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ABSTRACT 

An extension of the standard JPEG image compression known as JPEG-3 allows rescaling of the 
quantization matrix to achieve a certain image output quality. Recently, Tchebichef Moment Transform 
(TMT) has been introduced in the field of image compression. TMT has been shown to perform better than the 
standard JPEG image compression. This study presents an adaptive TMT image compression. This task is 
obtained by generating custom quantization tables for low, medium and high image output quality levels based 
on a psychovisual model. A psychovisual model is developed to approximate visual threshold on Tchebichef 
moment from image reconstruction error. The contribution of each moment will be investigated and analyzed 
in a quantitative experiment. The sensitivity of TMT basis functions can be measured by evaluating their 
contributions to image reconstruction for each moment order. The psychovisual threshold model allows a 
developer to design several custom TMT quantization tables for a user to choose from according to his or her 
target output preference. Consequently, these quantization tables produce lower average bit length of Huffman 
code while still retaining higher image quality than the extended JPEG scaling scheme.  
 
Keywords: Adaptive Image Compression, TMT Quantization Tables, Tchebichef Moments, Psychovisual 

Error Threshold 

1. INTRODUCTION 

An adaptive image compression controls the quality 
image output and the rate of compression through scaling 
the quantization values. This approach has been 
implemented in the extension of JPEG image 
compression known as JPEG-3. The default quantization 
table of JPEG compression gives a good basic but rigid 
compression. There is a need to provide some flexibility 
to adjust the quality of output images based on user 
preference. The most popular technique to obtain an 
adaptive quality on compressed image output is by 
scaling the quantization tables from given quality factor 
QF. Scaling the quantization tables change the overall 
quantization values uniformly. The output quality on the 
compressed image may not be optimal. This study will 

propose a set of quantization tables for an adaptive 
compression. These tables shall be generated based on a 
psychovisual threshold scheme according to the target 
output quality of compressed image.  

TMT can be an alternative transform to the DCT for 
image compression as the properties of TMT are similar 
to the DCT. The orthogonal Tchebichef moments have 
been widely used in several image processing applications 
due to their advantages of preserving the property of 
orthogonality in a moment set. For example, they have been 
used in image compression (Ernawan et al., 2011; 
Rahmalan et al., 2010; Abu et al., 2010; Senapati et al., 
2010), image dithering (Ernawan et al., 2012), image 
watermarking (Chang and Chang, 2010), image recognition 
(Zhang et al., 2010) and face recognition (Tiagrajah et al., 
2011). The original implementation of TMT does not 
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require any numerical approximation, thus gives rise to 
more accurate image feature representation. The orthogonal 
basis is directly mapped on the discrete domain of the 
image coordinate space. In order to extend TMT image 
compression, this study examines an adaptive TMT 
image compression based on psychovisual model.  

1.1. Tchebichef Moment Transform 

TMT is a two-dimensional transform based on discrete 
orthogonal Tchebichef polynomials which provides 
compact support on graphical and real images. TMT 
has been shown to have better image representation 
capability than the continuous orthogonal moments 
(Shu et al., 2010). TMT integrates a simplified 
mathematical framework technique using matrix; this 
advantage makes easily computation using a set of 
recurrence relations (Huang et al., 2010). TMT has unit 
weight and algebraic recurrence relations involving real 
coefficients. TMT algorithm reduces computational 
complexity as measured in terms of the number of 
arithmetic operations while keeping the accuracy of the 
reconstructed images. TMT is capable of performing 
image reconstruction exactly without any numerical 
errors. The TMT basis function is shown in Fig. 1. 

Figure 1 shows the 2-dimensional basis function of 
TMT. There are 64 two dimensional TMT basis 
functions that are generated by multiplying a horizontal 
against vertical set of one-dimensional 8-point TMT 
basis functions. The neutral gray represents zero in this 
figure, white represents positive amplitudes and black 
represents negative amplitudes. The low frequencies 
reside in the top left most corner of the spectrum, while 
the high frequencies are in bottom right most corner. For 
each row, the frequency in this case called moment order 
of the TMT basis functions is increasing in horizontal 
directions from top to bottom. While the moment order 
of the TMT basis functions for columns is increasing for 
every vertical column from left to right. The digital 
image tends to have a compact representation in 
frequency domain around the low frequencies. For a 
given set {tn (x)} of input value (image intensity values) 
of size N = 8, the forward discrete orthogonal Tchebichef 
Moments of order m + n is given as follows Equation 1: 
 

m n

M-1 N-1

mn
x=0 y=0

1
T = t (x)t (y)f(x,y)

ρ(m,M)ρ(n,N)
∑∑  (1) 

 
for m = 0, 1, 2, ..., N-1and n = 0, 1, 2, ..., N-1. 
where f(x,y) denotes the intensity value at the pixel 
position (x,y) in the optimal image. Tchebichef moments 
are defined based on a set of kernel function tn(x) as the 
following recursive relations Equation 2-4: 

0t (x) = 1 (2) 
 

1

2x +1- N
t (x) =

N
 (3) 

 

( )1 n-1 n-2

n

2(n-1)
2N

(2n -1)× t (x)× t (x) - (n -1) 1- × t (x)
t (x) =

n
 (4) 

 
for n = 2, 3, ..., N-1. The above definition uses the 
following moment order scale factor on the polynomial 
of degree n Equation 5: 
  

n
β(n,N) = N   (5) 
 

The set {tn(x)} has a squared-norm given by Equation 6: 
 

 

{ }
N-1

2

i
i=0

2 2 2 2
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ρ(n,N) = t (x)

1 2 3 n
N × 1- × 1- × 1- L× 1-
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∑

  (6) 

 
The process of image reconstruction from its 

moments, the inverse Tchebichef moments are given as 
follows Equation 7:  
 

M-1 N-1

m nmn
m=0 n=0

= T t (x)t (y)f(x,y) ∑∑ɶ   (7) 

 
for m, n = 0, 1, 2, ..., N-1. Where M denotes the maximum 
order of moments used and f(x,y)ɶ denotes the 
reconstructed intensity distribution. Image reconstruction 
provides a measure of the feature representation 
capability of the moment functions. 

1.2. Quantization Tables 

Quantization step is a crucial element of image 
compression. The compression rate and the output 
image quality depend on the quantization process. 
Recently, 8×8 TMT Quantization tables have been 
introduced for TMT image compression (Abu et al., 
2010). These quantization tables have been shown that 
the TMT image compression perform better than 
JPEG image compression in term of image quality and 
the compression rate. In order to generate custom 
TMT quantization tables for an adaptive image 
compression, this study proposes an adaptive 
psychovisual threshold. These quantization tables are 
designed based on human visual system characteristic 
to optimize image compression performance. 
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Fig. 1. 8×8 TMT basis function 
 
1.3. Quality Factor 

An adaptive JPEG compression using quality factor 
has been widely used to determine the image quality and 
compression bit rate. The quality of compressed image 
can be controlled by scaling the quantization table value 
by a quality factor. Quality factor is used to scale the 
quantization table by a weighting factor q as given as 
follows (Luo et al., 2010) Equation 8 and 9: 
 

50
q = for QF < 50

QF
 (8) 

 
QF

q = 2 - for 50 QF < 100
50

≤   (9) 

 
The scaling quantization table value by quality 

factor will change overall uniform quantization matrix, 
however, it may not produce an optimal output quality 
on compressed image without considering its 
perceptual effects on human visual system. The 
quantization table represents tolerance of the visibility 
of human visual system. The scaling quantization tables 
suppose to be difference between low frequency 
coefficients and high frequency coefficients. Human 
visual system is highly sensitive to low frequency 
signals than high frequency. The visual information of 
image representation resides mostly in low frequency 
coefficients. In order to get the best performance, the 

quantization table generation may need to be designed 
based on human visual systems.  

1.4. Psychovisual Error Threshold 

A quantitative experimental investigates the effect 
of an increment on TMT coefficients one by one. This 
experiment has been implemented and tested on 40 
natural and 40 graphical 512×512 raw images. The 
effect of incremented moment coefficients are 
calculated by image reconstruction error scores. We 
measure the threshold for visibility of a given TMT 
basis function for both good quality image 
reconstruction and the bit rate of compressed image. 
The threshold is generated based on image 
reconstruction error by increment the coefficient 
transformed one by one. The image reconstruction error 
based on the maximum value of quantization tables 
(Abu et al., 2010) from an order zero to the order 
fourteen produce a curve. The average reconstruction 
error of an increment moment coefficient on luminance 
(Y) and Chrominance (U) for 40 natural images are 
shown in Fig. 2 and 3. The blue diamond curve 
represents image reconstruction error based on a 
maximum quantization table value. In order to produce 
a psychovisual threshold, the new average designed 
reconstruction error is to get a smoothed curve which 
results in an ideal curve of average error scores. An 
ideal psychovisual threshold for luminance and 
chrominance is represented by a red square curve. 

Based on the principles of the Weber’s law, the 
human eye has high sensitivity at low intensity levels 
and greatly reduced sensitivity at high intensity levels. 
Human eye has a non linear response to changes in 
intensity that is inversely proportional to the average 
intensity. This psychovisual threshold takes into 
consideration on the human eyes which is more 
sensitive to low order image than to constant image 
patterns. According to HVS characteristics, the low 
frequency order of custom quantization table design 
should not be changed. A slight change in the low 
frequency order of quantization table design would 
cause a larger distortion which can be perceived by 
human visual system. This sensitivity represents the 
threshold of human visual system at low order signals. 

The smooth curve of reconstruction error of an output 
image in moment order is generated to get a function that 
represents a psychovisual threshold of the image. 
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Fig. 2. Average reconstruction error of an increment on TMT basis function for 40 natural color images 

 

 
 

Fig. 3. Average reconstruction error of an increment on TMT basis function for 40 natural color images 
 
With reference to Fig. 2 and 3, the authors propose a 
psychovisual threshold for TMT basis function for 
luminance fML and chrominance fMR of quantization 
table which are defined as follows Equation 10 and 11: 
 

6 5

4 3 2

ML
f (x) = -0.00009895x + 0.0045x

-0.07129x + 0.4354x - 0.6352x - 0.737x + 4
  (10) 

6 5
MR

4 3 2

f = -0.00008.837x + 0.0041x

-0.0661x + 0.4111x - 0.6368x - 0.4389x + 3

for x 0,  1,  2,...,14

(x)

=
  (11) 

 
1.5. Adaptive Psychovisual Error Threshold 

An adaptive psychovisual threshold is investigated to 
generate custom quantization tables for optimal 
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compression rate with best quality image compression 
based on user preferences of low, medium and high 
quality. Each polynomial of these functions in Equation 
10 and 11 are given variables weight or quality scale QS 
values. The psychovisual threshold basic curve provides 
an optimal custom quantization table generation for an 
adaptive TMT image compression. The authors purpose 
an adaptive psychovisual threshold as a function 
threshold as follows: 
 

 

6
ML

5

4 3

2

f (x) = (-0.00009895 - 0.000000292α)x

+(0.0045 - 0.000005α)x - (0.07129

+0.0000072α)x + (0.4354 + 0.0000057α)x

-(0.6352 - 0.003536α)x - (0.737 - 0.0042α)x + 4

 (12) 

 
6

MR

5

4 3

2

f = (-0.00008.837 - 0.000000245α)x

+(0.0041- 0.0000042α)x - (0.0661

+0.0000036α)x + (0.4111+ 0.000039α)x

-(0.6368 - 0.0032α)x (0.4389 - 0.00232α)x + 3

forx 0,  1,  2,...,14.

(x)

=

  (13) 

 
The value of α represents quality scale QS from -25 

into 25 based on user preference to generate the custom 
quantization tables. These functions in Equation 12 and 
13 are the adaptive psychovisual error thresholds for 
luminance and chrominance respectively as shown in 
Fig. 4 and 5. The respective quantization tables are then 
generated from TMT psychovisual threshold with QS = -
25, 0 and 25 as given in Equation 14-16. 
 

VL1

4 4 3 5 9 16 28 51

4 3 5 9 16 28 51 65

3 5 9 16 28 51 65 85

5 9 16 28 51 65 85 95
Q =

9 16 28 51 65 85 95 83

16 28 51 65 85 95 83 58

28 51 65 85 95 83 58 31

51 65 85 95 83 58 31 43

 
 
 
 
 
 
 
 
 
 
 
  

 

VR1

4 4 3 5 11 23 40 75

4 3 5 11 23 40 75 99

3 5 11 23 40 75 99 134

5 11 23 40 75 99 134 157
Q =

11 23 40 75 99 134 157 148

23 40 75 99 134 157 148 119

40 75 99 134 157 148 119 69

75 99 134 157 148 119 69 56

 
 
 
 
 
 
 
 
 
 
 
  

 (14) 

VL2

4 4 5 7 14 25 43 79

4 5 7 14 25 43 79 104

5 7 14 25 43 79 104 144

7 14 25 43 79 104 144 178
Q =

14 25 43 79 104 144 178 180

25 43 79 104 144 178 180 161

43 79 104 144 178 180 161 107

79 104 144 178 180 161 107 61

 
 
 
 
 
 
 
 
 
 
 
  

 

VR2

4 4 5 8 17 33 57 107

4 5 8 17 33 57 107 142

5 8 17 33 57 107 142 199

8 17 33 57 107 142 199 247
Q =

17 33 57 107 142 199 247 250

33 57 107 142 199 247 250 218

57 107 142 199 247 250 218 117

107 142 199 247 250 218 117 71

 
 
 
 
 
 
 
 
 
 
 
  

 (15) 

 

VL3

VR3

4 5 6 10 18 34 58 96

5 6 10 18 34 58 96 143

6 10 18 34 58 96 143 192

10 18 34 58 96 143 192 225
Q =

18 34 58 96 143 192 225 255

34 58 96 143 192 225 255 255

58 96 143 192 225 255 255 172

96 143 192 225 255 255 172 75

4 5 6 11 22 43 74 138

5

Q =

 
 
 
 
 
 
 
 
 
 
 
  

6 11 22 43 74 138 186

6 11 22 43 74 138 186 255

11 22 43 74 138 186 255 255

22 43 74 138 186 255 255 255

43 74 138 186 255 255 255 255

74 138 186 255 255 255 255 162

138 186 255 255 255 255 162 84

 
 
 
 
 
 
 
 
 
 
 
  

 (16) 

 
1.6. Image Compression Scheme 

The RGB colour in an image has high correlation 
among the primary colour components. Refer to 
standard JPEG image compression, the RGB image is 
converted into YCbCr. Next, the three components are 
divided into the 8×8 size blocks and then each image 
block is converted into transform domain. The 
transformed coefficients are divided by the 
quantization tables.  
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Fig. 4. Average reconstruction error of an increment on TMT coefficient Luminance for 40 natural color images with QS = -

25, 0 and 25 
 

 
 
Fig. 5. Average reconstruction error of an increment on TMT coefficient Chrominance for 40 natural color images with QS = -

25, 0 and 25 
 
For an adaptive JPEG compression, the quantization steps 
are defined as follow by rounding to the nearest integer 
Equation 17: 
 

q
JPG

A(u,v)
A (u,v) Round 

Q (u,v) q
=

⋅

 
 
 

 (17) 

 
where, A is the DCT coefficient, Q is the quantization 
table and q is scale factor upon the quantization value. 
For the proposed an adaptive TMT image 
compression, the quantization steps are given as 
follows Equation 18: 
 

q
TMT

T(u,v)
T (u,v) = Round

Q (u,v)

 
 
 

 (18) 

where, QTMT(u, v) represents the new quantization table 
based on psychovisual thresholds in Equation 12 and 13. 
The most quantized high frequency coefficients are 
mostly zeros. Next, the quantized DC coefficients are 
separated from the quantized AC coefficients.  

The quantized DC coefficient is then encoded as 
the difference from the DC term of the previous block. 
For AC coefficient, the quantized AC coefficients are 
scanned in zig-zag pattern into a linear array on each 
8×8 image block. The large number of zeros can be 
efficiently encoded by run-length coding. The 
sequences of run length code are converted to variable 
length binary codeword using Huffman table. 
Huffman coding makes shorter code words of 
frequently occurring symbols for DC and AC 
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coefficients. The basis for this coding is a code tree 
which assigns short code words to symbols frequently 
used and long code words to symbols rarely used for 
both DC and AC coefficients; each symbol is encoded 
with a variable length code from the Huffman table 
(Vidyavathi and Sabeenian, 2012). 

Huffman tables used during the compression process 
are stored as header information in the compressed 
image file in order to uniquely decode the coefficients 
during the decompression process. The average bit lengths 
of Huffman code of adaptive image compressions based 
on psychovisual error threshold are given in Table 1-3.  

1.7. Evaluation Measurement 

The experimental results can be measured by 
several image compression parameters. The evaluation 
of adaptive TMT image compression here uses full 
error, Means Squared Error (MSE), Peak Signal Noise 
to Ratio (PSNR) and Structural Similarity Index Matrix 
(SSIM). The image reconstruction error can be defined 
as follows Equation 19: 
 

M-1 N-1 2

i=0 j=0 k=0

1
E(s) = g(i, j,k) - f(i, j,k)

3MN
∑∑∑  (19) 

 
where, the original image size is M×N and k is the third 
index refers to the three RGB colors. The MSE 
calculates the average of the square of the error which 
defined as follows Equation 20 (Hore and Ziou, 2010):  
 

M-1 N-1 2
2

i=0 j=0 k=0

MSE = g(i, j,k) - f(i, j,k)∑∑∑   (20) 

 
The PSNR is defined as follows Equation 21:  

 
2

i
10 10

Max 255
PSNR = 20log = 10log

MSEMSE

  
  

   
  (21) 

 
where, Maxi is the maximum possible pixel value of the 
image. For evaluation of the compression rate, the total bit 
of the original image 24-bit with 512×512 pixel is divided 
by the average bit of compressed image. Generally, the 
compression rate before Huffman coding is computed as 
follows Equation 22 (Sahami and Shayesteh, 2012): 
 

24× M × N
CR =

L
  (22) 

Table 1. Average bit length of Huffman code of JPEG 
compression with QF = 75 and TMT image compression 
using an adaptive psychovisual threshold with QS = -25 

 JPEG  TMT image  
 compression compression 
 QF = 75  QS = -25 
 -------------------- ---------------------- 
Average 40 40  40 40  
bit length of real graphic  real  graphic  
Huffman code images images images images 

DC Luminance 6.3715 5.9680 4.7660 4.8997 
DC Chrominance Cr 3.6904 4.5287 2.0237 3.1187 
DC Chrominance Cb 4.0424 4.5336 2.3221 3.3759 
AC Luminance 3.1136 3.3472 2.1055 2.7766 
AC Chrominance Cr 2.0577 2.3590 1.2416 1.9161 
AC Chrominance Cb 2.1931 2.4065 1.2760 2.0151 

 
Table 2. Average bit length of Huffman code of JPEG 

compression with QF = 50 and TMT image compression 
using an adaptive psychovisual threshold with QS = 0 

 JPEG image TMT image  
 compression compression 
 QF = 50  QS = 0 
 -------------------- ---------------------- 
Average 40 40  40 40  
bit length of real graphic  real  graphic  
Huffman code images images images images 

DC Luminance 5.7468 5.5237 4.7660 4.9000 
DC Chrominance Cr 2.7941 3.9660 2.0237 3.1187 
DC Chrominance Cb 3.1548 4.0061 2.3221 3.3759 
AC Luminance 2.8680 2.9993 1.7643 2.3555 
AC Chrominance Cr 2.0951 2.4552 1.1666 1.7400 
AC Chrominance Cb 2.1845 2.4823 1.1915 1.8245 

 
Table 3. Average bit length of Huffman code of JPEG 

compression with QF = 25 and TMT image compression 
using an adaptive psychovisual threshold with QS = 25 

 JPEG  TMT image  
 compression compression 
 QF = 25  QS = 25 
 -------------------- ---------------------- 
Average 40 40  40 40  
bit length of real graphic  real  graphic  
Huffman code images images images images 

DC Luminance 4.8129 4.9254 4.766 4.8997 
DC Chrominance Cr 2.0249 3.1426 2.0237 3.1187 
DC Chrominance Cb 2.2599 3.2909 2.3221 3.3759 
AC Luminance 2.5603 2.7586 1.6092 2.1116 
AC Chrominance Cr 2.1251 2.4367 1.1339 1.6363 
AC Chrominance Cb 2.0776 2.5404 1.1525 1.7168 
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where, 24 means that 24-bit of original RGB image, M 
× N is the original image size and L is total number of 
bits assigned prior to entropy coding. Another 
measurement quality image is SSIM, which is a method 
to measure quality by capturing the similarity of images 
(Yim and Bovik, 2011). The SSIM is defined as 
follows Equation 23: 
 

α β γSSIM(x,y) = [l(x, y)] .[c(x, y)] .[s(x,y)]   (23) 
 
where, α>0, β>0, γ>0, are parameters to adjust the relative 
importance of the three components. The detail description 
is given in (Yim and Bovik, 2011). The comparison of the 
quality of image reconstruction between the extended JPEG 
image compression and adaptive TMT image compression 
is shown in Table 4-6. The compression ratio score of 
adaptive TMT image compression are given in Table 7. In 
order to visually observe the performance of this technique, 
the original image zoomed in to 400% as depicted on the 
right of Fig. 6. The experiment results of an adaptive 
TMT image compression using psychovisual threshold 
are shown on the right of Fig. 7-9. 
 
Table 4. The average image reconstruction error score of 

JPEG compression with QF = 75 and TMT image 
compression using an adaptive psychovisual 
threshold with QS = -25  

 JPEG  TMT image 
 compression compression 
 QF = 75  QS = -25 
 ----------------------- -------------------------- 
 40 40  40 40  
Image real graphic  real  graphic  
measurement images images images images 
Full error 4.4492 4.1551 4.4330 3.6499 
MSE 45.0920 52.3127 39.0560 36.2067 
PSNR 33.4415 33.5977 32.9026 33.7515 
SSIM 0.9739 0.9815 0.9568 0.9696 

 
Table 5. The average image reconstruction error score of JPEG 

compression with QF = 50 and TMT image 
compression using an adaptive psychovisual threshold 
with QS = 0  

 JPEG  TMT image  
 compression compression 
 QF = 50  QS = 0 
 ------------------------ ------------------------- 
 40 40  40 40  
Image real graphic  real  graphic  
measurement images images images images 
Full error 5.5349 6.1479 5.2457 4.6034 
MSE 70.9636 113.8333 57.4476 62.5665 
PSNR 31.1903 29.7903 31.3790 31.6478 
SSIM 0.9557 0.9541 0.9462 0.9599 

Table 6. The average image reconstruction error score of JPEG 
compression with QF = 25 and TMT image 
compression using an adaptive psychovisual threshold 
with QS = 25  

 JPEG  TMT image  
 compression compression 
 QF = 25  QS = 25 
 ---------------------- ----------------------- 
 40 40  40 40  
Image real graphic  real  graphic  
measurement images images images images 
Full error 6.8019 7.9809 5.7927 5.3162 
MSE 105.7614 190.0435 72.1001 87.0314 
PSNR 29.1848 27.4205 30.4452 30.3259 
SSIM 0.9241 0.9201 0.9365 0.9503 

 
Table 7. The compression ratio score of JPEG compression 

using quality factor and TMT image compression 
using an adaptive psychovisual threshold  

 JPEG   TMT image  
 compression  compression 
 ----------------------  ----------------------- 
 40 40   40 40  
 real graphic   real  graphic  
Scale images images Scale images images 
QF = 75 3.213 2.9194 QS = -25 5.1137 3.5392 
QF = 50 3.3247 2.9911 QS = 0 5.7138 3.9964 
QF = 25 3.5297 3.0799 QS = 25 6.0346 4.3186 

 

 
 
Fig. 6. Original color image (left) and zoomed in to 400% (right) 

 

  
 
Fig. 7. The comparison between JPEG quantization table with QF 

= 75 (left) and TMT psychovisual threshold with QS = -25 
(right) zoomed in to 400% 
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Fig. 8. The comparison between JPEG quantization table with 

QF = 50 (left) and TMT psychovisual threshold with 
QS = 0 (right) zoomed in to 400% 

 

  
 
Fig. 9. The comparison between JPEG quantization table with 

QF = 25 (left) and TMT psychovisual threshold with 
QS = 25 (right) zoomed in to 400% 

 
2. DISCUSSION 

The comparative performances of the adaptive JPEG 
image compression using scaling quality factor and the 
proposed adaptive TMT image compression are 
discussed. In this study, we investigate the sensitivity 
TMT basis function by measuring the reconstruction 
error to represent the visibility of HVS. The contribution 
of the performance of custom psychovisual threshold for 
TMT basis function is used to generate custom 
quantization tables.  

The experimental results are provided to validate the 
quantization tables based on an adaptive psychovisual 
model to the output compressed image. In order to 
observe the visual quality of an adaptive TMT image 
compression based on psychovisual threshold, the 
reconstructed baboon image is zoomed in to 400%. The 
experimental results have shown that an adaptive TMT 
image compression can provide significantly better 
image reconstruction than JPEG image compression at 
various quality factors. 

Some viewer may find that JPEG compression 
produces bad artifacts when scaling with quality factor = 
25 as depicted on the left of Fig. 9. However, the visual 
quality of TMT image compression using visual threshold 

is largely free of those defects as shown on the right of 
Fig. 9. Even as the bit rate gets higher, an adaptive TMT 
image compression presents without introducing 
objectionable artifacts. The results of an adaptive TMT 
image compression with quality scale QS = -25 as 
depicted on the right of Fig. 7 produce closer image 
toward the original image at minimum average bit length 
of Huffman code. 

The experimental results show the new TMT 
quantization tables generation based on psychovisual 
error thresholds produce better image compression in 
quality image reconstruction at lower average bit length 
of Huffman code. The psychovisual threshold for 
quantization table generation offers an effective and 
optimal the quantization tables for image compression. 

3. CONCLUSION 

This study proposes a novel adaptive psychovisual 
error threshold for TMT basis function. These thresholds 
are used to generate the custom quantization tables for 
adaptive TMT image compression. The experimental 
results show an adaptive TMT image compression 
based on psychovisual model performs better than 
JPEG compression in term of image visual quality and 
compression bit rate. The adaptive psychovisual 
threshold can be adopted to generate custom 
quantization table for TMT image compression based on 
user preference. Unlike adaptive JPEG compression, the 
adaptive TMT image compression does not visually 
introduce clear artifacts. The proposed psychovisual 
threshold functions can also be utilized in various digital 
image processing application such as super-resolution, 
watermarking and graphical animations. 
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