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Abstract 

An algorithm is presented which accomplishes 
the global routing for a building block or general 
cell routing problem. A line search technique is 
employed and therefore no grid is assumed either for 
the module placements or the pin locations. Instead 
of breaking the routing surface up into channels, 
a maze search finds acceptable global routes while 
avoiding the blocks. Both multi-pin terminals and 
multi-terminal nets are accomodated. 

It is shown that  the Lee-Moore grid-based ap- 
proach is actually a special case of the general search 
algorithm presented. This algorithm is borrowed 
from the field of artificial intelligence where it has 
been applied to many state-space search problems. 

Introduction 

General cell routing refers to the problem of 
routing between several blocks of arbitrary size in 
an integrated circuit layout 1,~,11,12. This problem 
arises in several design methodologies. One scenario 
might be the design of a custom chip in which several 
individuals participate in the layout. Large com- 
ponents, or macros as they are sometimes called, are 
produced independently. These components or cells, 
can then be connected together, along with the pads, 
to form a complete chip. In another context, some 
or all of the blocks might be pulled from a design 
database or cell library. Ultimately, the blocks might 
be drawn on demand from a paramaterized library 
by a silicon compiler 4 or perhaps synthesized from a 
higher level description. Whatever the methodology, 
ultimately the designer must face the sticky issue of 
combining the constituent parts of the design into 
a single chip. It is this step which is both time- 
consuming and error-prone if done manually. 

The goal of a general cell routing system then, 
is to automate this final step of chip assembly. 
Classically it has been divided into two phases: cell 
placement and routing. This paper does not at tempt 
to address the question of floorplanning or automatic 
cell placement. There are, however, three restrictions 
placed on the block placement: The blocks must be 
rectangular, oriented orthogonally, and placed a finite 
and non-zero distance apart. It is assumed during 
the global routing phase that  an unlimited number of 
wires may pass between any two cells. With this as- 
sumption one is forced either to require the designer 
to insure sufficient inter-cell spacing in the initial 
placement or to require the routing system to provide 
feedback so that  the placement can be automatically 
adjusted. With the latter approach one must be con- 
cerned about convergence. Placement adjustment can 
alter the paths taken during global routing thereby 
creating inter-cell spacing problems where they did 
not previously exist. This in turn may lead to another 
placement adjustment. It has not been shown that 
this approach is guaranteed to converge even with 
sufficient restrictions. This is the topic of further re- 
search by the author. 

Background 

The problem of maze searching is closely related 
to global routing. As early as the 1940's Claude 
Shannon is explored maze searching by building a 
mechanical mouse which could find its way through 
a 25-square checkerboard maze. In 1959 Moore 9 
presented his now well-known algorithm for maze 
solving and then in 19{}1 Lee s applied it to wire rout- 
ing. This grid-expansion algorithm has been modified 
and adapted and is now commonly known as the Lee- 
Moore algorithm. In 19{59 David Hightower 5 proposed 
using line segments as the representation instead of 
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a large grid of points and this greatly improved the 
efficiency of the algorithm but caused it to fail to 
find some connections which could be found by a 
Lee-Moore router. As a result, some routers use 
Hightower's algorithm for a quick first try, and if 
it fails, then the full power of the Lee-Moore maze 
search algorithm is used °. 

This research was motivated by the need to com- 
bine the efficiency of the line-segment representation 
with the thoroughness of the Lee-Moore approach. 

S t a t e - S p a c e  R e p r e s e n t a t i o n  

A state-space metaphor is commonly applied to 
many real-world problems by artificial intelligence re- 
searchers. Much of the early work has concentrated 
on games such as chess, checkers, and the 15-puzzle 1°. 
In chess for example, the position of all the pieces at 
a point in time corresponds to a state in the multi- 
dimensional space. 

In routing, the metaphor is closely tied to the 
real world. The space is the routing plane and it 
is, of course, two-dimensional. This makes the state- 
space representation particularly easy to understand 
in the case of routing. The state represents the state 
of the search as it progresses. Let us restrict our 
attention to routing two-point nets for the moment. 
A graph is commonly used as an abstraction of the 
state-space. In the routing plane then, we have a 
starting point, s, to be connected to a destination 
point, d. Let s be the root node of the graph. As line 
segments are extended toward the destination, d, each 
line segment will correspond to an edge in the graph. 
The first state of the search will be represented by 
an unconnected graph with two vertices, 8 and d, and 
no edges. A path in the routing plane is found when 
there is a path from s to d in the graph. Intuitively, 
we will add a new edge each time we extend a line 
segment toward the target terminal. There will be 
a vertex along the path every time the route could 
potentially turn a corner. 

In general, we wish to find a minimal cost path, 
where we will assume cost to be the length of the path. 
So, to each directed edge add a weight corresponding 
to the distance between the two nodes. Now, the cost 
of a path is simply the sum of the weights of the 
edges along the path. Later, we will show how other 
factors can be considered when calculating the cost 
of a path, but for now, we will assume we are trying 
to simply minimize wire length. The term minimal is 
used because there are sometimes several "shortest" 

rectilinear paths between two points. 

The search proceeds by exploring possible paths 
emanating from 8. Were there no obstacles between 8 
and d in the routing plane, then it would be a simple 
matter to find a Manhattan s path between the two 
points. However, as we know, in the routing domain 
there will ususally be obstacles to be avoided in order 
to make the connection. To find an acceptable route 
between two pins then, we must find the least-cost 
path avoiding all obstacles. 

S e a r c h  T e c h n i q u e s  

There are several well-known techniques for 
searching trees 1°,15. With a slight modification these 
algorithms may be used for searching graphs. 

In our discussion of search algorithms we will 
need two lists. The first list, OPEN, will contain all 
those nodes which are on the frontier of the search. 
They are the only nodes from which the search can 
expand. Initially, only  8 is on OPEN. The other 
list, CLOSED. contains all those nodes which have 
been encountered during the search and are no longer 
considered candidates from which the search can be 
expanded. 

A search proceeds by taking a node,, n~, off the 
OPEN list, generating its successors, adding the suc- 
cessors to the OPEN list, and then placing nl on the 
CLOSED list. When searching a graph you must be 
careful not to have more than one copy of a node ac- 
tive at any time. A node is active if it is on either the 
OPEN or CLOSED list. 

Generating the successors for node ni cor- 
responds to finding all the possible points on the rout- 
ing surface that  the search can proceed to from nl. 
This is the most difficult step and will be discussed 
later. For now, we will assume that  it is always pos- 
sible to generate all the successors for a given node 
once we have pulled that  node off the OPEN list. 

Search algorithms are often classified by the or- 
der in which nodes are placed on, and removed from, 
the OPEN list. If the order is last-in-first-out the 
search is called depth-first. In depth-first search, as a 
new node is opened its successors go onto the front of 
the OPEN list. In depth-first search a depth limit is 
sometimes used to prevent the algorithm from going 
too far down the wrong path. If nodes are placed 
on the OPEN list in first-in-first-out order the search 
is called breadth-first. Depth-first and breadth-first 
search are examples of blind search. They are blind 
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in the sense that  they are not guided by information 
taken from the problem domain. 

Recall that  there is a weight associated with each 
edge in the search graph corresponding to the length 
of the net segment represented by the edge. We would 
like for our routing algorithm to find the shortest 
Manhattan path between the two pins to be connected 
rather than just any path. We must find then, a way 
of determining when such a path has been found in 
order to terminate the search. 

In order to discuss the terminating condition we 
will need to define a function ~(n). We will denote the 
cost of a path from 8 to a node n as ~(n). Notice that  
in a tree there is only one path from 8 to any node n, 
and so ~(n)is the cost of the minimal cost path from 
a to  n. 

We can now define a terminating condition for 
our search algorithms. If we reach a goal node in 
our search, and it is not possible that  any node on 
OPEN can be on a path of less cost, we may end the 
search. In order to detect this condition we will need 
to calculate @(n)for each node put on OPEN. When 
all the nodes on OPEN have ~(n)greater than or equal 
to the ~(n)of a goal node which has been reached, we 
may stop. We have restricted edge weights to be non- 
negative by using rectilinear distance as the cost. We 
are therefore insured that  no node on OPEN could be 
on a path of lesser cost than the path we have found 
to the goal node since adding non-negative numbers 
cannot result in a smaller number. If we were to 
ignore our terminating condition and stop only when 
no more nodes were left on OPEN, the order in which 
nodes were placed on OPEN would not matter since 
all nodes would eventually be expanded. This is called 
ezhauative search. 

It is now clear that  we may gain by ordering 
the nodes on OPEN by increasing value of ~(n). It 
does not help to expand nodes whose ~(n)is greater 
than other nodes on OPEN since those with smaller 
~(n)values will have to be expanded before the algo- 
rithm terminates. At any point now, if a goal node 
is reached, we also know it is on a minimal cost path 
because all other nodes on OPEN have ~(n)values at 
least as great. This algorithm is called best-first and 
is also known as branch-and-bound. 

The beat-first algorithm can show a dramatic 
improvement in time and space efficiency over blind 
searches such as depth-firat and breadth-first. Best- 
first relies on historical information to predict which 

nodes are the most likely to be on a minimal cost 
path. The ideal algorithm would operate on perfect 
information thereby always choosing the correct node 
to expand at each stage of the search. But perfect in- 
formation implies the path is already known, so there 
is little reason to search. It is possible however, to use 
heuristic (serving to aid discovery) information. This 
technique is called heuristic search. An heuristic tries 
to predict the candidate nodes which are most likely 
on a minimal cost path~ 

We shall call an heuristic search algorithm ad- 
missable if it always finds a minimal cost path when a 
path exists. Nilsson 1° presents an admissable heuris- 
tic search algorithm, A*. First, the algorithm will be 
presented and then, it will be shown how it may be 
applied to general cell global routing. 

Algorithm A* 

Let us define an evaluation function, f ,  so that  
its value, f(n),  at any node n, is an estimate of the 
cost of a minimal cost path constrained to go through 
n. Let the function k(n~, ni)give the actual cost of 
a minimal cost path between two arbitrary nodes n~ 
and n i. Let 

h(n~)=mink(ni, ni) 

where the min is over all paths from n i to n i and n i 
is the goal node. An optimal path from ni to the goal 
node is one that  achieves h(ni). Define an optimal 
path from the start node 8 to some node n by: 

for all n accessible from 8. 

We can now define a function/,  such that,  ]{n) is 
the actual cost of an optimal path constrained to go 
through node ~ Let 

f(n)=g(n)--Fh(n) 

We desire our evaluation function, f(n), to be an 

estimate of ]. We may take f(n)to be 

where ~ is an estimate of g and h is an estimate of 
h.For ~(n)we will use the cost of the path which has 
been found by the search process in getting to node n. 
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For h(n)we will rely on information from the problem 
domain. 

What does h(n)really represent? It represents our 
best estimate of the cost of completing the connection 
between two points using Manhattan geometry while 
avoiding all obstacles between the two points. Nilsson 
proves that  if h is a lower bound on h, then the A* 
algorithm is admissible. An obvious choice for h then, 
is the rectilinear (Manhattan) distance from n to the 
goal. This will always be a lower bound on the actual 
distance since the route may be forced to go out of 
its way to avoid obstacles which only increases the 
length of the wire. In other words, the best you can 
do using Manhattan geometry is a connection whose 
length is equal to the rectilinear distance between the 
two points. Therefore, ~, the rectilinear distance to 
the goal, will always be a lower bound on g, the actual 
distance to the goal, and hence algorithm A* will 
always find an optimal route. 

The algorithm proceeds as the other algorithms 
with 8, the start node being placed on OPEN initially. 
The difference is that  nodes are placed on OPEN in 
ascending order of their f values. Nodes are then 
taken off OPEN and expanded with the most likely 
candidates, according to the heuristic, expanded first. 
ff a successor is generated which has already been 
placed on CLOSED, its old and new f values must be 
compared. If its new f is less than the old it must 
be placed back on OPEN. This means a new, shorter 
path has been found to some intermediate point on 
the routing surface. The algorithm terminates when 
the goal node is removed from OPEN to be expanded. 

In the implementation it is important to keep 
pointers from each successor back to its parent node. 
These pointers provide the means for following back 
the path to the start node once the search has ter- 
minated by finding the goal node. It is also important 
to note that when a node is moved from CLOSED to 
OPEN because a shorter path to it has been found, 
its pointers must be redirected in order to reflect this 
new shorter path back to the start node. 

G e n e r a t i n g  Sueeessors  

The most straightforward way of generating suc- 
cessors is to divide the routing surface up into a grid. 
The routing surface can then be modelled by setting 
the grid spacing equal to the minimum wire spacing. 
Each grid point adjacent to the current node is con- 
sidered a successor unless the grid point is covered by 

an obstruction or was the predecessor of the current 
node. If this model is used with ~(n) defined to be 0 
then it is equivalent to the Lee-Moore 6,s algorithm. 

Using the grid-based approach tends to require 
large amounts of memory and processor time since 
so many nodes are expanded. It has the advantage 
however, of guaranteeing that every possible path is 
explored. 

By exploiting the constraints of the general cell 
layout, a large improvement can be made over the 
grid-based approach. First, the only obstacles are 
rectangular Manhattan cells. It can be observed that  
optimal paths need only hug the boundaries of cells if 
they intervene in the path selection. What  is needed 
then is a method of detecting when a path collides 
with a cell and a means for generating successors 
that: (1) extends any path as far toward the goal as 
is feasible in z and y and (2) hug8 cells (obstacles) 
as they are encountered. If this technique is applied 
for generating successors, surprisingly few nodes are 
generated before an optimal path is found. See figure 
1 for an example of the expansion which takes place. 

The implementation requires an efficient means 
of representing the routing surface and its accom- 
panying geometry. The atomic unit of the data struc- 
ture is the point. Points are linked dynamically to 
form line segments which can either be edges of boxes 
(cells) or segments of wire nets. All points are linked 
to reflect their topological order in both z and y. 
This maintains their physical relationships. Points are 
also related logically by the higher level structures to 
which they belong, namely boxes and wire segments. 
Therefore, a third set of links is kept to maintain this 
logical relationship between points. 

By maintaining the topological ordering, an 
efficient means of ray-tracing 14 is used to expand the 
frontiers of the search. 

E x t e n s i o n s  

In order for this algorithm to be useful it must 
handle multi-terminal net8 and multi-pin terminal812. 
Multi-terminal nets are accomodated by approximat- 
ing a Steiner tree with an adaptation of Dijkstra's 2 
minimum spanning tree algorithm. The modification 
of the spanning tree algorithm considers all line seg- 
ments in the spanning tree being built as potential 
connection points. A spanning tree would only con- 
sider the pins (vertices) as potential connection points. 

Multi-pin terminals are handled by logically 
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Figure 1. An example of node expansion using A* algorithm. 
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grouping all pins which belong to a terminal. When 
a terminal is connected into the tree all the line seg- 
ments which make up the connecting path as well as 
all the pins which are associated with the newly con- 
nected terminal are brought into the connected set. 
This connected set forms the set of potential connec- 
tions for terminals that  are yet to be connected into 
the tree. The A* algorithm is used to merely find the 
shortest path which makes each new connection as 
new terminals are added to the tree. 

Because of the generality of the A* algorithm, 
the heuristic cost function can be used to favor cer- 
tain classes of routes over others. One problem, that  
became immediately obvious in the implementation, 
we will call the inverted corner (see figure 2). By 
detecting the inverted corner and penalizing the non- 
preferred route in the cost function calculation we can 
cause the router to always take the preferred route. 
Since both routes have exactly the same length, if 
a small number, e, is added to the cost of the non- 
preferred route the algorithm will automatically pick 
the preferred route. 

Another useful extension would be to allow or- 
thogonal polygons for the cell boundaries. To ae- 
comodate the more general cell geometry the proce- 
dure which generates successors must be modified so 
that  it leaves no stone unturned. In general, this 
is equivalent to a grid-less maze search. A form of 
Sutherland's ray-tracing algorithm 14 must be imple- 
mented to accomodate this more general form. 

C o n c l u s i o n s  

Looking at the classical Lee-Moore approach in 
the context of the general heuristic search algorithm 
shows how emeiency improvements can be made for 
certain restricted problem domains. 

The generalized cost function concept also allows 
other heuristics to be easily implemented. For in- 
stance, in the context of a fixed cell placement router 
(i.e. a router which does not adjust cell placement), 
a cost function may be associated with what is called 
channel congestion. Since there are no channels the 
term is slightly abused, but  it refers here to congested 
passages between adjacent cells. A first-pass route 
of all nets would reveal congested areas. These con- 
gested areas would manifest themselves in the form of 
several nets hugging the edge of a cell which was close 
to an adjacent cell. A second route of the affected nets 
could penalize those paths which chose the congested 
area. 

Independently routing each net considerably 
reduces the complexity of the search since the only 
obstacles are the cells. Classically, nets have been 
ordered and routed one alter another. With this ap- 
proach nets must avoid other nets as well as cells, 
greatly increasing the search time. Independent net 
routing also eliminates the problem of net order- 
ing which can consume a great deal of computing 
resources in itself. 

By routing in the entire routing surface instead 
of channels, the step of routing surface decomposi- 
tion is eliminated. The inherent difficulty of the 
channel decomposition process is compounded by 
pin-splittin~ 2,1 and inter-channel inter]create, and 
avoiding the whole problem seems to be a good solu- 
tion. 

Actual experience using this algorithm has shown 
that  its efficiency for large problems is very accept- 
able. The processor time consumed by global rout- 
ing is always less than the time consumed by detailed 
routing and layer assignment. 

This approach does require a detailed router 
to follow which does the track assignment. A spe- 
cial algorithm has been developed which dynami- 
cally assigns channels based on net interference rather 
than cell placement. Within the dynamically as- 
signed channel the subnets can be track-assigned us- 
ing standard channel routing algorithms which t ry  
to minimize the number of tracks used. The details 
of this procedure are beyond the scope of this paper 
and may be the topic of future publications by this 
author. 
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