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Abstract

In this study, we use the cell dynamics method to test the validity of the Kolmogorov-
Johnson-Mehl-Avrami (KJMA) theory of phase transformation. This cell dynamics
method is similar to the well-known phase-field model, but it is a more simple and
efficient numerical method for studying various scenarios of phase transformation
in a unified manner. We find that the cell dynamics method reproduces the time
evolution of the volume fraction of the transformed phase predicted by the KJMA
theory. Specifically, the cell dynamics simulation reproduces a double-logarithmic
linear KJMA plot and confirms the integral Avrami exponents n predicted from the
KJMA theory. Our study clearly demonstrates that the cell dynamics approach is
not only useful for studying the pattern formation but also for simulating the most
basic properties of phase transformation.
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1 Introduction

Phase transformation occurs by the nucleation and subsequent growth of a
nucleus in a system where the first-order phase transformation takes place.
It has attracted much attention for more than a half century [1–3] from a
fundamental point of view as well as from technological interests.
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The nucleation and growth processes are often described in terms of the old
standard theory called the KJMA theory developed by Kolmogorov [1], John-
son and Mehl [2], and Avrami [3]. According to this theory, the time evolution
of the volume fraction of a new transformed phase follows the linear KJMA
plot with the integral Avrami exponent n that is given by the slope. However,
it is recognized that this theory often fails to explain experimental results [5,6];
neither the KJMA plot becomes linear nor the Avrami exponent becomes an
integer.

In this study, we use the cell dynamics method [13,14] to study the validity of
the KJMA theory. This method is computationally efficient, and yet it keeps
the connection to the phase diagram through the Landau-type free energy.

2 Cell Dynamics Method for Nucleation and Growth

To study the phase transformation, it is customary to study the partial differ-
ential equation called the phase-field model [9,10] which is equivalent to the
time-dependent Ginzburg-Landau (TDGL) [8] or Cahn-Hilliard model [7]:

∂ψ

∂t
= −

δF

δψ
, (1)

where δ denotes the functional differentiation, ψ is the nonconserved order
parameter, and F is the free energy functional. This free energy is usually
written as the square-gradient form

F [ψ] =
1

2

∫

[

D(∇ψ)2 + h(ψ)
]

dr. (2)

where the local part h(ψ) of the free energy F(ψ) we used is [9]

h(ψ) =
1

4
ηψ2(1 − ψ)2 +

3

2
ε

(

ψ3

3
−
ψ2

2

)

. (3)

which determines the bulk phase diagram and the value of the order parameter
ψ in equilibrium phases.

This TDGL equation (1) for the nonconserved order parameter ψ was loosely
transformed into a space-time discrete cell dynamics equation by Puri and
Oono [14]. In their cell dynamics method, the partial differential equation (1)
is replaced by a finite difference equation in space and time in the form

ψ(t+ 1, n) = F [ψ(t, n)], (4)
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where the time t is discrete and an integer, and the space is also discrete
and is expressed by the integral site index n. Numerical efficiency of this cell
dynamics method is obvious because it is essentially the cellular automaton
with time and space being discrete integer. The mapping F is given by

F [ψ(t, n)] = −f(ψ(t, n)) +D [� ψ(t, n) � −ψ(t, n)] , (5)

where f(ψ) = dh(ψ)/dψ, and the definition of � · · · � for a two-dimensional
square grid is given by [13,14]

� ψ(t, n) �=
1

6

∑

i=nn
ψ(t, i) +

1

12

∑

i=nnn
ψ(t, i), (6)

where “nn” denotes nearest neighbors and “nnn” next-nearest neighbors.

3 Numerical Results

3.1 KJMA kinetics by cell dynamics simulation

3.1.1 Site-saturation nucleation

In site-saturation nucleation, a fixed number of nuclei are prepared initially,
and subsequent growth is monitored. The KJMA theory gives an analytical
expression for the volume fraction f of the stable phase as a function of time
t. In two dimensions, the formula leads to [9]

f = 1 − exp
(

−πn0v
2 (t+ t0)

2
)

, (7)

where n0 is the number density (number per unit area) of the randomly dis-
tributed initial nuclei. v is the growth rate of the radius of each nucleus dis-
cussed in the previous section. t0 is the origin of time which can hopefully take
the incubation time of nucleation into account [10].

From eq. (7), we have

log (− ln(1 − f)) = 2 log (t + t0) + constant. (8)

Therefore, the KJMA theory predicts that a double logarithms log (− ln(1 − f))
versus log (t+ t0) is a straight line that is known as the KJMA plot with the
integral tangent n = 2, which is called the “Avrami exponent”.
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We have simulated the site-saturation nucleation using the cell dynamics
method. Now a finite number of nuclei of the stable phase is distributed over
the area we considered. The initial nuclei are circular and have the diameter
d = 8, which is larger than the critical radius. Then, the evolution of the
transformed volume is monitored as a function of time. We have considered
the 100×100 system and introduced a finite number (N0 = 20) of nuclei as
the initial condition. Therefore, the number density of the initial nucleus is
n0 = 20/10000 = 0.002.
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Fig. 1. Evolution of volume fraction f calculated by cell dynamics simulation for
site-saturation nucleation as a function of time when incubation time t0 is taken into
consideration. All data follows an almost straight line and confirm the prediction of
the KJMA theory given by eq. (8) with all the Avrami exponents n deduced from
the straight lines in the figure being close to the theoretically predicted n = 2.

Figure 1 shows the KJMA plot when the incubation time t0 is considered. Now,
the time evolutions for several combinations of the potential parameters η and
ε all fit the straight lines with almost the same Avrami exponent n ' 2, which
is very close to the theoretical prediction, as shown in Table 1. The results in
Figs. 1 clearly suggest that the incubation time t0 should be carefully taken
into account to deduce the Avrami exponent n when we analyze experimental
as well as simulation data.

Table 1
Avrami exponent n for site-saturation nucleation and for continuous nucleation
estimated by cell dynamics simulation for various potential parameters η and ε. The
value theoretically predicted from the KJMA theory is n = 2 for site-saturation and
n = 3 for continuous nucleation.

η 1 1 0.4

ε 0.1 0.3 0.1

n (site saturation) 1.92 2.04 2.03

n (continuous) 2.60 2.35 2.73
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Figure 2 shows the evolution of the morphology of the two-dimensional system
for the site-saturation nucleation when η = 0.4 and ε = 0.1. We observe the
almost isotropic growth of every nucleus of the stable phase. At the time step
∼100, almost all cells are transformed into the stable phase.

t=0 t=30 t=70 t=100

Fig. 2. Typical evolution pattern of site-saturation nucleation calculated by cell
dynamics simulation when η = 0.4 and ε = 0.1. The white area indicates the stable
phase. Note that it takes only 100 steps to simulate the evolution from t = 0 to
t = 100 because the cell dynamics is discreate cellular automaton.

3.1.2 Continuous nucleation

In the continuous nucleation, a new nuclear embryo is continuously introduced.
The KJMA theory of continuous nucleation gives the analytical expression
for the volume fraction f of the growing stable phase similar to (7). In two
dimensions, we have

log (− ln(1 − f)) = 3 log (t + t0) + constant. (9)

for continuous nucleation instead of (8). Therefore, a double logarithmic KJMA
plot should give the “Avrami exponent” n = 3 instead of n = 2 of the site-
saturation nucleation.

In our simulation, a constant nucleation rate ṅ is achieved by introducing a
new nucleus every 1/ṅ time step (nucleation time). At each nucleation time
step, a position within the two-dimensional area is randomly selected. If the
position is already occupied by the stable phase, no new nucleus is placed.
If the position is not occupied by the stable phase, a new nucleus is placed
and allowed to grow there. In this simulation, we have used a larger 200×200
system to avoid the finite-size effect as much as possible. The steady nucleation
rate ṅ = 0.1/40000 is used. Therefore, a single nucleus is produced at every
10 time steps in the area 200×200.

The time evolution of the transformed volume f is plotted as a function of time
t in Fig. 3 as the double logarithmic KJMA plot. Now, the time evolutions for
several combinations of the potential parameters η and ε all fit the straight
lines with almost the same Avrami exponent n ' 3, which is very close to the
theoretical prediction, as shown in Table 1.
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Fig. 3. Evolution of volume fraction f calculated by cell dynamics simulation for
continuous nucleation as a function of time. The double logarithmic KJMA plot
is used. All curves fit the straight lines predicted from the KJMA theory (9). The
Avrami exponents deduced from the straight lines in the figure are all close to the
theoretically predicted n = 3, as summarized in Table 1.

In this continuous nucleation case, because a nucleus is continuously produced,
almost all cells are occupied at the later stage, and then the production of a
nucleus stops. The situation becomes closer to the site-saturation nucleation.

Figure 4 shows the time evolution of the transformed volume f as a function
of time when the nucleation occurs along a one-dimensional line. The Avrami
exponent changes from n = 2.48 of the early stage to n = 2.01 of the late
stage. Since the nucleation occurs along a one-dimensional line, the exponent
n = 2.48 is smaller than theoretical n = 3 for two dimensional continuous
nucleation. It becomes n = 2.01 at later stage because no new nucleus is
produced and the site-saturation starts to occur.

Figure 5 shows the evolution pattern of continuous nucleation along one-
dimensional line in two-dimensional system. When t ' 260 the grains start to
touch each other, and the site saturation growth rather than the continuous
growth starts to occur.

4 Conclusion and Discussion

In this study, we used a cell dynamics method to test the validity of the
Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetic theory of phase transfor-
mation [17]. We simulated the growth of an ensemble of nuclei under the
conditions of both the site saturation and continuous nucleation. We found a
nearly linear behavior of the KJMA plot with the Avrami exponent close to
the KJMA predicted value. We also suggested several extensions of the cell dy-
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Fig. 4. Evolution of volume fraction f calculated by cell dynamics simulation for con-
tinuous nucleation along a one-dimensional line in two-dimensional system as a func-
tion of time. The double logarithmic KJMA plot is used. There is a transition from
the continuous nucleation with Avrami exponent n = 2.48 to the site-saturation
nucleation with n = 2.01 when log t ' 2.4, therefore t ' 260.

t=80 t=160 t=260 t=360

Fig. 5. Typical evolution pattern of continuous nucleation along one-dimensional
line when η = 1.0 and ε = 0.3. The transition from the continuous nucleation to the
site-saturation nucleation occurs when t ' 260

namics method to study various contributions that may lead to the nonlinear
KJMA behavior or nonideal Avrami exponent.

The results obtained in this study are summarized as follows:

(1) The cell dynamics method with a realistic free energy can simulate the
growth of multiple nuclei and confirm the time evolution of the volume
fraction of the transformed material predicted from the KJMA kinetic
theory [1] and numerical simulation using TDGL [9].

(2) Therefore, the cell dynamics method can be used to simulate more com-
plex scenarios of nucleation and growth such as the nucleation along a
one-dimensional grain boundary.

The cell dynamics method is similar to the time-dependent Ginzburg-Landau
or Cahn-Hilliard model based on the free energy functional. In contrast to the
conventional cellular automaton approach to the phase transformation [12,4,15,16],
no phenomenological energy that induces phase transformation is necessary.
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Therefore, the cell dynamics method is numerically efficient as a cellular au-
tomaton, yet it keeps the direct connection to the equilibrium phase diagram.
This cell dynamics method can be used to test various scenarios of nucleation
and growth in a unified manner [17].
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