items, and
notify the system of a negative response for the first two items.
Our media content domain uses streaming technology to show
media content to users. The server is therefore aware whether
the user watched the item fully or decided to stop after a
few seconds. If the user decided to stop watching after a few
seconds we assume that she did not like the media item and
the system is notified of a negative rating.

E. Classifying users to stereotypes

When a new user registers into the system we need to create
an affinity vector of stereotypes for her. Research in the area
has mainly focused on using a set of examples (e.g. a number
of movies the user likes) or through a form specifying the

user interests. Such approaches are problematic — while rating
observed movies is a painless process, using only a set of rated
movies can cause the system to later recommend only movies
similar to the ones the user rated, asking users to fill lengthy
forms is usually considered a boring chore and users tend
to either avoid it or answer questions arbitrarily (e.g. always
picking the first answer).

We propose to combine these two approaches by asking the
user a set of simple questions, such as whether he likes an
actor, picking a favored movie out of a set of 2 or 3 movies
or demographic questions such as age or occupation. Though
it is well-known that users do not like to supply information
about themselves we note that, as the service is deployed
by a cellular service provider, demographic data is likely to
be available to the system anyhow. We choose an anytime
approach — the user may answer as many questions as she
likes. Whenever the user stops answering questions we have
some classification of the user into stereotypes. Note that the
advantages of anytime approach have been already studied in
the past [8].

Our anytime approach is based on a decision tree, with
questions at the decision nodes. Each node, both leaves and
inner nodes, is also assigned an affinity vector of stereotypes,
so if the user does not wish to answer more questions, the
current affinity vector will be assigned to her. The more
questions the user answers the more specific her affinity vector
becomes, but even without answering any question we can still
have some affinity vector under the assumption, for example,
that most of the users of such systems tend to be teenagers.
Figure 1 illustrates a possible decision tree of questions.

Fig. 1. An illustration of the MediaScout questionnaire decision tree. Round
nodes are question nodes, ellipses are terminal nodes. Dotted edges represent
the affinity vectors. Affinity vectors were illustrated only for a fraction of the
nodes though every node has an affinity vector.

Methods that ask the user to specify her preferences over
item attributes are also known as preference elicitaiton or
preference based search. Viappiani et al. [16] describes a
preference elicitation method and an example-based critiquing,
that avoids the problems of preference fluency, domain knowl-
edge and user effort.

472

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

F. Model Update

In most environments the relevant items list for a user need
to be updated every so often due to the insertion of new items,
changes in the information we have over the user (through
feedback for example) and general new trends of user tastes.
Our system implements three update phases designed to refine
the stereotype model.

Affinity vector update After each feedback received by
the system we refine the affinity vector for the user. Given
a positive rating for item i we strengthen the weight of
stereotypes that favored i and lower the weight of stereotypes
that rated i low.

Recommendation lists recomputation Due to the addition
of new items into the database, it is required to recompute the
persisted recommendation lists of the stereotypes. We compute
new relevance values for new items, and merge them into the
persisted lists of recommendations.

Stereotype model reconstruction As the initial stereotype
model is created by an expert and the initial user affinity
vectors are created through a questionnaire, we introduce an
automatic stereotype discovering phase designed to find new
stereotypes automatically and compute new affinity vectors
for users. This automatic construction ignores the current user
model of affinity vectors of stereotypes.

To create new stereotypes we use a clustering algorithm.
Cluster-analysis is a process that receives as input a set
of objects, user profiles in our case, and generates clusters
(groups) of similar users, so that the users within a group have
high similarity and the users between groups are less similar.
The number of clusters can be manually predefined or can be
automatically induced by the clustering algorithm.

In hard clustering, the objects are divided into crisp clusters,
where each object belongs to exactly one cluster. In soft
(fuzzy) clustering (see, e.g. [2]), the objects belong to more
than one cluster, and associated with each of the objects are
membership grades which indicate the degree to which the
object belongs to the different clusters. For each cluster, a
central stereotype profile (centroid) is generated. The centroid
is a weighted average of the users’ profiles that belongs to the
cluster based on their membership grades.

In this application we use the FCM (Fuzzy C-Means)
algorithm (e.g. [5]), mainly due to its efficient implementation
that scales up well to a large number of users. Moreover the
FCM uses the probabilistic constraint that the memberships of
an object across clusters sum to 1. This constraint suits our
approach for weighting stereotypes.

The heavy update phase includes four steps:

• User Representation Construction: for each user we com-
pute a profile similar to the stereotype profiles — a
list of preferred values for each possible attribute in
the ontology. This profile is automatically computed by
observing the list of media items rated positively. For
each value of an attribute of an item, we add the value
into the user profile. For example, if the user has liked a
movie with Bruce Willis, we add Bruce Willis to the list

of actors preferred by the user. This can be thought of
as merging the media items together into a single profile.
This profile is used only for the update process, not for
computing recommendations for the user.

• Clustering User Profiles: we now use a clustering algo-
rithm to create clusters of similar users using a distance
metric over the similarity of user profiles computed in the
former step. We use a soft-clustering algorithm, resulting
in a list of cluster centroids and for each user, its distances
from the centroids of clusters.

• Stereotype Construction: we use each cluster as a new
stereotype. To create the stereotype profile, we merge
users that are close to the cluster centroid more than
a predefined threshold. A cluster (stereotype) profile is
defined by the attribute values the users close to its
centroid have favored. This merging is weighted by the
distance of users from the centroid so that closer users
have higher impact.

• Affinity Vector Reconstruction: for each user, we define
her new affinity vector as the membership grades to the
clusters. Note that these grades are already computed by
FCM and there is no need for additional computations.
The user shall no longer refer to the manually generated
stereotypes, only to the new, automatically generated
ones.

We still maintain the manually generated stereotypes and
use them to define new users. New users will not have
affinity to the automatically generated stereotypes until they
will undergo a model reconstruction phase. Alternatively one
can automatically learn a new decision tree for the question-
naire from the preferences database by using tree induction
algorithms.

Model reconstruction is not intended to be executed often.
It is needed only when much data have been gathered through
feedbacks, or when we detect a shift in trends in user prefer-
ences.

G. Automatic Creation of Hierarchical Questionnaire

When a new stereotype model is reconstructed, one should
also create a new hierarchical questionnaire in order to be
able to assign new subscribers that join the service to the new
stereotype model. In this paper we suggest using a supervised
inducer for decision trees. In order to use an inducer, a training
set should be created and provided to the algorithm. The target
attribute in this training set is the stereotype belonging. In
order to facilitate the filling of the questionnaire, we suggest
that each input attribute in the training set will refer to a pair
of media items, for which the user will be requested to provide
her preferences.

Potentially any pair of media items can be used as an
input attributes. However as there are many pairs, using all
pairs is not practice. Thus we suggest identifying for any
pair of stereotypes (s, t), two popular media items that most
differentiate between these two stereotypes. For this purpose
we suggest to select to the pair of items (i, j) for which
term: relevance(i, s) − relevance(i, t) + relevance(j, t) −

473

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

relevance(j, s) is maximized. Totally we have k·(k−1)
2 pairs of

media items (questions), where k is the number of stereotypes.
Note that all these input attributes are binary (where ”1”
indicating if item i is preferred on item j, and ”0” indicate
the opposite).

The next phase is to create instances for the training set.
Every instance (row) in the training set refers to the bias of a
certain user toward a certain stereotype. The weight of every
instance is set to the corresponded entry in the user’s affinity
vector. The binary values of the input attributes of each user
are either known explicitly (based on her previous rating) or
inexplicitly (based on her affinity vector).

A different approach for creating the training set, is to have
every instance in the training set refers to a movie (and not
a user). Moreover the input attributes refer to the movies
features: Actors, Directors, etc. For example the feature ”Mel
Gibson” is a binary input attribute which gets the value ”1”
if ”Mel Gibson” participate in that specific movie. As in the
previous case the target attribute is the stereotype assignment.

The final stage is to induce the decision tree. For this
purpose we need to a decision tree inducer which can take
into consideration the instances weights and which is capable
to provide probabilistic classification (namely affinity vector
is attached to every node in the tree). We find the well-known
C4.5 algorithm [9] suitable for this purpose.

IV. EXPERIMENTAL EVALUATION

To examine the predictive power of the proposed algorithm,
we run a prediction test comparing our approach to a number
of other algorithms to show its capabilities.

A. Dataset Used

In order to make our results reproducible, we provide here
the results over a public domain dataset. We used the Movie-
Lens 3 database, consisting of 5868 users who rated at least 20
movies. The total number of movies in the database is 3288.
As our approach requires movie content data, such as actors
directors and genres, we used the online Movie Database
(IMDB4) to collect content for our database. Following Breese
et al. [3], we transformed the ratings, originally in the range
of 1 to 5 into binary, like-dislike ratings.

We trained our model over 1000 users using the following
method: going over all the movies a user liked, we summed
the number of times each attribute value (such as a specific
actor name) appeared, divided by the popularity of the attribute
value. For example, if the user liked 3 movies with Harrison
Ford, out of a total of 23 movies with Harrison Ford in our
database, then the user’s rating for Harrison Ford is 3

23 . Each
attribute class (e.g. Actors) ratings for each user were then
scaled to be in the [0..1] range.

This process resulted in a set of user profiles, that were then
clustered as described in Section III-F. We then computed the
recommendations lists for the resulting stereotypes using the
matching engine.

3www.movielens.org
4www.imdb.com

B. Evaluation Measures

For each user that was not included in our training set we
used a part of the movies she liked in order to generate a
profile as explained above. We then used the same matching
engine (used also by the clustering algorithm) to compute the
relevance of this user to each of the clusters — resulting in
an affinity vector. We computed a set of recommendations for
the user based on this affinity vector. To assess the relevance
of the resulting recommendations list, we checked the location
of the movies the user liked but were not used in the profile
construction. A grade to the recommendations list for user a
was computed (following [3]) as follows:

Ra =
∑

i∈I

1
2i/α

(2)

where I is the set of locations of the test movies the user
liked in the recommendations list. The above metric assume
that each successive item in the list is less likely to be viewed
with an exponential decay. α is the viewing halflife and in
this experiment was set to 10. The grade was then divided by
Rmax — the maximal grade, when all test movies appear at
the top of the list.

Following Breese et al. we ran three different tests trying
to estimate the accuracy of the prediction given the amount
of input data. In the first test (”all but 1”) a single movie
was selected from the movies liked by the test user and held
out. The user profile was then generated using the rest of the
movies, and we then computed a recommendation list for this
user and graded it, based on the location of the missing item
in the recommendation list. The two other tests consisted of
building a user profile using 5 (”given 5”) or 10 (”given 10)
movies and grading based on the location of the rest of the
movies the user liked in the recommendation lists. Because
the number of movies is

C. Compared Algorithms

We compared our approach to a number of other algorithms.
First, we compared our results to Pearson’s Correlation — a
well known Collaborative Filtering algorithm that is consid-
ered to provide the best CF recommendations (see, e.g. [3]).
Pearson’s Correlation is used to establish the highest possible
score available. We also compared our approach to random
recommendations — the lowest possible grade.

Our true competition, however, is versus a straight forward,
content based approach. To create such recommendations, we
create test stereotypes as explained above, and then compute
direct matching between all movies in the database and the
profile. Movies in the recommendation list are arranged in
decreasing match value.

D. Comparative Results

Table I shows the grades obtained by the Pearson’s Corre-
lation (denoted Correlation), our own stereotype-based recom-
mendations (denoted Stereotype) which has arbitrarily used 40
stereotypes, standard content based matching (denoted Profile)

474

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

TABLE I

PREDICTING MOVIELENS MOVIES.

Method All but 1 Given 5 Given 10
Correlation 4.9 30.3 36.7
Stereotype 3.6 25.1 25.5
Profile 1.7 11.0 11.5
Random 0.37 4.96 4.95
Unseen movies
Stereotype 9.2 24.7 26.7
Profile 3.8 11.1 11.4
Random 1.6 6.8 7.0

and random recommendations (denoted Random) over the
MovieLens dataset.

As we can see, while our hybrid approach provides less
accurate results than the Correlation algorithm, it is much
better than the direct, content-based movie matching against a
user profile. In fact, direct matching is closer to random rec-
ommendations than to our approach. This clearly demonstrates
how data collected over similar users (CF type data) can help
us to strengthen content based recommendations.

E. Predicting New Movies

As we mention earlier, a well known problem with CF
algorithms is their inability to predict new items that the
algorithm was not trained upon. To test whether our algorithm
can handle unobserved items using the item contents, we
executed a second experiment. We divided the movies in the
database into a training set (3/4 of the movies — 2466 movies)
and a test set (822 movies). For each user in the users test set,
we computed its profile using the movies in the movies train
set and tried to predict the movies in the movies test set.

In this scenario Correlation cannot predict any missing
movie, since it does not contain the test movies in its database.
Thus, we compared only the Stereotype, Profile and Random
methods.

As the results in Table I show, our stereotype approach
is much better than the direct matching approach for this
scenario too. This provides a strong evidence towards our
system capability to handle unobserved items too, avoid the
cold start problem.

F. Model Size

The previous results have been obtained by executing the
system with 40 stereotypes. We examine the sensitivity of
the results to the number of stereotypes. Table II presents
the results for previously seen movies and previously unseen
movies. Each table specify the results obtained for 10, 20, 30
and 40 stereotypes. The results indicate that for previously
seen movies the number of stereotypes has a minor effect. For
all three cases (All but 1, Given 5 and Given 10) 20 stereotypes
provide the best results.

For previously unseen movies one can identify a small but
consistent trend. The performance improves as one increases
the number of stereotypes. This implies that for recommen-
dation systems with frequent introduction of new items (such
in the case of media clips that can be found in YouTube)

one should set the number of stereotypes to a relatively large
number to achieve higher predictive performance.

TABLE II

USING DIFFERENT MODEL SIZES.

Stereotype All but 1 Given 5 Given 10
10 3.55 24.71 25.22
20 3.76 25.27 25.72
30 3.70 24.88 25.27
40 3.67 25.12 25.53

Unseen movies
10 8.44 22.68 24.55
20 8.73 23.51 25.39
30 9.03 24.18 26.15
40 9.24 24.71 26.74

G. Hierarchical Questionnaire Evaluation

In this section we examine the ability of the decision tree to
classify new users. We traced each user through the decision
tree, and compared the classification of the user to clusters to
the affinity vector generated by the clustering process. Table III
specifies the Euclidean distances MSE of the predicted affinity
vector for various training set sizes.

We used four different cases: tracing the tree to a leaf
(denoted ”All”), tracing the tree one level above a leaf (”All
but one”), tracing the tree three levels from the root (”First
three”) and classifying without answering any questions (”A
priori”).

As expected the MSE decreases when the size of the training
set is increased and when the user provides more information.
It is encouraging to note that by providing the answers for the
first three questions, the MSE decreases by 43%.

TABLE III

EVALUATING QUESTIONNAIRE CLASSIFICATION PERFORMANCE.

Case 100 200 500 1000
All 0.15 0.12 0.09 0.08
All but one 0.23 0.18 0.11 0.09
First three 0.25 0.22 0.17 0.16
A priori 0.29 0.27 0.28 0.28

V. CONCLUSION AND FUTURE WORK

This paper presents a commercial recommender system for
recommending media content, such as movie trailers and clips,
to users of mobile phones. It uses an approach that combines
ideas from various approaches to recommendations such as
expert systems, collaborative filtering and content based rec-
ommendations, in a single hybrid algorithm, exploiting the
advantages of the various approaches while minimizing their
disadvantages.

This paper focused on the way new users are introduced to
the system through a questionnaire. It explains the mechanism
of this questionnaire, its creation and update process.

Regarding future work, we intend to extend the experimental
study and validate the proposed system on other datasets and
estimate its performance by applying ROC curve with cross
validation. Moreover, one of the drawbacks of the proposed

475

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

method is that the user is forced to choose one branch from
seemingly closely related alternatives, e.g., Bruce Willis, Mel
Gibson, Samuel Jackson. In future versions, the user will be
able to express his ambivalence with respect to the choices.

The system is currently under development for commercial
deployment within the Deutsche Telekom Laboratories - Inno-
vations of Integrated Communication projects, and is expected
to be used in mobile phones of Deutsche Telekom.

REFERENCES

[1] M. Balabanovic and Y. Shoham. Fab: content-based, collaborative
recommendation. Commun. ACM, 40(3):66–72, 1997.

[2] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function
Algorithms. New York, 1981.

[3] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In UAI’98, pages 43–
52, 1998.

[4] R. Burke. Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12(4):331–370, 2002.

[5] J. F. Kolen and T. Hutcheson. Reducing the time complexity of the fuzzy
c-means algorithm. 10(2):263–267, 2002.

[6] M. Montaner, B. Lpez, and J. L. De La Rosa. A taxonomy of recom-
mender agents on the internet. Artificial Intelligence Review, 19:285–330,
2003.

[7] J. Orwant. Heterogeneous learning in the doppelgänger user modeling
system. User Model. User-Adapt. Interact., 4(2):107–130, 1995.

[8] Pearl Pu, Boi Faltings and Marc Torrens. User-Involved Preference
Elicitation. In workshop notes of the Workshop on Configuration, the
Eighteenth International Joint Conference on Artificial Intelligence (IJ-
CAI’03), pages 56-63, August 2003.

[9] J. R. Quinlan. C4.5: Programs For Machine Learning. Morgan
Kaufmann, Los Altos, 1993.

[10] P. Resnick and H. R. Varian. Recommender systems. Communications
of the ACM, 40(3):56–58, 1997.

[11] E. Rich. User modeling via stereotypes. pages 329–342, 1998.
[12] I. Schwab. How to learn more about users from implicit observations.

In UM ’01, pages 286–288, 2001.
[13] I. R. Teixeira, F. de Carvalho, G. Ramalho, and V. Corruble. Activecp:

A method for speeding up user preferences acquisition in collaborative
filtering systems. In SBIA, pages 237–247, 2002.

[14] L. Rokach, G. Shani, D. Ben-Shimon, A. Meisles, N. Piratla MediaS-
cout - an Interactive Hybrid Recommender System for Mobile Phones.
Technical Report, Ben Gurion University, 2006.

[15] S. ten Hagen, M. van Someren, and V. Hollink. Exploration/exploitation
in adaptive recommender systems. In EUNITE03, Oulu, Finland, 2003.

[16] Paolo Viappiani, Boi Faltings and Pearl Pu. Evaluating Preference-based
Search Tools: a Tale of Two Approaches. In Proceedings of the Twenty-
first National Conference on Artificial Intelligence (AAAI-06), Boston
USA, July 16-20, 2006.

476

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007)

