
A Global Routing Algorithm for General Cells

G a r y W . C low

Department of Computer Science
Caltech 256-80

California Institute of Technology
Pasadena, California 91125

Abstract

An algorithm is presented which accomplishes
the global routing for a building block or general
cell routing problem. A line search technique is
employed and therefore no grid is assumed either for
the module placements or the pin locations. Instead
of breaking the routing surface up into channels,
a maze search finds acceptable global routes while
avoiding the blocks. Both multi-pin terminals and
multi-terminal nets are accomodated.

It is shown that the Lee-Moore grid-based ap-
proach is actually a special case of the general search
algorithm presented. This algorithm is borrowed
from the field of artificial intelligence where it has
been applied to many state-space search problems.

Introduction

General cell routing refers to the problem of
routing between several blocks of arbitrary size in
an integrated circuit layout 1,~,11,12. This problem
arises in several design methodologies. One scenario
might be the design of a custom chip in which several
individuals participate in the layout. Large com-
ponents, or macros as they are sometimes called, are
produced independently. These components or cells,
can then be connected together, along with the pads,
to form a complete chip. In another context, some
or all of the blocks might be pulled from a design
database or cell library. Ultimately, the blocks might
be drawn on demand from a paramaterized library
by a silicon compiler 4 or perhaps synthesized from a
higher level description. Whatever the methodology,
ultimately the designer must face the sticky issue of
combining the constituent parts of the design into
a single chip. It is this step which is both time-
consuming and error-prone if done manually.

The goal of a general cell routing system then,
is to automate this final step of chip assembly.
Classically it has been divided into two phases: cell
placement and routing. This paper does not at tempt
to address the question of floorplanning or automatic
cell placement. There are, however, three restrictions
placed on the block placement: The blocks must be
rectangular, oriented orthogonally, and placed a finite
and non-zero distance apart. It is assumed during
the global routing phase that an unlimited number of
wires may pass between any two cells. With this as-
sumption one is forced either to require the designer
to insure sufficient inter-cell spacing in the initial
placement or to require the routing system to provide
feedback so that the placement can be automatically
adjusted. With the latter approach one must be con-
cerned about convergence. Placement adjustment can
alter the paths taken during global routing thereby
creating inter-cell spacing problems where they did
not previously exist. This in turn may lead to another
placement adjustment. It has not been shown that
this approach is guaranteed to converge even with
sufficient restrictions. This is the topic of further re-
search by the author.

Background

The problem of maze searching is closely related
to global routing. As early as the 1940's Claude
Shannon is explored maze searching by building a
mechanical mouse which could find its way through
a 25-square checkerboard maze. In 1959 Moore 9
presented his now well-known algorithm for maze
solving and then in 19{}1 Lee s applied it to wire rout-
ing. This grid-expansion algorithm has been modified
and adapted and is now commonly known as the Lee-
Moore algorithm. In 19{59 David Hightower 5 proposed
using line segments as the representation instead of

21st Design Automation Conference
Paper 3.3

0738-100X/84/0000/004551.00 © 1984 IEEE 45

a large grid of points and this greatly improved the
efficiency of the algorithm but caused it to fail to
find some connections which could be found by a
Lee-Moore router. As a result, some routers use
Hightower's algorithm for a quick first try, and if
it fails, then the full power of the Lee-Moore maze
search algorithm is used °.

This research was motivated by the need to com-
bine the efficiency of the line-segment representation
with the thoroughness of the Lee-Moore approach.

S t a t e - S p a c e R e p r e s e n t a t i o n

A state-space metaphor is commonly applied to
many real-world problems by artificial intelligence re-
searchers. Much of the early work has concentrated
on games such as chess, checkers, and the 15-puzzle 1°.
In chess for example, the position of all the pieces at
a point in time corresponds to a state in the multi-
dimensional space.

In routing, the metaphor is closely tied to the
real world. The space is the routing plane and it
is, of course, two-dimensional. This makes the state-
space representation particularly easy to understand
in the case of routing. The state represents the state
of the search as it progresses. Let us restrict our
attention to routing two-point nets for the moment.
A graph is commonly used as an abstraction of the
state-space. In the routing plane then, we have a
starting point, s, to be connected to a destination
point, d. Let s be the root node of the graph. As line
segments are extended toward the destination, d, each
line segment will correspond to an edge in the graph.
The first state of the search will be represented by
an unconnected graph with two vertices, 8 and d, and
no edges. A path in the routing plane is found when
there is a path from s to d in the graph. Intuitively,
we will add a new edge each time we extend a line
segment toward the target terminal. There will be
a vertex along the path every time the route could
potentially turn a corner.

In general, we wish to find a minimal cost path,
where we will assume cost to be the length of the path.
So, to each directed edge add a weight corresponding
to the distance between the two nodes. Now, the cost
of a path is simply the sum of the weights of the
edges along the path. Later, we will show how other
factors can be considered when calculating the cost
of a path, but for now, we will assume we are trying
to simply minimize wire length. The term minimal is
used because there are sometimes several "shortest"

rectilinear paths between two points.

The search proceeds by exploring possible paths
emanating from 8. Were there no obstacles between 8
and d in the routing plane, then it would be a simple
matter to find a Manhattan s path between the two
points. However, as we know, in the routing domain
there will ususally be obstacles to be avoided in order
to make the connection. To find an acceptable route
between two pins then, we must find the least-cost
path avoiding all obstacles.

S e a r c h T e c h n i q u e s

There are several well-known techniques for
searching trees 1°,15. With a slight modification these
algorithms may be used for searching graphs.

In our discussion of search algorithms we will
need two lists. The first list, OPEN, will contain all
those nodes which are on the frontier of the search.
They are the only nodes from which the search can
expand. Initially, only 8 is on OPEN. The other
list, CLOSED. contains all those nodes which have
been encountered during the search and are no longer
considered candidates from which the search can be
expanded.

A search proceeds by taking a node,, n~, off the
OPEN list, generating its successors, adding the suc-
cessors to the OPEN list, and then placing nl on the
CLOSED list. When searching a graph you must be
careful not to have more than one copy of a node ac-
tive at any time. A node is active if it is on either the
OPEN or CLOSED list.

Generating the successors for node ni cor-
responds to finding all the possible points on the rout-
ing surface that the search can proceed to from nl.
This is the most difficult step and will be discussed
later. For now, we will assume that it is always pos-
sible to generate all the successors for a given node
once we have pulled that node off the OPEN list.

Search algorithms are often classified by the or-
der in which nodes are placed on, and removed from,
the OPEN list. If the order is last-in-first-out the
search is called depth-first. In depth-first search, as a
new node is opened its successors go onto the front of
the OPEN list. In depth-first search a depth limit is
sometimes used to prevent the algorithm from going
too far down the wrong path. If nodes are placed
on the OPEN list in first-in-first-out order the search
is called breadth-first. Depth-first and breadth-first
search are examples of blind search. They are blind

Paper 3.3
46

o -

in the sense that they are not guided by information
taken from the problem domain.

Recall that there is a weight associated with each
edge in the search graph corresponding to the length
of the net segment represented by the edge. We would
like for our routing algorithm to find the shortest
Manhattan path between the two pins to be connected
rather than just any path. We must find then, a way
of determining when such a path has been found in
order to terminate the search.

In order to discuss the terminating condition we
will need to define a function ~(n). We will denote the
cost of a path from 8 to a node n as ~(n). Notice that
in a tree there is only one path from 8 to any node n,
and so ~(n)is the cost of the minimal cost path from
a to n.

We can now define a terminating condition for
our search algorithms. If we reach a goal node in
our search, and it is not possible that any node on
OPEN can be on a path of less cost, we may end the
search. In order to detect this condition we will need
to calculate @(n)for each node put on OPEN. When
all the nodes on OPEN have ~(n)greater than or equal
to the ~(n)of a goal node which has been reached, we
may stop. We have restricted edge weights to be non-
negative by using rectilinear distance as the cost. We
are therefore insured that no node on OPEN could be
on a path of lesser cost than the path we have found
to the goal node since adding non-negative numbers
cannot result in a smaller number. If we were to
ignore our terminating condition and stop only when
no more nodes were left on OPEN, the order in which
nodes were placed on OPEN would not matter since
all nodes would eventually be expanded. This is called
ezhauative search.

It is now clear that we may gain by ordering
the nodes on OPEN by increasing value of ~(n). It
does not help to expand nodes whose ~(n)is greater
than other nodes on OPEN since those with smaller
~(n)values will have to be expanded before the algo-
rithm terminates. At any point now, if a goal node
is reached, we also know it is on a minimal cost path
because all other nodes on OPEN have ~(n)values at
least as great. This algorithm is called best-first and
is also known as branch-and-bound.

The beat-first algorithm can show a dramatic
improvement in time and space efficiency over blind
searches such as depth-firat and breadth-first. Best-
first relies on historical information to predict which

nodes are the most likely to be on a minimal cost
path. The ideal algorithm would operate on perfect
information thereby always choosing the correct node
to expand at each stage of the search. But perfect in-
formation implies the path is already known, so there
is little reason to search. It is possible however, to use
heuristic (serving to aid discovery) information. This
technique is called heuristic search. An heuristic tries
to predict the candidate nodes which are most likely
on a minimal cost path~

We shall call an heuristic search algorithm ad-
missable if it always finds a minimal cost path when a
path exists. Nilsson 1° presents an admissable heuris-
tic search algorithm, A*. First, the algorithm will be
presented and then, it will be shown how it may be
applied to general cell global routing.

Algorithm A*

Let us define an evaluation function, f , so that
its value, f(n), at any node n, is an estimate of the
cost of a minimal cost path constrained to go through
n. Let the function k(n~, ni)give the actual cost of
a minimal cost path between two arbitrary nodes n~
and n i. Let

h(n~)=mink(ni, ni)

where the min is over all paths from n i to n i and n i
is the goal node. An optimal path from ni to the goal
node is one that achieves h(ni). Define an optimal
path from the start node 8 to some node n by:

for all n accessible from 8.

We can now define a function/, such that,]{n) is
the actual cost of an optimal path constrained to go
through node ~ Let

f(n)=g(n)--Fh(n)

We desire our evaluation function, f(n), to be an

estimate of]. We may take f(n)to be

where ~ is an estimate of g and h is an estimate of
h.For ~(n)we will use the cost of the path which has
been found by the search process in getting to node n.

Paper 3.3
47

For h(n)we will rely on information from the problem
domain.

What does h(n)really represent? It represents our
best estimate of the cost of completing the connection
between two points using Manhattan geometry while
avoiding all obstacles between the two points. Nilsson
proves that if h is a lower bound on h, then the A*
algorithm is admissible. An obvious choice for h then,
is the rectilinear (Manhattan) distance from n to the
goal. This will always be a lower bound on the actual
distance since the route may be forced to go out of
its way to avoid obstacles which only increases the
length of the wire. In other words, the best you can
do using Manhattan geometry is a connection whose
length is equal to the rectilinear distance between the
two points. Therefore, ~, the rectilinear distance to
the goal, will always be a lower bound on g, the actual
distance to the goal, and hence algorithm A* will
always find an optimal route.

The algorithm proceeds as the other algorithms
with 8, the start node being placed on OPEN initially.
The difference is that nodes are placed on OPEN in
ascending order of their f values. Nodes are then
taken off OPEN and expanded with the most likely
candidates, according to the heuristic, expanded first.
ff a successor is generated which has already been
placed on CLOSED, its old and new f values must be
compared. If its new f is less than the old it must
be placed back on OPEN. This means a new, shorter
path has been found to some intermediate point on
the routing surface. The algorithm terminates when
the goal node is removed from OPEN to be expanded.

In the implementation it is important to keep
pointers from each successor back to its parent node.
These pointers provide the means for following back
the path to the start node once the search has ter-
minated by finding the goal node. It is also important
to note that when a node is moved from CLOSED to
OPEN because a shorter path to it has been found,
its pointers must be redirected in order to reflect this
new shorter path back to the start node.

G e n e r a t i n g Sueeessors

The most straightforward way of generating suc-
cessors is to divide the routing surface up into a grid.
The routing surface can then be modelled by setting
the grid spacing equal to the minimum wire spacing.
Each grid point adjacent to the current node is con-
sidered a successor unless the grid point is covered by

an obstruction or was the predecessor of the current
node. If this model is used with ~(n) defined to be 0
then it is equivalent to the Lee-Moore 6,s algorithm.

Using the grid-based approach tends to require
large amounts of memory and processor time since
so many nodes are expanded. It has the advantage
however, of guaranteeing that every possible path is
explored.

By exploiting the constraints of the general cell
layout, a large improvement can be made over the
grid-based approach. First, the only obstacles are
rectangular Manhattan cells. It can be observed that
optimal paths need only hug the boundaries of cells if
they intervene in the path selection. What is needed
then is a method of detecting when a path collides
with a cell and a means for generating successors
that: (1) extends any path as far toward the goal as
is feasible in z and y and (2) hug8 cells (obstacles)
as they are encountered. If this technique is applied
for generating successors, surprisingly few nodes are
generated before an optimal path is found. See figure
1 for an example of the expansion which takes place.

The implementation requires an efficient means
of representing the routing surface and its accom-
panying geometry. The atomic unit of the data struc-
ture is the point. Points are linked dynamically to
form line segments which can either be edges of boxes
(cells) or segments of wire nets. All points are linked
to reflect their topological order in both z and y.
This maintains their physical relationships. Points are
also related logically by the higher level structures to
which they belong, namely boxes and wire segments.
Therefore, a third set of links is kept to maintain this
logical relationship between points.

By maintaining the topological ordering, an
efficient means of ray-tracing 14 is used to expand the
frontiers of the search.

E x t e n s i o n s

In order for this algorithm to be useful it must
handle multi-terminal net8 and multi-pin terminal812.
Multi-terminal nets are accomodated by approximat-
ing a Steiner tree with an adaptation of Dijkstra's 2
minimum spanning tree algorithm. The modification
of the spanning tree algorithm considers all line seg-
ments in the spanning tree being built as potential
connection points. A spanning tree would only con-
sider the pins (vertices) as potential connection points.

Multi-pin terminals are handled by logically

Paper 3.3
48

0

d

rl

e

ii
L ~

rl

~_ $

b

C

d

r,)

d

[1

d I
rl

j

G
C

3 s

I
C

h

)

)

Figure 1. An example of node expansion using A* algorithm.

Paper 3.3
49

grouping all pins which belong to a terminal. When
a terminal is connected into the tree all the line seg-
ments which make up the connecting path as well as
all the pins which are associated with the newly con-
nected terminal are brought into the connected set.
This connected set forms the set of potential connec-
tions for terminals that are yet to be connected into
the tree. The A* algorithm is used to merely find the
shortest path which makes each new connection as
new terminals are added to the tree.

Because of the generality of the A* algorithm,
the heuristic cost function can be used to favor cer-
tain classes of routes over others. One problem, that
became immediately obvious in the implementation,
we will call the inverted corner (see figure 2). By
detecting the inverted corner and penalizing the non-
preferred route in the cost function calculation we can
cause the router to always take the preferred route.
Since both routes have exactly the same length, if
a small number, e, is added to the cost of the non-
preferred route the algorithm will automatically pick
the preferred route.

Another useful extension would be to allow or-
thogonal polygons for the cell boundaries. To ae-
comodate the more general cell geometry the proce-
dure which generates successors must be modified so
that it leaves no stone unturned. In general, this
is equivalent to a grid-less maze search. A form of
Sutherland's ray-tracing algorithm 14 must be imple-
mented to accomodate this more general form.

C o n c l u s i o n s

Looking at the classical Lee-Moore approach in
the context of the general heuristic search algorithm
shows how emeiency improvements can be made for
certain restricted problem domains.

The generalized cost function concept also allows
other heuristics to be easily implemented. For in-
stance, in the context of a fixed cell placement router
(i.e. a router which does not adjust cell placement),
a cost function may be associated with what is called
channel congestion. Since there are no channels the
term is slightly abused, but it refers here to congested
passages between adjacent cells. A first-pass route
of all nets would reveal congested areas. These con-
gested areas would manifest themselves in the form of
several nets hugging the edge of a cell which was close
to an adjacent cell. A second route of the affected nets
could penalize those paths which chose the congested
area.

Independently routing each net considerably
reduces the complexity of the search since the only
obstacles are the cells. Classically, nets have been
ordered and routed one alter another. With this ap-
proach nets must avoid other nets as well as cells,
greatly increasing the search time. Independent net
routing also eliminates the problem of net order-
ing which can consume a great deal of computing
resources in itself.

By routing in the entire routing surface instead
of channels, the step of routing surface decomposi-
tion is eliminated. The inherent difficulty of the
channel decomposition process is compounded by
pin-splittin~ 2,1 and inter-channel inter]create, and
avoiding the whole problem seems to be a good solu-
tion.

Actual experience using this algorithm has shown
that its efficiency for large problems is very accept-
able. The processor time consumed by global rout-
ing is always less than the time consumed by detailed
routing and layer assignment.

This approach does require a detailed router
to follow which does the track assignment. A spe-
cial algorithm has been developed which dynami-
cally assigns channels based on net interference rather
than cell placement. Within the dynamically as-
signed channel the subnets can be track-assigned us-
ing standard channel routing algorithms which t ry
to minimize the number of tracks used. The details
of this procedure are beyond the scope of this paper
and may be the topic of future publications by this
author.

R e f e r e n c e s

[1] A.E. Baratz, Algorithms for Integrated Circuit
Routing, PhD. Thesis, Dept. of EE and CS,
Massachusetts Institute of Technology (1979).

[2] E.W. Dijkstra, A Discipline of Programming,
Prentice-Hall (1976), Ch 22, pp. 154-160.

[3] J.E. Hassett, "Automated Layout in ASHLAR:
An Approach to the Problems of 'General Cell'
Layout for VLSI, ~ Proc. 19th Design Automation
Con]. (1982), pp. 777-784.

[4] T.S. Hedges, K.S. Slater, G.W. Clow, and T.
Whitney, "The Siclops Silicon Compiler, ~ ICCC
8~ Proceedings, pp. 277-280.

Paper 3.3
50

[5] D. Hightower, "A Solution to Line-Routing
Problems on the Continuous Plane," Pros. 6th
Design Automation Workshop, Miami Beach, Fl.,
(June 1989), pp. 1-24.

[8] D. Hightower, "The Interconneetion Problem: A
Tutorial," Computer, (April 1974), pp. 18-32.

[7] F.K. Hwang, "The Rectilinear Steiner Problem,"
Journal of Design Automation and Fault-
Tolerant Computing, vol. 2, no. 4, (Oct. 1978)
pp.303-310.

[8] C. Lee, "An Algorithm, for Path Connections
and its Applications." IRE Trans. On Electronic
Computers, (Sept. 1981), pp. 346-365.

[9] E. Moore, "Shortest Path Through a Maze,"
Annals of the Computation Laboratory of
Harvard University, Harvard University Press,
Cambridge, Mass., Vol. 30 (1959), pp. 285-292.

[10] N.J. Nilsson, Problem-Solving Methods in
Artificial Intelligence, McGraw-Hill (1971), Ch 3,
pp. 43-78.

[11] B.T. Preas, Placement and Routing Algorithms
.for Hierarchical Integrated Circuit Layout, Ph.D.
dissertation, Dept. of Electrical Engineering,
Stanford University (1979).

[12] R. Rivest "The 'PI' (Placement and Interconnect)
System," Proc. 19th Design Automation
Conference (1972), pp. 475-481.

[13] C.E. Shannon, "Presentation of the maze-
solving maehine," Trans of the 8th Cybernetics
Conf.(1952), Josiah Macy Jr. Foundation, New
York, N.Y., pp. 173-180.

[14] I.E. Sutherland, "A Method for Solving
Artibrary-Wall Mazes by Computer," IEEE
Trans. on Computers, Vol. O-18, No. 12 (Dec.
1989), pp. 1092-1097.

[15] Patrick H. Winston, Artificial Intelligence,
Addison Wesley,(1984),Second Edition, pp. 88-
117.

(o)

l l |

Ullii lii liili

(b)
Ii111111111111111

Figure ~. The inverted corner.

Paper 3.3
51

