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Estimation and Inference via Bayesian Simulation: 
An Introduction to Markov Chain Monte Carlo 

Simon Jackman Stanford University 

Bayesian statistics have made great 

strides in recent years, developing a 

class of methods for estimation and 

inference via stochastic simulation 

known as Markov Chain Monte Carlo 

(MCMC) methods. MCMC constitutes 

a revolution in statistical practice with 

effects beginning to be felt in the 

social sciences: models long con- 

signed to the "too hard" basket are 

now within reach of quantitative re- 

searchers. I review the statistical 

pedigree of MCMC and the underly- 

ing statistical concepts. I demon-

strate some of the strengths and 

weaknesses of MCMC and offer prac- 

tical suggestions for using MCMC in 

social-science settings. Simple, illus- 

trative examples include a probit 

model of voter turnout and a linear 

regression for time-series data with 

autoregressive disturbances. I con- 

clude with a more challenging appli- 

cation, a multinomial probit model, 

to showcase the power of MCMC 

methods. 

Bayesianism has obviously come a long way. It used to be that you 
could tell a Bayesian by his tendency to hold meetings in isolated parts 
of Spain and his obsession with coherence, self-interrogation, and other 
manifestations of paranoia. Things have changed. . . . 

P. Clifford (1993,53) 

arkov Chain Monte Carlo (MCMC) methods are probably the 
most exciting development in statistics within the last ten years. 
The techniques comprising MCMC are extraordinarily general, 

and their use has dramatically reshaped the way applied statisticians go 
about their work. Models long thought to be in the "too hard" basket are 
now well within the reach of quantitative researchers. In short, MCMC 
constitutes a revolution in statistical practice, with effects just beginning to 
be felt within the social sciences. 

Consider a simple illustrative example that I will revisit in the pages that 
follow. Models for binary responses-typically, logit or probit models-are 
part of any quantitative social scientist's tool kit. Logitlprobit models pre- 
sent no computational difficulties, and save for any degeneracies specific to 
a given data set, maximum likelihood estimates are easily obtained. The 
popularity and ease of MLE makes it easy to forget that underlying binary- 
response models is a latent regression function: y: = x,p + &,, with the ob- 
served y, equal to 0 when y: < 0, and y, when y: 2 0.  Note that this is a gar- 
den-variety regression model, which we could estimate by least squares, if 
we knew y:. Since we don't observe y:, running this regression is impos- 
sible, and so we form a likelihood function for the observed binary re- 
sponses; e.g., Pr(y, = 1)= Pr(y: 2 0) = Pr(&,> -x,P), etc. 
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But to get a taste for MCMC methods, think of the 
latent y: as missing data. Making imputations for the y: 
is easy, given an approximation for P,the covariates x,, 
and that the observed y,tell us which side of 0 we will lo- 
cate each corresponding y:. With these imputations we 
have a "complete" data set for running the regression of 
y: on x,,which updates the estimate of P.The new esti- 
mate of p can be used to generate new imputations for 
y:, which in turn allow us to update the estimate of P. 
Repeating this procedure generates a sequence of esti- 
mates of p that converges to the MLE of P. 

This procedure-zig-zagging between estimating 
parameters and making imputations for missing data-is 
a simple example of a broad family of statistical tech- 
niques. As stated, the procedure described above is an ex- 
ample of the EM algorithm. But if at each stage of the al- 
gorithm we were to make imputations for y: and 
generate our estimate of p by sampling from the appro- 
priate distributions,' we have a simple example of a 
Markov Chain Monte Carlo method. 

Although this introductory example might seem un- 
remarkable, MCMC has an astonishingly broad range of 
applications. The underlying ideas are relatively straight- 
forward to grasp, and once understood, unlock estima- 
tion problems long considered intractable or impossible. 
But despite the explosion of MCMC methods in the sta- 
tistics l i t e r a t~ re ,~  most social scientists remain unaware 
of the usefulness of these methods. While there are a 
number of excellent summaries of MCMC methods in 
the statistical literature-for instance, I rely heavily on 
the taxonomy presented in Tanner (1996)-many of 
these treatments are all written at a level inaccessible to 
many social scientists, or are motivated with relatively 
unfamiliar applications.3 My aim here is to remedy that 
deficiency. 

MCMC has a distinctly Bayesian heritage and is as- 
sociated with a resurgence in Bayesian statistics, prompt- 
ing the humorous remarks in the epigraph. To be sure, 
the use of MCMC requires familiarization with some of 

'What is meant by an "appropriate" distribution will be made 
clearer below. For now, a useful simplification is fo consider sam- 
pling from a distributions that have each y T  and P as their respec- 
tive means, such that on average, we still make the "correct" impu- 
tations, but the sampling accounts for our uncertainty in each set 
o f  quantities. 

2By the mid-1990s Gelfand (1997) could claim that "several hun- 
dred papers" dealing with MCMC methods had appeared since 
1990. 

30ther general treatments include Gelman et al. (1995), Gilks, 
Richardson, and Spiegelhalter (1996), and Gamerman (1997). 
Albert and Chib (1996) is a good overview with econometric ex- 
amples similar to those I employ here. 
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the basics of Bayesian statistics. However, it is not neces- 
sary to commit to a Bayesian philosophical position in 
order to employ MCMC methods. When using MCMC, 
researchers often employ diffuse priors (which result in 
posterior densities that are overwhelmingly shaped by 
the data) or priors that have the effect of identifying 
parameters that would otherwise be inestimable. Accord- 
ingly, statisticians have accepted MCMC with surpris- 
ingly little controversy, given MCMC's Bayesian under- 
pinnings. In short, one need not take sides in the 
centuries old "holy war" pitting frequentists against sub- 
jectivists in order to exploit the power of MCMC4 

Statistical Preliminaries 

Most statistical inference in the social sciences is driven 
by probability models relating observed data, y, to un- 
known parameters, 0. A simple example involves model- 
ing Normal data: e.g., yi - N(p, 02),'d i = 1 ,  . . . , n. The 
familiar linear regression model follows by replacing p 
with x,P. Generically, we can write these probability 
models as y - flyl0). 

Likelihood and Frequentist Inference 

The likelihood function summarizes the information 
about 0 in y, defined as any function of 0 proportional to 
flyl0) (Tanner 1996,14): 

Both the frequentist and Bayesian approaches to statisti- 
cal inference exploit the likelihood function. Frequentist 
inference treats 0 as fixed but unknown and sample- 
based estimates of 0, 0 ,  as random (since repeated sam- 
pling, if undertaken, could yield different values of 0 ). 
Frequentists use the likelihood function to evaluate the 
plausibility of the other 0 that might (hypothetically) re- 
sult from repeated sampling, relative to the observed 
sample estimate 0 .  Neyman-Pearson type inferential 
procedures such as likelihood ratio tests follow fairly di- 
rectly from this perspective (e.g., Edwards 1992; 
Bernardo and Smith 1994,450-455). This approach to 
statistical inference has been championed within politi- 
cal science by King (1 989). 

4For an introduction to this long-standing debate from a political 
science perspective, see Western and Jackman (1994). 
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Bayesian Inference 

Bayesian inference takes 0 as fixed, conditional on the 
observed data y, and 0 as random. The Bayesian is inter- 
ested in making posterior probability statements about 0 
(i.e., "posterior" in the sense of "after" observing the 
data). The likelihood function summarizes the 
information about 0, providing an essential ingredient in 
Bayesian statistics. Recall Bayes' theorem, 

p(y 1 0)p(0)
~ ( 0  = (2)I Y )  

P(Y) 

where p(0) is the prior on 0 (which characterizes knowl- 
edge or beliefs about 0 before seeing the data), and p(O1y) 
istheposteriordensityof0.Giventhedefinitionofthe 
likelihood function in Equation 1,Bayesl ~~l~ can be re- 
written as 

~ ( 0 1 ~ )~ ( 0 )  (3)L(01~))  

or, in words, a posterior density is proportional to the 
product of a prior distribution and a likelihood. Infer- 
ence about 0 follows from inspection of the likelihood 
(for frequentists) or the posterior density (for Bayesians). 
Note immediately that when prior information is diffuse, 
p(0) approximates a constant, and in turn the posterior 
density is proportional to the likelihood; i.e., with unin- 
formative priors, Bayesian and classical procedures yield 
equivalent inferences about 0. 

PointEstimates vs. Posterior Densities 

In the Bayesian framework inference involves communi- 
cating features of the posterior distribution of 0. For ex- 
ample, a Bayesian might report the mean or the mode of 
a posterior density, along with some measure of disper- 
sion (perhaps quantiles or highest density regions), or 
perhaps even a graphical summary of the posterior (a 
histogram or density estimate). MCMC techniques tend 
to inherit this property of Bayesian analyses. Whereas 
procedures for conventional statistical inference focus at- 
tention on point estimates of parameters and their stan- 
dard errors, MCMC methods seek to characterize a pos- 
terior distribution for parameters. Of course, sometimes 
it will be convenient to summarize a posterior in terms of 
its mean and standard deviation, say, for posteriors that 
are approximately Normal, and hence symmetric about 
the mean. But in some cases the mean and standard de- 
viation may be misleading posterior summaries, say - A 

when the is asymmetric or has multiple mode;, 
an as~m~tot ical l~-val id is 

unrealistic. So while MLEs and least squares estimates are 

single numbers (i.e., solutions to well-defined optimiza- 
tion problems), MCMC methods produce samples from 
the joint posterior density of model that are 
then for the purposes of inference. 

By samplingrather than optimizing, MCMC can make 
estimation and inference simpler for both Bayesians and 
fiequentists. Substantively interesting statistical models 
can give rise to complex likelihood functions, having ei-
ther lots of parameters or a computationally intractable 
functional form, or both. Even without complexity in the 
likelihood itself, sometimes the derivatives of the likeli- 
hood with respect to the unknown parameters are pro- 

hibitively expensive to derive, program, or compute. 
Maximization algorithms may reach terminal solutions 

extremel~slowl~ornotatall)saYbecausetherearemanY 

parameters in the likelihood function, and/or because the 
likelihood function is highly nonlinear in the parameters. 
In other cases the likelihood will be known a priori not to 

have a unique maximum, as is the case in unconstrained 
finite mixture models. In yet another class of cases, the re- 
searcher may want to estimate not just parameters, but 
the values of missing data points as well, complicating the 
optimization problem substantially (at first glance, miss- 
ing data problems can appear to involve estimating many 
more parameters than data points). And in explicitly 
Bayesian setups, sometimes the form of the joint posterior 
density for all the model parameters may be extremely 
complicated, even if the likelihood can be calculated rela- 
tively simply. 

The Data Augmentation Principle: 
Simplifying Estimation via Conditioning 

Over the last twenty years or so, a number of related 
techniques have been developed for dealing with tough 
maximization or approximation problems, such as those 
discussed above. These techniques are a useful point of 
departure for considering MCMC. A key development is 
the EM algorithm, typically credited to Dempster, Laird, 
and Rubin (1977) ,~  which bears some useful resem- 
blances to the primary MCMC technique, Gibbs sam- 
pling. Tanner neatly summarizes the common founda- 
tion of these approaches: 

...rather than performing a complicated maximiza- 
tion or simulation, one augments the observed data 
with "stuff" (latent data) which simplifies the calcu- 
lation and subsequently performs a series of simple 

5Many scholars remark that EM was foreshadowed in numerous 
places in the statistics literature. See Titterington, Smith, and 
Makov (1985,84) or McLachlan and Krishnan (1997,34-34) for 
summaries. 
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maximizations or simulations. This "stuff" can be 
the "missing" data or parameter values. The prin- 
ciple of data augmentation can then be stated as fol- 
lows: Augment the observed data Ywith latent data 
Z so that the augmented posterior distribution 
p(01 Y, Z) is "simple." Make use of this simplicity in 
maximizing/marginalizing/calculating/samplingthe 
observed posterior p(01 Y) . (1996,38) 

Underlying this intuition is the following posterior 
identity: 

where Y and Z are observed and latent data, respectively. 
The critical idea is that while p(01 Y)may be difficult to 
work with, if we could condition on Z as well, the poste- 
rior density or likelihood for 0 would be much easier to 
evaluate. This is well and good, but in implementing this 
strategy one needs to come up with values of Z. The inte- 
gration over the predictive density for Z, p(ZIY), averages 
over more or less likely values of Z. Performing this inte- 
gration by Monte Carlo methods is the second "MC" in 
the MCMC acronym (see the following section). 

Lest there be any confusion, the "augmentation" re- 
ferred to here is not as suspicious as it might first sound. 
There is no "double counting" of the data or any other 
statistical sleight of hand. "Augmenting the observed data 
with latent data" is simply a convenient mechanism for 
estimation. In the examples below "latent data" turns out 
to be quantities that are presumed to exist in specific 
models, but are unobserved by the analyst (e.g., distur- 
bances, or utilities in a discrete choice problem). The 
model structure and current guesses about the model pa- 
rameters generate the conditional expectations or condi- 
tional distributions for these quantities, which are then 
used to update estimates of the model parameters. In 
short, "data augmentation" is simply a clever way of ex- 
ploiting model assumptions and the observed data so as 
to estimate parameters. 

Monte Carlo 

Many readers will be familiar with Monte Carlo simula- 
tions in deriving the repeated sampling characteristics of 
a statistic. Similarly, the use of a computer to repeatedly 
sample and average allows us to escape some of the more 
thorny mathematical expressions routinely encountered 
in applied Bayesian statistics. Integrations of the sort in 
the posterior identity are a typical example. Consider the 
expression 

i.e., the expected value of some function of y, conditional 
on x. Note that f(y) could be an identity, in which case 
J(y) = E(ylx). If g(x) is a probability density from which 
we can generate random samples, then J(y) can be ap- 
proximated by Monte Car10 integration: i.e., 

where xI ,. . .,xn iid- ' g (x) are samples from the density of x. 
Importantly, the approximation J(y) grows more accu- 
rate as n +m. If it is computationally inexpensive to 
sample from g(x), evaluate f(ylxi), and store the results, 
then it is possible to obtain arbitrarily precise evaluations 
of integrals of the sorts given above, by setting n to a 
large number (Geweke 1989; Tanner 1996,51). 

Generalizing this method yields a sample from J(y). 
For example, recall the posterior identity in Equation 4, 
p(01Y) = p(01 Y, Z)p(ZI Y)dZ. A sample 0('), . . . ,0(n) 
iiJ p(0 I Y)can be generated by (1) drawing Z(*)from 

p(Zl Y);(2) drawing 0(') from p(01 Y,Z ( l ) ) ,  i = 1, . . . ,n. 

Summary 

To conclude this introduction, Table 1 summarizes the 
distinctions between estimation and inference by the 
method of maximum likelihood, the EM algorithm, and 
MCMC. The EM algorithm emerges as a (pedagogically) 
useful intermediate method between MLE and MCMC 
methods. Like MLE, EM provides point estimates as a so- 
lution to an optimization problem, but exploits the pos- 
terior identity in Equation 4. MCMC also exploits the 
posterior identity, but in the context of sampling from 
marginal posterior densities. 

The EM algorithm is not a MCMC method, since it does 
not involve sampling. Rather, the EM algorithm is an 
optimizer, a method for computing and finding local 
maxima of likelihoods (or, from a Bayesian perspective, 
finding the mode of a posterior density). The EM algo- 
rithm is traditionally employed when the researcher has 
missing data to worry about in addition to parameters to 
estimate. The missing data are a problem in that they are 
nonignorable, meaning that simply dropping the observa- 
tions with missing or incomplete data from the analysis 
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TABLEI Summary and Comparison: Three Methods for Estimation and Inference 

Procedure 

MLE: optimization of likelihood function L(0ly) = f(yl0) 

EM: Let Q(0, = l n [ p ( 0 1 ~ , ~ ) ] p ( ~ l 0 ( ' , , Y ) d ~ ,  

1 .  E step: compute 2')= E(ZIe('),Y) 

2, Mstep: 0('+l)= arg max In[p€IZ('),Y)] 
8 


MCMC: Let 0 = (0,,... ,0,  )'. 

I . Sample 0/'+') from p(ellOg),O(,",...,ei'),~), 

2, Sample OF+')from p(8,/0/'+'),e!),. ..,0\i)8y) 

j. Sample 0Yt" from p(OjlOjt+l),Og+l), ...,0\i:;),y) 

will bias the parameter estimates and other quantities of 
interest yielded by the model (Little & Rubin 1987; 
Gelman et al. 1995, 199). The augmentation in the EM 
algorithm consists of an imputation for the missing data 
(2,in the context of Equation 4 above), which yields a 
complete data set with which to calculate the posterior 
density p(8I Y)or evaluate the log-likelihood L(8I Y). 

Applying the identity in Equation 4, we obtain the 
following function Q, the log-posterior density of 8: 

or, in words, the log-posterior for 8 (or the log-likelihood, 
given an uninformative prior for 8) is formed by averag- 
ing over imputations for Z, which are in turn generated 
using iteration t's "best guess" for 8, denoted as 8('). 

In the E or expectation step we average over possible 
values of the missing data Z, using the expected value of 
Z so as to to evaluate the log-posterior or log-likelihood 
for the parameters of substantive interest, 8. In the M 
step of the algorithm, the Q function is maximized with 
respect to 8 to yield the the next iteration's estimate, 
8(t+'). The algorithm is iterated until convergence in the 
log-likelihood or parameters. 

Under a wide set of conditions, the EM algorithm 
yields an "EM sequence" (8(')) that is monotonically in- 
creasing in the incomplete-data likelihood function. Fur- 
thermore, if a likelihood function L(8) is unimodal, with 
8" being the only stationary point, then subject to some 

lnference 

-1 

point estimate: 6,,, 

point estimate: 6,,, additional computation required 

calculate confidence intervals from 

sampled values: observed quantiles of sampled 

ecl),...,ecn),...,ecT) O(n),..., O ( T ) .  

continuity assumptions, the EM sequence converges to 
the unique maximizer 8" of L(8) (i.e., the MLE of 8);  
proofs and statements of the necessary regularity con- 
ditions can be found in the statistical literature (e.g., 
McLachlan and Krishnan 1997, Chapter 3). 

Example: Probit Model for Binary Data 

Consider a probit model for a binary outcome, yi E 
{0, I}, i = 1, . . . , n. As discussed in the introduction, we 
relate the observed binary outcome to covariates via the 
latent regression function 

where xi is a row vector of observations on k independent 
variables, P is a column vector of parameters to be esti- 
mated, y; E R is a latent dependent variable, observed 
only in terms of its sign, i.e., 

and ciis a zero mean stochastic disturbance, identically 
and independently distributed for all i. For probit, we 
will assume f(ci)= N(0,l)  = $0,the standard normal 
density, normalized to have unit variance (recall that 
the regression parameters p are identified only up to the 
scale factor o, and ,so setting o = 1 is a convenient 
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normalization with no  substantive implications). This 
model yields a relatively simple log-likelihood function 
that can be easily maximized with respect to the param- 
eters p. However, for expository purposes, consider esti- 
mating p using the EM algorithm, treating the latent y* 
as missing data. 

Each y: is known only in terms of its sign (given by 
the corresponding yi), but we can use the current esti- 
mate of p and other model assumptions to make an im- 
putation for each y: , the conditional expectation of each 
y: ;conditional on that imputation we then choose 6 so 
as to maximize the complete-data log-likelihood, thereby 
updating our estimate of P. These two steps-(1) calcu-
lating the expected value of y*conditional on p(') and 
the observed data; and (2) updating p(')-comprise the 
E (expectation) and M (maximization) steps of the EM 
algorithm at iteration t, for this problem. 

The imputation for y*is given by 

where 

and where $, = $(-x,fi@)) is the Normal probability 
density function, and cD, = a(-x,fi(')) is the Normal cu- 
mulative distribution function, each evaluated at -x,fi(') 
(e.g., Johnson, Kotz, and Balakrishnan 1994,156). Armed 
with the imputed y:, we update the estimate of by 
choosing the value of that maximizes the complete- 
data log-likelihood, simply by running a regression of the 
imputed values for y*on the covariates X: 

The algorithm is iterated until convergence in the com- 
plete-data log-likelihood and/or the parameters. At con- 
vergence, we require estimates of the parameter's stan- 
dard errors in order to perform inference, and in general, 
the EM algorithm will not supply these as a matter of 
course. Thus we might consider the EM algorithm as an 
estimation tool, but not a tool for inference. 

I implemented this algorithm for a probit model, us- 
ing a random subset of 3,000 observations from Nagler's 
(1994) data on voter turnout, from the 1984 Current 

Population Survey; predictor variables are education, age, 
the number of days registration closes before the election, 
whether or not a gubernatorial election took place in the 
respondent's state, and whether the respondent lives in 
the South. Starting values come from an OLS regression 
of the observed binary responses on the covariates, and 
after thirty iterations of the EM algorithm the log- 
likelihood was increasing by steps of less than 

Figure 1 shows the iterative history of the EM algo-
rithm for the log-likelihood, two parameters, and the es- 
timated value of the latent dependent variable for the 
1,000th observation. The algorithm converges quite 
quickly in this case, and after a few iterations has done 
most of its work, moving away from the OLS starting val- 
ues towards the maximum likelihood estimates. 

Example: Linear Regression with AR(1) 

Disturbances (Presidential Approval) 


Consider a regression set-up with a pattern of first-order 
auto-correlation among the regression's disturbances: 

where y is a T by 1 vector of observations on the depen- 
dent variable, X is a T by k matrix of explanatory vari- 
ables, P is a k by 1 vector of parameters to be estimated, p 
is a scalar to be estimated (Ipl < l ) ,  e, - N(0,02),'d t, and 
t = 1, . . . , T indexes the observations. Given normality, 
the log-likelihood for a linear regression with stationary 
AR(1) disturbances is 

where u" = y"-X"P,and 

are the familiar transformations that retain the first ob- 
servation (Prais and Winsten 1954). 

To motivate the application of the EM algorithm in 
this context, consider p as "missing data" in the context 
of estimating 0 = (p ,  02)'; alternatively, think of the 
transformed "white-noise" disturbances u* as missing 
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FIGUREI Iterative History of EM Algorithm, Probit Model of Voter Turnout 
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data, but dependent on the observed data via p. In any 
event, with p unknown, evaluating the log-likelihood in 
Equation 7 is clearly problematic. With p treated as "in- 
formation" to be imputed, the Q function or posterior 
identity appropriate in this context is 

where 0 = (p ,  02)'and the limits of integration follow 
from the assumption of stationarity. The posterior iden- 
tity shows that the estimation problem here has been 
broken into two components; (1) averaging over the un- 
certainty as to the value of p, conditional on the data and 
other parameters, and (2) using the estimated value of p 
to transform the data and then make inferences about 
the other parameters. The EM algorithm's two steps 
implement each of these tasks in turn. The E step yields 
imputations for the transformed data y" and X* condi- 
tional on the observed data and the current estimates of 
p and p. The M step consists of finding estimates of the 
model parameters that maximize Equation 7 conditional 
on the imputation for p and the resulting imputations 
for y" and x*. 

Consider each step. At the end of iteration i, esti-
mates of p and o2are p(l)and 62(i),  respectively. Condi- 
tional on these estimates and the data, the predictive- 
density for p("l) is 

given et = utr pu,, and et - N(0,02)b' t, and where 
uji)= yt -xtP(l). Taking logs, differentiating and rear- 
ranging shows that the estimate of p that maximizes this 
predictive density is 

Notice that p(i+l) is just the coefficient from the regres- 
sion of u,(') on uj'),, without a constant. With this esti- 
mate of p, the M step of the EM algorithm is quite 
simple as well. Maximizing the log-likelihood in Equa- 
tion 7 with respect to p and o2(now that p has been es- 
timated or "imputed") is achieved via the regression of 
y* on X*, where p(i+l) is used in forming the trans- 
formed variables, as shown above. This regression yields 
p(i+l) = (x"'x* x * ' ~ * ,while a maximum-likelihood 
estimate of 02('+l)is (u*'u*)IT, where u* = y*-X*p("'). 

SIMON JACKMAN 

Iterating this algorithm provides maximum-
likelihood estimates of the parameters. Readers familiar 
with the linear regression model with first-order auto- 
regressive errors will see that this application of the EM 
algorithm is simply the Cochrane and Orcutt (1949) it- 
erative method of estimating a regression with AR(.) 
errors. Each step in the EM algorithm here involves two 
regressions-a regression to obtain p,  and the other to 
obtain 6 and b2-and successive iterations of the algo- 
rithm consist of "zigzagging" between these two regres- 
sions, to use Hamilton's (1994,224) description. 

I implemented this algorithm for a model of using 
monthly approval ratings for President Reagan, over his 
two terms in office ( T  = 96); covariates are the inflation 
rate and unemployment levels. I started the algorithm 
with starting values given by OLS with p = 0. After nine 
iterations the log-likelihood was changing by less than 

and estimates of the parameters had stabilized. The 
algorithm converges extremely quickly, moving rapidly 
away from the OLS starting values to within a small 
neighborhood of the maximum likelihood estimates. In 
particular, the coefficient for unemployment changes 
sign after just one iteration. This rapid convergence fol- 
lows given that just p-a scalar-is the missing "stuff" in 
this context; contrast the probit example where the entire 
n by 1 vector of y*must be imputed at each iteration. 

Other Applications 

The EM algorithm is perhaps most commonly recog- 
nized as a technique for imputing missing data (e.g., 
King et al. 1998). Indeed, the applications presented 
above all turn on an expansive notion of what constitutes 
missing data: the lesson of these applications is that it can 
be useful to treat unknown parameters or latent variables 
as missing data. For instance, Watson and Engle (1983) 
survey several models for econometric time series, repre- 
sentable in state-space form; they show that the EMalgo- 
rithm is well-suited to estimating these models, treating 
the latent state vector as missing data, in conjunction 
with a Kalman filter. Shumway and Stoffer (1982) is an 
early study of this type. The so-called Hamilton (1990) 
model for Markov-switching time series is also relatively 
easy to estimate using the EM algorithm, treating the la- 
tent regime probabilities as missing data. Censored or 
truncated data examples (of which the probit example 
above is a special case) are among the earliest examples 
of the use of the EM algorithm; Dempster, Laird, and 
Rubin (1977, 15) provide citations that pre-date their in- 
troduction of the "EM" acronym. 
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Summary 

To reiterate, while computing and evaluating likelihoods 
is "the name of the statistical game:' in various situations 
this is more or less difficult, either because the expression 
for the likelihood contains a great many unknown quan- 
tities (i.e., missing data and model parameters). But if the 
EM algorithm finds a maximum of the log-likelihood 
with respect to unknown parameters in the presence of 
missing data, why can't it do the same where the data are 
known, but the parameters are unknown or "missing"? 
That is, why not make the Zterm in the posterior iden- 
tity a vector of parameters instead of missing data? 

This extension of the EM algorithm has yielded 
some tremendous dividends in specific applications. To 
restate the driving idea here, missing data and unknown 
parameters are both instances of information-"stuff," in 
Tanner's phrase-required to evaluate a likelihood. Blur- 
ring the distinction between "data" and "parameters" 
turns out to be very powerful and underlies MCMC 
methods. 

Gibbs Sampling 

Gibbs sampling-the workhorse MCMC method-dif- 
fers from the EM algorithm in two critical respects. First, 
instead of calculating expected values of the "missing 
stuff,'' the Gibbs sampler samples from the conditional 
distributions for each quantity. That is, the Gibbs sam- 
pler performs the integration in the posterior identity 
(Equation 4) by Monte Carlo methods. Second, the 
Gibbs sampler does not distinguish between the param- 
eters of direct substantive interest (e.g., regression coeffi- 
cients) and the nuisance parameters (e.g., missing data 
points); all are considered random quantities and can be 
stacked into a single parameter vector 0. As a practical 
matter, it is convenient to partition 0 into d blocks or 
subvectors (possibly scalars), 0 = (0,) €4, . . . , Od).  
Iteration t of the Gibbs sampler starts with O ( t )  = 

(8!),0!), ... ,8&t)) and makes the transition to O( t+ l )  via 
the following scheme: 

1. Sample 0f+') from p(O1lOf),Of),. .. ,O&tl,y). 

2. Sample 0f+l) from p(0 ,10f+~) ,0f ) , .  . . ,o$),Y). 

d. sample B$+') .. ,~$T:),Y).from p(~d~Of+l) ,Of+l) , .  

A useful way to think about what the Gibbs sampler 
does is to see that the full joint posterior density for 0 has 
been broken down in to a series of lower-dimensional 
conditional densities, circumventing the "curse of [high] 

dimensionality" (Gelfand 1997, 284). In turn this is 
driven by the fact (well known to Bayesians) that "con- 
ditional [densities] determine marginals" (Casella and 
George 1992, 170-171). 

The sequence of sampled vectors produced by this 
scheme, (O(t)) = {8(O), 0(l),  . . .}, form a Markov chain, 
hence the first "MC" in the MCMC acronym. More spe- 
cifically, under a wide set of conditions, the sampled vec- 
tor O( t )  is the state vector of a convergent Markov chain 
that has the posterior distribution p(01 Y ) as the chain's 
"invariant," "stationary," or "limiting" d i~ t r i bu t i on .~  
Thus, the output of the Gibbs sampler, O(t), converges in 
distribution to the target posterior density as t +m. Or 
more simply, when the Markov chain has been run for a 
sufficiently lengthy "burn-in" period, each subsequent 
realization of the state vector is a sample from this poste- 
rior distribution. These samples from the posterior dis- 
tribution are stored and summarized for inference. Any 
other relevant quantities that are functions of 0 can also 
be calculated with each Gibbs sample, once the Markov 
chain reaches its invariant distribution (e.g., the propor- 
tion of sampled 0 that lie above or below zero, the 
observed data log-likelihood, residuals in a regression 
setting, or the percent cases correctly classified in a quali- 
tative dependent variable context). 

Critical to the utility of MCMC is that the samples 
forming the Markov chain are successively better ap- 
proximations of the target posterior densityp(8I Y). What 
drives this is the particular form of the transition prob- 
abilities governing the Markov chain, rather than the fact 
that the series of sampled 0 form a Markov chain per s6 
(for more on this point, see "Generalizations," below). As 
Gelman et al. (1995,323) point out, there are many ways 
to sequentially explore parameter spaces that need not be 
Markovian (e.g., genetic algorithms, simulated anneal- 
ing), and from a broader perspective, MCMC methods 

6"Very minimal conditions turn out to be sufficient and essentially 
necessary to ensure convergence of the distribution of the 
[MCMC] sampler's state to the invariant distribution and to pro- 
vide a law of large numbers for sample path averages" (Tierney 
1996, 59). It is not possible to summarize these conditions in the 
space available here. A key condition for the existence of an invari- 
ant distribution for a Markov chain over a continuous state space 
(a parameter space, in the context of MCMC) is irreducibility, 
which (informally) is that "the chain must be able to reach all in- 
teresting parts of the state-space" (Tierney 1996,62). That is, if re- 
gions of the parameter space with positive posterior probability 
are noncontiguous, the Markov chain must be able to "jump" the 
"zero regions" in a finite number of transitions, since failing to do 
so means the Markov chain is exploring only a subset of the fea- 
sible parameter space, yielding a misleading characterization of the 
posterior density. In most statistical applications this condition 
holds, but interesting counter-examples can be easily constructed 
(e.g., Gamerman 1997, 124). 
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are part of a family of methods that constitute "random 
tours" of parameter spaces (Fishman 1996, chapter 5). 
The virtue of the Markov property is that convergence 
results for Markov chains can be applied with relative 
ease, given the transition probabilities inherent in Gibbs 
sampling and other forms of MCMC. 

Genesis 

The Gibbs sampler is commonly attributed to Geman 
and Geman (1984) who used the technique to study im- 
age restoration; i.e., the joint distribution of the con- 
tents of a field of pixels (pixel values) is usually a com- 
plicated high dimensional density, but can be tractably 
dealt with by using conditional distributions, where the 
conditioning is on the contents of neighboring groups 
of pixels. Also dealing with a spatial setting, Besag 
(1974) showed that if a joint distribution of d compo- 
nents is positive over its entire domain, then that joint 
distribution is uniquely determined by the d conditional 
distributions (taking each component in turn and con- 
ditioning on the remaining d - 1 components). This in- 
sight drives the Gibbs sampler, although in conventional 
statistical settings the relationships between elements of 
0 are imposed by model assumptions, rather than by 
physical or spatial structure. In the spatial setting con- 
sidered by Geman and Geman (1984; a Markov random 
field), the result of Besag (1974) holds if each of the d 
conditional distributions is a Gibbs distribution, and 
hence Geman and Geman gave the algorithm the name 
"Gibbs g amp ling."^ Image reconstruction and other spa- 
tial settings remain an active area of development and 
application of MCMC (Besag and Green 1993; Green 
1996; Smith and Roberts 1993, 18-19), although obvi- 
ously application of the Gibbs sampler is by no means 
restricted to Gibbs distributions or statistical inference 
for spatial processes. 

Gelfand and Smith (1990) are generally credited with 
bringing MCMC to the statistical mainstream. The data 
augmentation algorithm of Tanner and Wong (1987) 
amounts to a special case of Gibbs sampling, as is Rubin's 
(1987) work on multiple imputations for missing data. 

'The "Gibbs" referred to here is Josiah Willard Gibbs (1839-1903), 
an American theoretical physicist and chemist, and one of the 
great figures of nineteenth-century science. Gibbs is credited with 
founding statistical mechanics via the application of principles of 
thermodynamics. Several other quantities and functions in statisti- 
cal mechanics bear his name, most notably "Gibbs free energy" 
(the lowest energy state of a chemical system in a thermodynamic 
equilibrium with given pressure and temperature). 

Generalizations 

The Gibbs sampler is actually a special case of a more 
general random tour algorithm known as the Metropolis- 
Hastings algorithm (Metropolis et al. 1953; Hastings 
1970), which I briefly describe here; a useful explanation 
of the Metropolis-Hastings algorithm and practical tips 
for its implementation appears in Chib and Greenberg 
(1995). 

The Metropolis-Hastings algorithm defines a set of 
"jumping rules" that govern how the algorithm ran- 
domly traverses the parameter space. At the start of itera- 
tion t, we have @-l)  and we make the transition to O(t) as 
follows (Gelman et al. 1995, 324,326): 

1. Sample 0* from a "candidate", "proposal", or "jump- 
ing" distribution ~~(0*10(~-')) .  

2. Calculate the ratio 

which taps the plausibility of the candidate point 0* 
relative to the current value 0("l). 

3. Set 

0" with probability min(r, 1) 
~ ( t )= 

0 otherwise 

This scheme means that if the candidate point increases 
the posterior density, it is accepted with probability 1; if 
the candidate point does not increase the posterior den- 
sity, it is accepted with probability r. It can be shown that 
this scheme generates a Markov chain that has the poste- 
rior density p(01y) as its invariant distribution. The 
power of the Metropolis-Hastings method stems from 
the fact that the proposal distribution can have any form 
and the invariant distribution of the resulting Markov 
chain will still be the desired posterior distribution, 
p(01y); for proofs see Gilks, Richardson, and Spiegelhalter 
(1996) and the cites therein. Gibbs sampling is a special 
case of the Metropolis-Hastings algorithm in the sense 
that each component of 0 is updated sequentially, and 
the implicit jumping distributions are simply the condi- 
tional densities p(O1 )0!7), y);  this means that r = 1 and 
each candidate point is always accepted. 

The Metropolis-Hastings algorithm is often used in 
conjunction with a Gibbs sampler for those components 
of 0 that have conditional distributions that can be 
evaluated, but can not be sampled from directly, typically 
because the distribution is known only up to a scale fac- 
tor. The Metropolis-Hastings algorithm ensures that 
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MCMC algorithms can still be constructed for these 
cases. All that is required is that the analyst have some 
approximating density from which it is possible to 
sample and then be able to able to evaluate the ratio r 
with the sampled candidate point: this supplies the in-
gredients necessary to implement the Metropolis-
Hastings algorithm. Examples of the use of Metropolis-
Hastings in applications of MCMC include: 

estimating autoregressive parameters (Chib and 
Greenberg 1994; Chib and Greenberg 1995, 333 and 
following): Given an AR(p) process with Gaussian 
white noise, and with the only prior information being 
that the process is stationary, the resulting posterior 
density for the autoregressive parameters is not a stan-
dard density and known only up to a constant of pro-
portionality. 
estimating a logit model with a generalized link func-
tion (e.g., Carlin and Louis 1996, 176 and following): 
Given the model 

the resulting conditional distributions for P and m do 
not have closed form expressions and are only known 
up to constants of proportionality. 
estimating precinct-level proportions in an "ecologi-
cal" or "cross-level" model (King, Rosen, and Tanner 
1999):With precincts i = 1, . . . ,n, consider a series of 
precinct-specific "two-by-two" cross-tabulations of TI 
byX, (say, turnout by race, respectively), for which we 
observe only the marginal distributions on T, and X,. 
This yields the identity 

with fij E [O, 11 the unobserved cell entries (the observed 
T;and Xiusually narrow the bounds on the 0:). King, 
Rosen, and Tanner assume the following three level hier-
archical model: (a) binomial distributions for the number 
turning out in precinct i; (b)  0: -Beta(cb,db),  -
Beta (c,, d,) (i.e., independent beta distributions as pri-
ors on the pi parameters); (c) cb,db,c,,, and d, each have 
a diffuse exponential prior, with mean 2. The posterior 
distribution (or log-likelihood, given diffuse priors) im-
plied by this model is complex, and MCMC is an attrac-
tive way to recover the posterior densities of the model 
parameters. However, the conditional distributions for 
the unknown parameters are nonstandard and known 
only up to constants of proportionality, thus requiring 
the use of Metropolis-Hastings methods. 

Assessing Convergence 

Recall the general results described in this section: 
MCMC samplers will get to the desired posterior density 
for a very wide class of models, even though it may take a 
long time to get there. Determining how long is "suffi-
ciently long" in particular settings is an ongoing topic of 
research (e.g., Rosenthal 1995; Polson 1996; Roberts 
1996).Tierney (1997,397) notes that "universally useful, 
reliable [convergence] diagnostics do not exist, and can-
not exist," given the problem-specific Markov chains 
generated by MCMC. 

A large and growing literature deals with techniques 
for monitoring convergence of MCMC sequences; Cowles 
and Carlin (1996) provide a comprehensive review of thir-
teen diagnostics. As Cowles and Carlin point out, the chief 
difficulty in diagnosing convergence is that MCMC pro-
duces samplesfrom distributions, rather than the value of 
a function being optimized (refer to Table 1, above): 

Worse yet, the Markov nature of the algorithm 
means that members of this sample will generallybe 
correlated with each other, slowing the algorithm in 
its attempt to sample from the entire stationary 
[posterior]distribution and muddying the determi-
nation of appropriate Monte Carlo variances for es-
timates of model characteristicsbased on the output. 
. ..such high correlations,both within the output for 
a single model parameter (autocorrelations) and 
across parameters (cross-correlations) are not un-
common, caused, for example, by a poor choice of 
parameterization or perhaps overparameterization. 
The latter situation can of course lead to "ridges" in 
the posterior or likelihood surface, long the bane of 
familiar statistical optimization algorithms (1996, 
883-884). 

Graphical inspection of MCMC sequences is criti-
cally important in assessing problems with convergence. 
In conjunction with formal, analytic diagnostics, so-
called "trace plots" of the iterative history of MCMC se-
quences help researchers identify some common prob-
lems with convergence. In addition, to "slow-mixing" of 
the Markov chain, multi-modal posterior distributions 
are sometimes obvious from inspecting a trace plot. Slow 
mixing and multi-modal posteriors are not fatal in and 
of themselves-the theoretical results guaranteeing con-
vergence to the posterior distribution apply to a wide 
range of circumstances-but they do mean that a long 
MCMC sequence may be needed to explore all regions of 
the parameter space with positive posterior probability. 
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A popular convergence diagnostic is based on 
Geweke's (1992) observation that for some function of a 
scalar output of the MCMC sampler, sayg(0)) the spectral 
density of the time series {g(f3)(t)}can be used to estimate 
the asymptotic variance of an estimate of the average of 
the time series. In turn then, this permits a comparison of 
two stages of the Markov chain (say "early" with nA itera- 
tions and "late" based on the last n, iterations), which 
yield estimates g(0)* and g(0),. The difference of these 
means divided by the asymptotic standard error of the 
difference tends to a standard normal distribution as n + 

(holding nA/n and nBln constant and nA + n, < n). 
Cowles and Carlin (1996, 866) discuss the strengths and 
weaknesses of this diagnostic. In particular, it is unclear 
how large nA and nB should be, relative to n, although 
Geweke suggested nA = .I n and nB = .5n. 

Just as practitioners are routinely advised to try 
different starting values with maximization routines, 
Gelman and Rubin (1992) recommend starting the Gibbs 
sampler with overdispersed starting points,* especially 
when working with a posterior distribution reasonably 
thought to be multi-modal. In practice this is best done by 
running several Gibbs samplers in parallel. Given output 
from parallel MCMC samplers, a simple test statistic can 
be formed by comparing within-sequence and between- 
sequence variation in each scalar component of 0 (Gel- 
man and Rubin 1992). 

Formally, Gelman and Rubin's convergence diagnos- 
tic is based on an estimate of the marginal posterior vari- 
ance of some scalar estimand of interest 

where W is the (average) within-chain variance and B is 
the between-chain variance, for some scalar of interest y ~ ,  
conditional on observed data y. As n +w (i.e., we gener- 
ate longer MCMC sequences), the contribution of the 
between-chain variation gets smaller, since it picks up 
weight l ln  in contributing to vG+(yly). Simultaneously, 
the within-chain variance increasingly dominates this 
term with additional iterations. Thus this estimate of the 
marginal posterior variance is an overestimate of the true 
marginal posterior variance for any finite length chain 
(hence the "+" superscript). Accordingly, Gelman and 

8By overdispersed it is meant that the variance among the different 
starting points should be greater than that thought to exist in the 
target distribution. At the same time, the starting values should not 
be "wildly inaccurate" (Gelman and Rubin 1992,458-459). 

Rubin propose the following statistic as a convergence 
diagnostic: 

This quantity declines to 1 as n + 00 and can be inter- 
preted as the "potential scale reduction" that might result 
from continuing to run the MCMC sampler. Given 
streams of output from parallel Gibbs samplers, this sta- 
tistic can be calculated after a prespecified number of it- 
erations; Gelman et al. (1995,332) suggest that values of 
f i below 1.2 are "acceptable:' but any determination of 
convergence will vary from data set to data set.9 

While the "parallel sequences" recommendation of 
Gelman and Rubin is widely endorsed in the statistical 
literature, many authors point out that there is an inevi- 
table tradeoff between one long run of a MCMC sampler 
versus several shorter runs. Consequently, a consensus 
position lies somewhere between the "one long chain" 
and "shorter multiple chains" positions (e.g., Cowles and 
Carlin 1996, 903). Of course, "more is better," both in 
terms of the number of sequences run and the length of 
each sequence, given the theoretical results that guaran- 
tee that MCMC samplers will eventually reach the target 
posterior distribution in most settings. Convergence may 
be slow in a specific context, and so we might prefer de- 
voting computer resources to one long MCMC run ver- 
sus several shorter runs. Given that computational power 
is cheap, and getting cheaper, the "more is better" advice 
is increasingly easy to  implement, as some of the ex- 
amples below make clear. But most importantly, there is 
no substitute for a clear understanding of the model pa- 
rameterization and data being passed to a MCMC sam- 
pler and how they might possibly impede convergence. 

For instance, note that the components 02,.. . ,Od 
of 0 can themselves be vectors of parameters. Collecting 
interdependent parameters in the same subvector of 0 is 
often an efficient strategy for speeding the convergence 
of a MCMC sequence. When groups of parameters are 
interdependent, sampling from their joint posterior den- 
sity speeds up the convergence of the Gibbs sampler (e.g., 
sampling a vector of regression coefficients from their 
multivariate Normal joint density, rather than sampling 
each coefficient from its univariate Normal marginal 
density, conditional on the other coefficients). 

9This is one of the more simple versions of the Gelman and Rubin 
convergence diagnostic; more complicated versions and generali- 
zations appear in the statistical literature (e.g., Brooks and Gelman 
1998). 
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Examples 

The number of applications of MCMC methods has in- 
creased dramatically since 1990, although they are just 
now making their way into the social sciences. Here I il-
lustrate some simple uses of Gibbs sampling with the ex- 
amples introduced earlier. 

Example: Probit Model for Binary Datalo 

Recall the probit model introduced in the earlier EM sec-
tion. At this stage prior distributions for the probit coeffi- 
cients @ are required, reflecting the Bayesian underpin- 
nings of MCMC. A multivariate Normal prior on @ is 
flexible and convenient and takes the general form P -
N(Pprlor, Bprior), where PYrio,is a k by 1 vector of prior 
means and Byrlor is a k by k prior covariance matrix, re- 
flecting the researcher's prior uncertainty regarding @. 

The Gibbs sampler requires expressions for the con- 
ditional distributions of all random quantities in the 
probit model, 8 = (@,y*)'. Albert and Chib (1993) show 
that these are 

,?':I (yi = 0, xi ,@)- N(xi@, l)I(yl < 0) (trunc. Normal) 

(10) 

y'l (yi = l ,x i  ,P)  -N (xiP, l)I(y: 2 0) (trunc. Normal) 
(11) 

where 

These last two expressions are simply those for the poste- 
rior mean and posterior covariance of regression param- 
eters; the posterior mean p is the matrix-weighted aver- 
age of the estimate of p from the data and the prior 
mean, where the matrix weights are the respective "preci- 
sion matrices" (inverted covariance matrices) of the 
prior and the data. Note that with an uninformative 
prior 6 = (x'X)-'x'y* and B = (XX)-I (i.e., the poste- 
rior corresponds to the results obtained by simply run- 
ning a regression of y* on X). 

loAlbert and Chib (1993) considered the application of the Gibbs 
sampler in the context of models for binary and polychotomous 
outcomes. McCulloch and Rossi (1994) and Chib and Greenberg 
(1997) consider the application of MCMC to the multinomial 
probit model. Johnson and Albert (1999) is a treatment of binary 
response models, largely from the perspective of MCMC. 

With these conditional distributions the Gibbs sam- 
pler (at iteration t) consists of the following steps: 

1. Sample 	y:(t) from respective truncated Normals in 
Equations 10 and 11. This is easily accomplished ei- 
ther by sampling from (untruncated) Normal distri- 
bution and rejecting and resampling draws that fail to 
meet the truncation constraints, although a more 
computationally efficient strategy is to use the "prob- 
ability inverse transform" algorithm of Devroye 
(1986), described by Gelfand and Smith (1990, 977) 
or Greene (1997,179). 

2. 	 Sample @ ( t )  from the multivariate Normal in Equa- 
tion 12. 

I implemented the Gibbs sampler with the data on 
turnout considered in the earlier section. I use diffuse 
priors for @ (zero means and prior variances of 1000)) 
letting the data dominate the form of the posterior den- 
sities. Ten thousand Gibbs samples were run in this ex- 
ample, with the last 5,000 Gibbs samples retained for 
inference (the first five thousand iterations being consid- 
ered "burn-in"). The output of the Gibbs sampler is 
summarized in Figure 2. The plots on the left-hand side 
of the figure-"trace plotsn-show the iterative history 
of the Gibbs sampler with respect to the probit log- 
likelihood, two of the probit coefficients, and one of the 
latent y: . The gray line is a moving average estimated by 
loess (Cleveland 1993, 152), while the dotted line marks 
the location of the maximum likelihood estimates. The 
Gibbs sampler quickly moves away from the OLS starting 
values to a neighborhood of the MLEs and recovers pos- 
terior distributions that are more or less those implied by 
the MLEs (as would be expected given my diffuse prior). 

Note also that these trace plots are quite unlike those 
generated by the EM algorithm for this problem (recall 
Figure 1).  The EM algorithm produces a deterministic 
sequence in the probit log-likelihood that monotonically 
increases towards the mode of the log-likelihood func- 
tion, by successive improvements in the estimates of the 
conditional expectations of the y*. Since the Gibbs sam- 
pler yields a random tour of the parameter space, the se- 
quences of sampled values do not generate monotone 
convergence towards the mode of the log-likelihood (or 
log posterior), as the trace plots in Figure 2 demonstrate. 
This contrast with the EM algorithm is most prominent 
in the top two panels of the figure, which summarize the 
log-likelihoods implied by the sampled values of @ and 
y*, with the dotted lines marking the maximum of the 
log-likelihood function. The Gibbs sampler quickly 
moves into a neighborhood of the parameter space that 
supports the maximum, but never exactly attains it; this 

mailto:(@,y*)'


FIGURE2 Output of Gibbs Sampler, Probit Model of Voter Turnout 
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The left-hand panels show the iterative history of the Gibbs sampler for the designated quantities, the dotted lines ind~cate the location of the MLE and its 90 percent confidence interval, and the 
thicker grey llne Indicates a moving average (estimated by loess). The right hand panels show the posterlor density of each quantity as a histogram, using the last 5,000 iterations of the Gibbs 
sampler; the dotted lines indicate the asymptotic Normal density implied by the MLEs; the tlck marks on the horizontal axis indicate the 5th, 50th, and 95th percentiles of the Gibbs samples. 
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TABLE2 	 Comparison of MLEs and Gibbs Sampler Output, 
Probit Model of Voter Turnout 

MLE 	 MCMC 

Intercept 

Education 

Age 

Age2 

South 

Gubernatorial Election 

Closing Day 

Education 
x Closing Day 

Education2 
x Closing Day 

Standard errors appear n parentheses for the MLEs. For the G b b s  sampler output, the mean of the last 
5,000 samples is reported as the point estimate, no standard error is reported, and a 90 percent confi- 
dence nterval is reported in brackets; the 90 percent confidence interval implied by the MLEs point 
estimate and standard error (assuming asymptotic Normality) is also reported In brackets. 

would only happen if the Gibbs sampler happened to ample. I summarize the output of the Gibbs sampler 
sample P = PIVILE. with the mean of the last 5,000 samples of the 10,000 Rather, the Gibbs sampler randomly 
explores the parameter space in a neighborhood of the sample run, and use the interval from the 5th to the 95th 
MLEs," with the occasional departure into regions with percentiles of these samples as an estimate of the 90 per- 
relatively low log-likelihood (i.e., the downward spikes in cent confidence interval around each posterior mean. 
the log-likelihood trace plot). Clearly, the MLEs and the posterior means are extremely 

Table 2 provides an additional comparison of the close to one another, and any differences between the two 
MLEs and the output of the Gibbs sampler for this ex- sets of point estimates are extremely small relative to the 

MLE standard errors, or the confidence intervals on the 
"Strictly speaking the Gibbs sampler is exploring the parameter posterior means. 
space in a neighborhood of the mode of the joint log-posterior I also use this example to illustrate the Gelman and 
density, but given my diffuse priors, this corresponds to that region 
of the parameter space supporting the maximum of the log-likeli- Rubin convergence diagnostic. Figure 3 show the two- 
hood. dimensional trace plots that result from running four 
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FIGURE3 Parallel Gibbs Samplers, Probit Example 
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Four parallel Gibbs samplers were started from points f 3 standard errors from the maximum likelihood estimates. The 
top two panels show the paths for the frst fifty iterations, along with the maximum likelihood estimate (gray square) and 
likelihood contours. The lower two panels show the G~bbs  samples from the last 1,000iterations. Note the strong 
correlat~on between the intercept and the registration closing day coefficient. 

parallel Gibbs samplers for 2,000 iterations each. For ex- 
pository purposes) starting points were adding 
plus Or minus three standard errors to the maximum 
likelihood estimates for the indicated parameters; obvi- 
ously in a "real" application the MLEs may not be known. 
The Gibbs sampler quickly moves towards the MLEs in 
all cases, and the parallel traces quickly overlap one an- 
other, confirming that the Gibbs sampler converges 
quickly for this example. 

In Figure 4, I show the iterative of the 
Gelman and Rubin (1992) test statistic, calculated using 
the output of the four chains with respect to the indi- 
catedquantities.Theshrinkfactorsareallcomfortabl~ 
within the ranges suggested by Gelman and Rubin after 

iterations, suggesting that we may validly regard 
the MCMC sampler to have converged on the target dis- 
tribution by this stage. For details on the generation of 
these diagnostic plots, see the softwaresection, below. 

Example: Linear Regression with AR(1) 
Disturbances (Presidential Approval)12 

Using the notation from page 374, the inferential problem 
here is to obtain the posterior density of 0 = (P,02,p)'. As 

'*This example closely follows Chib's (1993) analysis of the more 
g e n e r a l A R ( p ) c a s e . C h i b a n d G r e e n b e r g ( 1 9 9 4 ) ~ ~ n s i d e r t h e  
ARMA(p,q)case. 
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FIGURE4 Gelman and Rubin Shrink Factors, Probit Example 
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The Gelman and Rubn test statistic I S  calculated over the course of the iterations and plotted as a trace plot. The shrink 
factors all quickly fall towards 1 for the indicated quantities, suggesting that the MCMC sequence has converged on the 
posterlor density. 

in the probit example, informative priors are not neces- the joint prior distribution for 0 as p(p,  02, p) = 

sary, but can be readily implemented here (I choose to use p(plo2)p(02)p(p),i.e., (P, 02)is a priori independent of 
diffuse priors). As is often the case in the Bayesian analy- 
sis of linear regression models, it is convenient13 to factor 

and Jackman (1994) for an alternative, simpler, parameterization. 
13This particular factorization of the prior on P and 02is not nec- Here I follow the Normal-inverse-Gamma parameterization as it 
essary, but fairly standard in the Bayesian literature; see Western appears in Chib (1993). 
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the auto-regressive parameter p. Flexible specifications of 
each piece of the prior distribution are 

i.e., a Normal-inverse-Gamma prior for (P, 02)and a 
truncated Normal prior on p so as to ensure station- 
arity.14 Uninformative, diffuse priors can be set if the 
hyperparameters in Equation 13 are set to Po= 0, A, - cIk 
(where cis an arbitrarily large, positive, scalar and Ik is an 
identity matrix of size k, the number of columns in X), v, 
= -k, 6, = 0, po = 0, and R,= 0. 

Implementing the Gibbs sampler here involves iter- 
ating over the following steps: 

1. Sample P('+l)from p(Plo2(') ,p('), y, X) 

2. Sample 02('+')from p ( ~ ~ l p ( ~ + l ) ,  ~ ( ~ 1 ,y, X) 

3. Sample p('+') from p(plp('+l), 02('+')y x ) .  

In step 1, the conditioning is on the current esti- 
mates of o2and p, so y and X can be transformed to form 
y' and x*,respectively. This step makes the posterior 
density of P simple to obtain. The disturbances from the 
regression of y* on X* are distributed iid Normal with 
mean zero under the stated assumptions; given the mul- 
tivariate Normal prior and a Normal likelihood, text- 
book results on the Bayesian analysis of the Normal re- 
gression model apply (e.g., Leamer 1978): 

where p = (Ao+x*'x*)-~(A,P, A =+xlry*)and 
(A, +x*'x*). Sampling from this k dimensional Nor- 
mal distribution is easily done. 

Step 2 is also easy. The conditional distribution for 
o2is 

where Qp = (P -Po)'Ao(P-Po) and e* = (y*-X*P). 
Note that in the actual implementation of the Gibbs 
sampler, b in Equation 15 would be replaced by the 
sampled value from step 1. 

14The parameters ( o r  "hyperparameters") i n  t h e  inverse - r  over 02, 
V, and 6,, can  b e  interpreted as a prior n u m b e r  o fobservations pa- 
rameter  and a prior s u m s  o f squares, respectively. 

SIMON JACKMAN 

Step 3 is also easily implemented. Conditional on the 
data, p, 02, and the stated assumptions, p has a normal 
marginal posterior density, subject to any truncations 
due if the stationarity assumption is to be strictly im- 
posed. Net of the complication imposed by stationarity, 
the updating involved in this setup is simply that for the 
Bayesian analysis of a bivariate regression: 

where and 

Ro+c2 . Draws from the normal density that xTU :
t=2 

lie outside the (-1,l) interval are rejected, and the itera- 
tions continue with a draw within the interval. A useful 
check on stationarity is to note the proportion of draws 
that fail to meet this constraint. 

I implemented the Gibbs sampler using the data on 
Reagan's monthly approval ratings introduced earlier. 
The Gibbs sampler uses noninformative priors, and 
5,000 iterations, with the first 1,000 discarded as burn-in. 
Figure 5 summarizes the output of the Gibbs sampler 
and contrasts the asymptotic Normal approximations for 
the maximum-likelihood estimates. Table 3 also com- 
pares the MLEs with the output of the Gibbs sampler. 
With my diffuse priors, the output from the Gibbs sam- 
pler are reasonably close to the MLEs. Interesting differ- 
ences arise due to the Gibbs sampler exploring the exact 
posterior density of p, which has much more probability 
mass between .9 and 1.0 than is implied by the (asymp- 
totically-valid) Normal density associated with the 
MLEs. The Gibbs sampler attempted to sample p > 1 in 
less than 4 percent of the 5,000 iterations, and forcing the 
Gibbs sampler to sample p from the stationarity interval 
(-1,l) helps account for the the skewed shape of the pos- 
terior for p. Notwithstanding this constraint, it is inter- 
esting to see how much probability mass piles up in the 
region between the MLE of p and 1.0, underlining just 
how poor the asymptotically-valid Normal approxima- 
tion can be for autocorrelation parameters in finite 
samples. In turn, the unemployment parameter is 
nudged away from the MLEs, and we also obtain a 
slightly higher estimate of the white-noise variance o2 
than the MLE. 

This example highlights one of the strengths of 
MCMC methods: one can use Monte Carlo methods to 
obtain arbitrarily precise approximations to the posterior 
density of a quantity of interest (or the marginal log- 
likelihood, given a flat prior). For example, it is well 
known that the standard Normal approximation for the 
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TABLE3 Comparison of MLEs and Gibbs Sampler Output, Regression 
Model of Reagan Approval with AR(1) Disturbances 

MLE MCMC 

Intercepl 

Inflation 

Unemployment 

The median of the Gibbs sampler output (the last 4,000 of 5,000 samples) is reported as the MCMC point 
estimate. For the MLEs, standard errors are reported in parentheses; no standard errors are reported for the 
MCMC output. The 5th and 95th percentiles of the Gibbs samples are reported in square brackets; the 95 
percent confdence interval impled by the MLE pont estimate and standard error (assuming asymptotic Nor- 
mality) is reported in square brackets for the MLEs. 

sampling distribution of autoregressive parameters yields 
inferences about stationarity that are too optimistic.15 
But as we have seen, MCMC provides a way for exact dis- 
tributions to be obtained without relying on asymptotic 
approximations or tabulations of Monte Carlo results. 
Furthermore, the Gibbs sampler's Bayesian underpin- 
nings provide a way for informative prior information 
about stationarylnonstationary dynamics (or other pa- 
rameters) to be introduced to the analysis. 

Multinomial Probit Model 

The multinomial probit (MNP) model has long been 
considered an interesting model, but nigh impossible to 
estimate. The difficulty with direct MLE of the MNP 
model is well known; the likelihood calculations for p 

15Contrast diagnosing nonstationarity using normal-based MLE 
or Dickey-Fuller tests using tabulations of critical values provided 
by MacKinnon (1991). MacKinnon's tabulations are based on a 
massive number of Monte Carlo experiments that attempt to 
mimic different conditions likely to be encountered in applied set- 
tings; with MCMC researchers can obtain the posterior distribu- 
tion of p conditional on their data. 

choices involves integrating out over a p - 1 dimensional 
normal density. Specifically, if individual i gets utility Uij 
from choice j and utilities are multivariate normal, then 
under the standard assumption of utility maximization 
the probability that individual i chooses outcome j, j E 

{1 ,. . . ,J}is 

where f is the J-dimensional Normal density defined 
above (Arnemiya 1985,308). Evaluating integrals of mul- 
tivariate Normal densities is a reasonably complex prob- 
lem, and only a few software packages support routines 
for evaluating even the bivariate Normal CDF. Higher di- 
me.nsiona1 choice problems can be extremely computa- 
tionally burdensome, especially when embedded in an 
optimization problem (i.e., MLE) and require specialized 
programming on a case-by-case basis. For this reason the 
MNP model has not found wide application beyond the 
case of three or, at most, four outcome choice problems. 
These computational demands have also meant that the 
MNP model has been "off-limits" for the overwhelming 
majority of political scientists. 
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MCMC makes the MNP problem much more 
tractable. Here I implement the MCMC sampler of 
McCulloch and Rossi (1994), as amended by Mc Culloch, 
Polson, and Rossi (1998). Assume individual i ( i  = 

1, . . . , n) chooses outcome j E {0, . . . ,p - 11 if zij 2 
max(zi), where zi = Rip + ui, ui - N(0, V), Ri is a p by k 
matrix of regressors, and p a k by 1 vector of parameters 
to be estimated. Here regressors vary over choices and in- 
dividuals, but the effects of each regressor on utilities are 
constant over choices (and individuals). Alternative speci- 
fications can be easily handled. The analyst does not ob- 
serve the latent utilities in zi, but does observe the choices 
made by each individual. Given the assumption of utility 
maximization, this is equivalent to observing the index of 
the largest element in each zi. 

Identification 

As is well known, the MNP model is unidentified as 
stated, since any location shift of the latent utilities or 
scale shift are observationally equivalent. To solve the lo- 
cation invariance problem, difference p - 1 of the choice 
utilities with respect to a baseline choice by defining wi = 

(w,,, . . . ,wip-l)' with wij = zij-zip. Similarly define Xi as 
a (p- 1) by k matrix of observations on independent 
variables, obtained by subtracting the pth row from the 
first p - 1 rows of Ri. These normalizations yield a p - 1 
dimensional model: 

Scale invariance is also a problem. For any for any con- 

stant c > 0, Qi= h(cwi) is observationally indistinguish- 
able from yi = h(wi), where h ( )  is the assignment rule in 
Equation 18. Put differently, the distribution of ylX, P, C 
is the same as the distribution of ylX, cp, c2C (e.g., 
McCulloch and Rossi 1994,209). Defining oijas the ij-th 
element of C ,  then a common solution to the scale in- 
variance problem is to set o,, to 1. 

Gibbs Sampling Algorithm 

The inferential problem here is to find the posterior den- 
sity p(p, XIy, X). McCulloch and Rossi (1994) and Chib 
and Greenberg (1997) use Gibbs sampling in this con- 
text, exploiting the fact that conditional on the latent 
random utilities the problem reduces to a fairly standard 
Bayesian multivariate regression model. In this way the 
troublesome (if not impossible) integrations involved in 

calculating the Pr(yij = 1) are avoided. The Gibbs sampler 
requires the following conditional distributions: 

Note that W is the n by p - 1matrix of latent utilities, and 
C is the p - 1 by p - 1 variance-covariance matrix for the 
e,. I consider each of these conditional distributions in 
turn. 

Let the prior for p be N(P,A-I).  Then the con- 
ditional distribution for P is ~ ( 6 ,  ?+) where Zp = 

(X'GX +A)-,, 6 = Zp (X'GW + AB) and G = C-l8 I,,. 
That is, with a diffuse prior we are essentially estimating 
a system of seemingly unrelated regressions (e.g., Judge 
et al. 1988,450). 

The prior and the conditional distribution for C 
is complicated by the identifying constraint o,, = 1. 
McCulloch, Polson, and Rossi (1998) note that usual ap- 
proaches for specifying priors over covariance matrices 
are not appropriate in this instance and propose an alter- 
native approach. Partition E, as (v,, w,), where v, = E,, and 
W,= E , ~ ,(E ,~ ,  . . . ,E,,~-,)'. Obviously the joint distribution 
of (v, w) is the joint distribution of E, which is N(0, C) 
(suppressing the i subscript). McCulloch, Polson, and 
Rossi's (1998) contribution is to note that the joint distri- 
bution of (v, w) can be factored as the marginal distri- 
bution of v and the conditional distribution wlv. If y = 

E(vw)(ap -2 column vector) and & = E(ww') (a p - 2 
byp-2 matrix), then v - N(O,o,,) and olv -N((ylo,,)v,
&- yy'lo,,). Now let Q, = &- yy'lo,,. Just as there is 
a correspondence between and E and v and o ,  there is a 
correspondence between Cand (o,,, y, Q,): 

recalling the identification constraint o,, = 1. A prior for 
{Clo,,= 1) is now given by priors on y and Q,: 

@-' -Wishart (K, C) 

McCulloch, Polson, and Rossi (1998) suggest specifica- 
tions for these prior parameters that yield relatively dif- 
fuse prior distributions. 

With these priors it is reasonably straightforward to 
obtain expressions for the conditional distributions for y 
and Q,. At a given iteration of the Gibbs sampler we 
sample from these conditional distributions and combine 
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the sampled y and Q, as in Equation 19 to give a sample 
from the conditional distribution for {Clo,,= I}. 

Given and w(')(at iteration t of the Gibbs sam- 
pler) we also have e:) and thus (vlf ) ,my)). The quanti- 
ties y and Q, are the parameters obtained from a (multi- 
variate) regression of o on v; at iteration t this regression 
is 

Given an estimate of y, y ,and the Wishart prior, the 
conditional distribution for is 

Wishart (K +n,C + (w(') -v(')y')'(w(') -v(')?')) 

from which we can sample a(').Now given @('I, 
McCulloch, Polson, and Rossi (1998, 19) show that the 
conditional distribution for y is 

where Ay = (vQ+l+ B)-l, v = (a n by 1 column vec- v ( ~ )  
tor containing e r ) ,  o = (a n by p -2 matrix contain- 
ing E~),E!), ...,e!!,,and@=@(') ( a p - 2  b y p - 2 m a -  
trix). Sampling from this distribution yields 

The sampled quantities y(t)and a(')define C('), fol-
lowing Equation 19. In short, the problem of sampling 
from the conditional distribution for {Clo,,= 1) has 
been broken down into two sampling problems. 

Finally, the conditional distribution of wi is a trun- 
cated (p- 1)-dimensional Normal, where the truncation 
points follow from the fact that if the jth choice is ob- 
served for individual i (i.e., yq = 1) then wij > ma~(w;,-~,  
0). Conversely, if the jth choice is not observed for indi- 
vidual i (i.e., yq = 0) then wq < ma~(w,,-~,O), where wi,-j is 
the p - 2 vector of elements of wi excluding wq,. Follow- 
ing Albert and Chib (1993) I sample repeatedly from the 
(untruncated) (p- 1)-variate normal until a draw satis- 
fies the constraint implied by the observed choice. 

Advantages over MLE 

Just a handful of MNP applications have been presented 
in the political science literature. Directly attacking any- 
thing beyond a three choice problem is simply infeasible 
using maximum likelihood estimation, and even for the 
three choice problem, it is difficult to obtain precise esti- 
mates of the off-diagonal elements of C. 

For instance, McCulloch and Rossi (1994) report a 
series of experiments comparing the sampling distribu- 
tions of MLE estimates of a three-dimensional problem 

with those produced by their Gibbs sampling approach. 
The findings of this exercise are striking. With as many as 
1000 observations per parameter there is pronounced 
skewness in the sampling distributions of the error 
variance-covariance parameters, suggesting that "asymp- 
totic theory may be of little use for the MNP model" 
(MCulloch and Rossi 1994, 219). That is, attacking the 
MNP model with MLE is not just difficult, but relying on 
asymptotic normality in making inferences about these 
error-variance and covariance parameters probably in- 
volves a huge leap of faith. Part of the problem here is due 
to the normalization employed to identify the MNP 
model, which means that bounded functions of variance 
parameters are actually estimated, such as variance ratios 
and correlations. Given that there is not much informa- 
tion about these variance and covariance parameters even 
in a large sample, it is the "boundedness" of the estimated 
parameters that stops asymptotic normality from kicking 
in (McCulloch and Rossi 1994,221-222). These problems 
are avoided with the Gibbs sampler's arbitrarily precise 
approximations to the posterior densities. 

Application: Vote Choice in the 
1992 U.S. Presidential Election 

I reanalyze the Bush-Clinton-Perot 1992 vote choice 
problem with a MNP model. Previous attempts to esti- 
mate this three-way choice problem using MNP have 
met with only limited success (e.g., Alvarez and Nagler 
1995; Lacy and Burden 1999). I employ the identification 
constraints sketched above, with the Perot choice (P)as 
the "baseline" outcome. Thus C reduces to a 2 x 2 matrix, 
and with o,, set to 1, there is just one variance and a co- 
variance to estimate (022and o,,, respectively). For the 
Bush (B) and Clinton (C) outcomes, I also employ a 
model with a simple set of covariates: 

Uic -UiP = Plo[Common Covariates]: +P1,DemPIDi 

+ p,, I Clintoni -RiI + eiC 

UiB-Ui, = P,,[Common Covariates]; +P2,RepPID, 

+ p,, I Bush; -R;I +E, 

where Ri is the respondent's self-location on a unidimen- 
sional measure of ideology, Bushi and Clinton; are mea- 
sures of the respondents' estimate of the ideological loca- 
tion of Bush and Clinton, respectively, and DemPID and 
RepPID are indicators for Democratic and Republican 
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party identification, respectively. Note that the ideologi- 
cal distance and partisanship measures do not appear in 
each equation, corresponding to parameter restrictions 
suggested by Keane (1992) as being necessary to avoid 
what he describes as the "fragile identification" problem 
in MNP models. The "common covariates" are intercepts 
for each equation, a binary indicator for whether the re- 
spondent felt the national economy was worse, a binary 
indicator for whether the respondent opposed govern- 
ment-provided health care, and a binary indicator coded 
1 for female respondents, and 0 otherwise. Data come 
from the 1992 National Election Studies, as used by 
Alvarez and Nagler (1995). 

For p I use a diffuse N(0, 1000 . I) prior. For the er- 
ror variances, recall that for the three choice problem I 
have here reduces to a 2 x 2 matrix and so y and @ re-
duce to scalars. Following McCulloch, Polson, and Rossi 
(1998), my prior for y is relatively tight N(0,.25), and my 
prior for Q) is scaled inverse-x2, with degrees of freedom 
parameter K = 20, and scale parameter C= 13.5. Of more 
direct substantive interpretation is what these choices 
imply for the prior on the unrestricted variance param- 

eter oZ2= Q) + y2 and the correlation p = y l JQ) +y2 . 
These choices result in a prior over the correlation pa- 
rameter with a mode at 0, but with probability mass rela- 
tively uniform between -.5 and .5, and falling off towards 
-1 and 1. For the unrestricted variance 02,these choices 
imply a reasonably tight x2-shaped prior, with a mode at 
around 1.0, but with virtually zero probability mass 
above 3.0. In this way I am being reasonably agnostic as 
to the size of the error variance for the Bush-Perot utility 
comparison, relative to the fixed value of 1.0 for the error 
variance in the Clinton-Perot utility comparison. 

The Gibbs sampling scheme described above was 
run for 100,000 iterations. For the regression parameters, 
the sampled values appear to randomly oscillate around 
their posterior modes, while the two free elements of C 
exhibit some over-time dependencies in their iterative 
histories. That is, the Gibbs sampler is efficiently explor- 
ing the parameter space supporting the posterior for P, 
but slowly meanders through the parameter space for o,, 
= y and oZ2= Q) +r/.This is not fatal, but suggests that a 
large number of Gibbs samples is required to ensure that 
the posterior densities for these parameters are being 
thoroughly explored. 

Summaries of the posterior densities for the model 
parameters are presented in Table 4, and in graphical form 
in Figure 6. Respondents who believe the economy to have 
deteriorated leading up to the 1992 election were both 
drawn away from the incumbent Bush towards Perot, but 
this belief is also associated with respondents being more 

TABLE4 	 Summary of Posterior Densities, 
Multinomial Probit Model, 1992 U.S. 
Presidential Vote Choice 

Clinton Bush 

(YC- U i ~ )  (U i ~- U i ~ )  

Intercept -.46 -.32 
[-I .06, .II] [-1.10,,371 


National Economy Worse .I0 -.I4 
[.01,,201 -.02][-.29, 


Oppose Government Health Care .04 . I 1  
[-.01,,101 [.03,,201 


Female .20 .47 
[.02,,391 [.20,,801 


Democrat Identifier .87 0 
[.64,1.161 [-I 

Republican Identifier 0 1.44 
[-I [.96,2.201 


ldeo/ogical Distance-Clinton 	 -.03 0 
[-.06, [-I-.Oil 


Ideological Distance-Bush 0 -.I2 
[-I [-.19,-.07] 

Error Variance 1 .O 2.66 
[ - I  [I .45, 4.781 

OCB 1.29 
[.77,1.881 

P 	 .79 
[.60,,901 

100,000 G~bbs samples were generated, w~ th  the last 50,000 reta~ned 
for Inference Each cell entry shows the med~an of the reta~ned values 
w ~ t h  the 5th and 95th percent~les reported ~n square brackets n b , 
p = o , , / G  n = 909, nonvoters excluded from the analys~s 

likely to favor the Democratic challenger, Clinton, over 
Perot. Opposition to government-sponsored health care 
leads voters towards Bush over Perot, but has a much 
smaller and barely statistically significant effect in the 
Clinton-versus-Perot utility comparison. Female voters 
are drawn away from Perot, and, unsurprisingly, identifi- 
cation with either major party also leads voters away from 
Perot. Ideological distance from Bush leads voters towards 
Perot, much more rapidly than the same ideological dis- 
tance from Clinton leads voters towards Perot. Note that 
the covariates employed here distinguish vote choices for 
Clinton from Perot choices more clearly than they distin- 
guish the Bush-versus-Perot choice; the error variance on 
the Bush-Perot utility differential is over 2.5 times the 
nominal unit variance imposed on the Clinton-Perot util- 
ity comparison. That is, conditional on these covariates, 
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FIGURE6 Density Estimates, Output of Gibbs Sampler for the MNP Problem 
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The density estimates summarize the output of the last half of the 100,000 Gibbs samples. The tick marks on the horizontal axis indicate the location of 
the 5th, 50th, and 95th percentiles. 
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the Bush-Perot alternatives are less distinguishable than 
the Clinton-Perot alternatives, which sits well with many 
understandings of the 1992 election. This is in part cause 
and consequence of the way ideological distance works 
differently in the two utility comparisons: small perceived 
ideological differences with Bush were associated with 
large impacts on the Bush-Perot utility comparison (rela- 
tive to the Clinton-Perot comparison), suggesting that 
voters were drawing fine distinctions in distinguishing the 
two candidates, or at least relative to the ideological dis- 
tinctions made in distinguishing Clinton and Perot. Of 
course, a more complete explanation of the politics of 
1992 would include abstention as an option, but since my 
primary goal here is methodological exposition, I reserve 
that analysis for another paper. 

Other Political Science Applications 

Finally, I briefly list some published political science ap- 
plications of MCMC, several of which have appeared in 
the pages of the AJPS. 

I already mentioned King, Rosen, and Tanner's 
(1999) use of Metropolis-Hastings methods as an ex- 
ample of a hierarchical model. Western (1998) uses the 
Gibbs sampler to estimate a two-level hierarchical model 
of GDP in the OECD with pooled cross-sectional time- 
series data; the hierarchical structure of the model makes 
the country-specific effects of covariates conditional on 
(time-invariant and country-specific) levels of labor or- 
ganization. Hierarchical models are an obvious and fre- 
quent area of application for MCMC; I refer readers to 
the summaries in Western (1998) and King, Rosen, and 
Tanner (1999) and the treatments in the statistical litera- 
ture: e.g., Gelman et al. (1995, chapters 5, 13-14), Carlin 
and Louis (1996, chapter 7), and the book length treat- 
ment by Draper (1999). 

Smith (1999) uses MCMC to estimate an ordered- 
probit model in a strategic choice setting (crisis escalation 
in international relations), subject to the assumption that 
observed crisis behavior (e.g., escalation and acquies- 
cence) provides strategically censored insights as to each 
player's true underlying level of resolve. Smith terms this 
model a Strategically Censored Discrete Choice model. 

Quinn, Martin, and Whitford (1999) use MCMC to 
estimate multinomial probit models for vote choices in 
both the United Kingdom and the Netherlands, using a 
slightly different parameterization to the one I employ 
here, due to Chib and Greenberg (1997). They compare 
the MNP model to the multinomial logit model and con- 
clude that the choice as to which model may not simply 

be a theoretical concern, but will depend on the structure 
of the choice problem faced by voters, and the types of 
covariates available to the analyst. 

Gelman and King (1990) is an early application of 
the Gibbs sampler and the first application of MCMC in 
a political science setting.16 They use a three-component 
mixture model to decompose the distribution of vote 
shares across districts, treating the district-specific mix- 
ing probabilities as missing data to be estimated using ei- 
ther an EM algorithm or a Gibbs sampler. This approach 
allows Gelman and King to estimate seats-votes curves 
and quantities such as the bias and responsiveness of an 
electoral system election-by-election, and without co- 
variates. Jackman (1994) generalizes this model and the 
methodology for cases where malapportionment is an is- 
sue (e.g., Australian jurisdictions). 

Lastly, an interesting use of MCMC is in robust sta- 
tistics. Data with outliers can often be conveniently mod- 
eled using t distributions with low degrees of freedom, 
v > 2 (recall that the t distribution tends towards the 
Normal as the degrees of freedom increases). MCMC al- 
lows the degrees of freedom parameter to be estimated 
conditional on the data, rather than (arbitrarily) set in 
advance by the analyst (e.g., Gelman et al. 1995,357 and 
following). This approach is discussed by King and Katz 
(1999), in their model of vote shares in British House of 
Commons constituencies (using multivariate t distribu-
tions with unknown degrees of freedom parameter). 

Software 

Since MCMC methods are computationally intensive, no 
survey is complete without a discussion of software. 
BUGS -Bayesian inference Using Gibbs Sampling-is a 
general purpose package for Gibbs sampling, written by 
Spiegelhalter et al. (1997). The software relies on two key 
features: (1) a parser, that reads model statements input 
by the user, deduces the form of the model, and compiles 
code for sampling from the conditional distributions 
needed to implement the Gibbs sampler; (2) an algo- 
rithm for adaptive rejection sampling (Gilks 1992), that 
permits sampling from log-concave conditional distribu- 
tions, thus allowing the software to work in a wide class 
of situations (e.g., Gilks and Wild 1992; Spiegelhalter et 
al. 1997, Table 3). 

An extremely useful feature of BUGS is that it handles 
missing data "on-the-fly." Recall that from the perspective 

161ndeed, this application predates the introduction of the terms 
"MCMC" or "Gibbs sampler" into the statistical mainstream, let 
alone the political science mainstream. 
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of the Gibbs sampler, missing data is simply another ran- 
dom quantity embedded in the model; if we have a condi- 
tional distribution for the missing quantities then we can 
apply either the Gibbs sampler (sampling directly from 
the conditional distribution) or a Metropolis-Hasting 
method (sampling from a candidate density). In many 
situations, the form of the conditional distribution 

missing data 1 observed data, parameters) 

will be an explicit part of the model; this is always true in 
a regression-type setting when the dependent variable y 
contains missing data, since f(ylX, 0)  is required for 
specifying the likelihood of the observed data, quite apart 
from dealing with any missing data problem. Accord- 
ingly, when encountering missing data on a dependent 
variable in a regression-type setting, BUGS will make 
"multiple imputations" automatically, with no special 
flagging of the problem required by the user. 

BUGS is currently free and can be downloaded from 
http://www.mrc-bsu.cam.ac.uk/bugs.A Windows ver- 
sion, WinBUGS, lets users specify models via a graphical 
user-interface, drastically reducing the programming 
skill-level required in order to exploit MCMC. An exten- 
sive set of well-documented examples accompany the 
software, largely drawn from biostatistics. A set of Splus 
functions, BOA-Bayesian Output Analysis program- 
provides trace plots, summary statistics, and convergence 
diagnostics via a menu driven interface and is also freely 
available, from http://www.pmeh.uiowa.edu/BOA. A 
web-based summary of covergence diagnostics and soft- 
ware is at http://www.ensae.fr/crest/statistique/robert/ 
McDiagI. 

In the Appendix I present WinBUGS code for the bi- 
nary probit example I presented in the Examples section. 
All other examples and graphs are generated using prob- 
lem-specific code in Splus or GAUSS; all code, data, and 
supporting documentation is available from the AJPS web 
site (http://psweb.shs.ohio-state.edu/ajps/)as well as the 
author's web site http://tamarama.stanford.edu/simon. 

Conclusion 

At the time of writing, the social sciences stand poised to 
exploit the power of MCMC. A number of impediments 
stand in the way, which are steadily being overcome. 
First, by their very nature, MCMC methods are compu- 
tationally intensive, relying on random sampling from 
conditional distributions to generate a random tour of 

the parameter space for all random quantities (param- 
eters and missing data). Second, the desirable statistical 
properties of MCMC are asymptotic: subject to some 
regularity conditions, the approximation to the posterior 
density improves as the number of iterations increases, 
though exactly how many iterations is "enough" is very 
difficult to pin down in advance (recall my advice above 
that "more is better" in this regard). All this means that 
for problems with lots of (interdependent) parameters or 
data points (or both), the computational burdens of 
MCMC are still not trivial by the standards of the late 
1990s. Offsetting this is the fact that (a) MCMC is the 
subject of a tremendous amount of statistical research, 
looking for ways to speed convergence; (b) computing 
resources for social-scientists continue to get faster and 
cheaper. 

Prior to the release of BUGS and WinBUGS, MCMC 
was a do-it-yourself affair, requiring a high level of statis- 
tical and programming expertise, often requiring the 
user to get "close to the machine" and code problem-spe- 
cific routines in C or Fortran. The advice of one promi- 
nent Bayesian statistician to me in 1995 was that acquir- 
ing skills in these programming languages is the entry 
price one has to pay in order to use MCMC; what one 
loses in programming time and debugging, one hopes to 
make up with faster execution and more iterations per 
unit of time. Given that the desirable properties of 
MCMC are asymptotic, the ability to generate a large 
number of iterations is paramount, and so in many cases 
the time spent developing code in C or Fortran could be 
well spent.17 The arrival and ongoing development of 
BUGS and especially WinBUGS has largely made the 
statistician's advice redundant and goes a long way to- 
wards putting MCMC in the toolkit of methodologically 
literate social scientists. 

Finally, I remind readers that for purposes of exposi- 
tion, I have demonstrated how the methods work with a 
simple set of examples relatively familiar to social scien- 
tists, before turning to the more interesting multinomial 

17For truly pathbreaking work, coding in a high-level language is 
probably inescapable: the problem may not be able to be leveraged 
into BUGS (e.g., the multinomial probit model I estimate), the 
particular combination of priors and data yield nonstandard pos- 
teriors and hence the use of Metropolis-Hastings methods, or the 
properties of the problem-specific Markov chain may not be well 
understood in advance. In these situations, hundreds of thousands 
of iterations of the MCMC sampler may be required, if not more. 
For instance, the King, Rosen, and Tanner (1999) treatment of the 
ecological inference problem has all these features and was imple- 
mented using Fortran on an extremely powerful UNIX worksta-
tion. Perhaps all this is to say that pathbreaking work is hard and 
that not everyone will do it! 

http://www.mrc-bsu.cam.ac.uk/bugs
http://www.pmeh.uiowa.edu/BOA
http://www.ensae.fr/crest/statistique/robert/
(http://psweb.shs.ohio-state.edu/ajps/)
http://tamarama.stanford.edu/simon


401 INFERENCE BY M A R K O V  C H A I N  M O N T E  C A R L 0  

probit model. The simplicity of my expository examples Appendix 
should not deceive readers: MCMC methods are not sim- WinBuasProqrams. for Turnout Example 
ply computer-intensive mechanisms for replicating maxi- 
mum likelihood estimates! Rather, MCMC allows us to These programs and accompanying files containing data 
employ models previously considered impossible to esti- and priors are available from http://psweb.sbs.ohio-
mate. The applications I cite throughout this paper span state.edu/ajps/ and http://tamarama.stanford.edu/simon. 
the frontiers of political methodology: e.g., the multino- The usefulness of WinBUGS is apparent by comparing these 
mial probit model, solutions to the ecological inference programs with the substantially longer programs necessary 
problem, hierarchical or "multi-level" models, or imputa- to implement the required Gibbs samplers in Splus, also 
tions for missing data. Without doubt, MCMC is opening available from my web site. 
up new methodological terrain to social scientists. The following program implements a logit model for 

As with any new methodological technique, mistakes the turnout data. The last line of the program specifies the 
will be made. And, as always, there will be no substitute prior for B; I employ a vague prior by setting the mean vec- 
for working through a model parameterization or con- tor bO to a null vector and the precision matrix B to .001 
ducting exploratory data analysis, before throwing times an identity matrix. Missing data on the binary re- 
MCMC at a problem. Subject to this caveat, I anticipate sponse y would present no problem in this instance; 
that the impact of MCMC methods on quantitative so- WinBUGS would simply sample to create multiple imputa- 
cial science in the next ten years will be as impressive as tions for any missing values encountered. Note also the cal- 
their impact in statistics over the last ten years. culation of the log-likelihood; this is not necessary in order 

to implement the model, but demonstrates that quantities 
Manuscript submitted December 3, 1998. of interest can be calculated, monitored, and output by the 
Final manuscript received August 17, 1999. program. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# #  turnout model, by logit, # # 

# #  uses random 3,000 obs subset of Nagler's original data set # # 

# # # # 

# #  simon jackrnan, dept of political science, stanford university # #  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

model I 

for (i in l:N){ # #  loop over observations 
y[il - dbern(p[i]); # #  binary outcome, Bernoulli trial 
logit(p[i]) <- ystar[il ; # #  logit link 
ystar[i] <- betar11 # #  regression structure for covariates 

+ beta[2l*educ [il 
+ beta[3l* (educ[i]*educ[il) 
+ beta[41kage [il 
+ beta[5Ik (ageLi.1 *age[il ) 
+ beta[61ksouth [i] 
+ beta[7] *govelec [i] 
+ beta [8] *closing[i] 
+ beta[9Ik (closing[il *educ[il ) 
+ beta[lO]* (educ [i] *educ [i] *closing[il ) ; 

llh[il <- y[i] *log(p[i] ) + (1-y[il) *log(l-p[i]) ; # #  llh contributions 
1 

sumllh i-sum(llh[]) ; # #  sum of log-likelihood contributions 

# #  priors 

beta[l:lO] - dmnorm(bO[ ] , B[ , I )  ; # #  multivariate Normal prior 


1 

http://psweb.sbs.ohio-
http://tamarama.stanford.edu/simon
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The next program implements a probit model, but able ystar.  From the perspective of the software, it is the 
without a probit link function. The use of the I( , ) con- truncated Normal sampling that makes this a probit 
struct directs the software to use truncated Normal Sam- model: the probit link function is only used in order to 
pling, as described in the text. The observed binary out- generate auxiliary quantities of interest (predicted prob- 
comes, y, only enter the program in selecting which set of abilities for specific data points and the log-likelihood). 
truncation bounds to use when sampling the latent vari- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
# #  turnout model, probit, via truncated Normal sampling # #  
# #  y's determining the truncation points # #  
# #  this avoids the link to y via ~ernoulli sampling and a link function # # 
# #  use the link function "ex-post" to extract predicted probabilities # # 
# # # # 
# #  simon jackman, dept of political science, stanford university # # 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
model { 

for (i in l:N){ # #  loop over observations 

mu[il <- beta[ll 


+ beta[2] *educ [i] 
+ beta[31* (educ[il*educ[il) 
+ beta[4] *age[il 
+ beta[5Ik (age[il *age [il ) 
+ beta[6] *south[i] 
+ betar71 *govelec [il 
+ beta[8] *closing[i] 
+ beta[9]* (closing[i] *educ [i] ) 
+ beta[lO]* (educ [i] *educ [i] *closing[i] ) ; 

# #  truncated normal sampling 

ystar[il - dnorm(mu[il ,l)I(lo[y[i]+l] ,up[y[i]+ll ) ; 


probit (p [i] ) <- ystar [i] ; # #  probs, as probit link 

llh[il <- y[il *log(p[il ) + (1-y[i] *log(l-p[il ) ; 


# #  truncation points 

lo[l] <- -50; 10[2] <- 0; # #  ystar / y=O - N(xb, 1) I(-50,O) 

up[ll <- 0; up[2] <- 50; # #  ystar / y=l - N(xb,l)I(0,50) 


sumllh i-sum(llh[ ] ) ; # #  sum log-likelihood contributions 

# #  priors 

beta[l:lOl - dmnorm(bO[ I , B[ , 1) ; # #  multivariate Normal prior 


I 
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