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ABSTRACT
We discuss tactical challenges of the Big Data analytics re-
garding the underlying data, application space, and com-
puting environment, and present a comprehensive solution
framework motivated by the relevant tactical use cases. First,
we summarize the unique characteristics of the Big Data
problem in the Department of Defense (DoD) context and
underline the main differences from the commercial Big Data
problems. Then, we introduce two use cases, (i) Big Data
analytics with multi-intelligence (multi-INT) sensor data and
(ii) man-machine crowdsourcing using MapReduce frame-
work. For these two use cases, we introduce Big Data an-
alytics and cloud computing solutions in a coherent frame-
work that supports tactical data, application, and comput-
ing needs.
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1. INTRODUCTION
While it has become apparent that data is being col-

lected at unprecedented rates thanks to a wide range of
high-resolution high-throughput sensors, it has also become
apparent that suitable algorithms and tools to satisfacto-
rily analyze Big Data are largely missing. In the tactical
domain, this challenge is even more amplified, where scien-
tifically collected tactical data has missing links, is mostly
unstructured and heterogeneous, and involves different lev-
els of completeness and standardization.

Current DoD systems and processes for managing and an-
alyzing the tactical information cannot be effectively scaled
to meet the challenge of ever growing data. At the same
time, the tools, algorithms, and data management tech-
niques that we can borrow from the commercial world do
not directly apply to the needs of the applications in the
DoD domain. For example, the envisioned Naval Tactical
Cloud consists of a group of clouds that reside at geographi-
cally large distances such as in the Pacific Shore, the Atlantic
Shore, and Carrier Groups in both the Atlantic and Pacific
Oceans [1]. Therefore, fundamentally new approaches of
analysis and data management pertaining to mission deci-
sion cycles are needed.

Cloud computing is envisioned to be beneficial for Big
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Data analytics. However, consolidating all computational
and storage resources in Big Data centers (as is mostly done
in the commercial domain) is not efficient (and often not fea-
sible) in tactical domains. The three most important chal-
lenges to consolidated data centers and tactical Big Data
analytics are given as follows.

• The tactical cloud will most likely be band-
width limited and possibly out of network for
long periods of time. Bandwidth is very expensive
in challenging environments, for example, in open sea
or in countries where infrastructure is limited. Rou-
tine operations such as data replications may not be
possible.

• Security. The net-centric cloud allows data to be
stored in a distributed manner, and some of the data
services are provided by mobile computing platforms
(e.g., Humvees). Moreover, some data centers/servers
are located in a place close to the sensors in an un-
friendly environment. The data server/center might
not be under the full control of a trusted authority;
instead, it may be rented, provided, or maintained by
an untrusted unit.

• In tactical environments, the roles can change
very quickly. In the commercial domain, it is clear
who the producers and the consumers are. In a Bat-
tlespace environment, those roles can change very quickly.
A Warfighter can be the consumer of data and ana-
lytics for long periods of time, but depending on the
mission, the Warfighter might take the role of data
producer via portable sensors.

2. TACTICAL BIG DATA CHALLENGES
We distinguish the main characteristics of the tactical Big

Data problem as follows.

2.1 Applications and Data

• Intelligence, Surveillance and Reconnaissance
(ISR) applications. Some of the ISR applications
are common with commercial ones such as Intrusion
Detection and Anomaly Detection. However, some of
the ISR applications are unique to tactical environ-
ments such as Target Tracking and Localization (TTL)
and Persistent Surveillance. They often come with
stringent delay requirements and involve real-time or
near real-time objectives.



• Mission-driven goals. Goals in the tactical Big Data
problem are driven by strict mission needs, rather than
by economics as in commercial applications. This in-
troduces additional constraints into the problem space,
such as hierarchical order of data sources, processors,
and users (beyond the server-client paradigm in com-
mercial applications).

• Heterogenous data sources. Most of the DoD data
is unstructured, such as signals, text, image and video
with different standardization. The data is obtained
by a variety of sensors (e.g., LIDAR, RADAR, hyper
spectral imaging (HSI), electro-optical(EO), infrared
(IR), videos) over large geographical areas with differ-
ent resolutions, completeness, and uncertainty. Most
of the time the data is not transactional (e.g., sensor
data is not like purchase data and it contains high de-
grees of uncertainty).

• Uncertain/incomplete/noisy data. The uncertain-
ties can arise from various inaccuracies and they should
be represented in the data structure. Fuzzy approaches
are not sufficient to address the uncertainty in the data
collection (e.g., low SNR). Methods that address un-
certainties arising from algorithms (e.g., sub-optimal
learning algorithms), logical inconsistencies in the model
(e.g., conflicting schemas) and scalable novel methods
are required.

• Stringent security requirements. Having military
data co-located in the same virtual environment as
other commercial offerings may not satisfy DoD’s strin-
gent security requirements (such as protection against
data theft and corruption attacks).

2.2 Computing Architecture

• Limited networking bandwidth. The bandwidth
is extremely expensive, for example, in challenging
(highly contested) areas such as open sea and enemy
zones. In addition, military radios (e.g., in airborne
networking) are inherently subject to a harsh commu-
nication environment (e.g., wireless fading, multipath,
mobility) and jamming/eavesdropping attacks.

• Heterogenous processing capabilities. Tactical
networks consist of diverse users, ranging from smart
phones to data centers, co-existing and interacting in
the same environment of data collection, processing,
and delivery.

• Different roles. In a tactical environment, a user
may assume different roles at different times: it may
be a producer (providing data), a processor (provid-
ing computing capability), or a consumer (demanding
tasks). This goes beyond the server-client paradigm in
commercial applications.

• Distributed system requirements. Sensing, stor-
age and computation units in tactical applications are
typically not co-located but rather distributed over a
geographical area.

End-users in a tactical environment includes actors such
as a Warfighter and an intelligent analyst, each with distinct

properties. The Warfighter is characterized by uncertain
query vs. uncertain data, and only knows that he/she is
near a landmark, but is not sure about the exact location;
and the locations of the landmarks in the database are in
low spatial accuracy and some of them are no longer there.
The Warfighter properties can be summarized as:

• low computing capability (probably a PDA/tablet).

• real-time requirements.

• limited technical expertise.

• simple tasks (queries) (e.g., asks questions such as “Tell
me about the [bridge/valley] in front of us.” or “Has
there been an [IED attack/explosion] [around this area]
[in the last 3 months]?”

On the other hand, the intelligence analyst exceeds the com-
puting capabilities of the Warfighter. The intelligence ana-
lyst properties can be summarized as:

• high computing capability (with powerful data centers
/ clouds).

• batch processing.

• experienced/trained.

• complex interactions with the system (e.g., can use
specialized query languages).

3. TACTICAL BIG DATA USE CASES

3.1 Use Case 1: Big Data Analytics using Multi-
INT Sensor Data

As a first use case, we consider the Big Data analytics
using multi-intelligence (multi-INT) sensor data. The main
challenge is that the analysis should be carried out via multi-
level data fusion using geographically dispersed data. The
data sources are from full motion video (FMV), imagery,
wide area surveillance, EO/IR, RADAR, and human intel-
ligence (HUMINT). In addition, cyber domain sensors in
terms of crawlers can also be used to collect text data from
social media, news, blogs, and comments. Since the sen-
sors are in geographically distributed locations, the sensor
data can be stored in (i) a large data archive for retrieval
and extraction (e.g., in a cloud), (ii) kept at an aggrega-
tion node (e.g., a mobile gateway), or (iii) remain close to
the sensors and triggers provided for data distribution (e.g.,
sensors themselves).

Intelligent Automation, Inc. (IAI), in various DoD spon-
sored projects1, addresses some of the challenges pertain-
ing to joint analytics, distributed storage, and content dis-
tribution in challenging (e.g., bandwidth limited) environ-
ments. We are envisioning a system, where end-users such
as Warfighters with their PDAs/tablets interact with the
system using natural language questions. Consider an ex-
ample, where a Navy ship has pulled into a foreign port in
a country that has strained relationships with the US. The
goal is to predict whether a social uprising will happen or
not (in the next few days or so). A possible question is
“Will there be [a social uprising] around [the port] in the
[next two days]?” As much as the question is simple and

1An up-to-date project list is available at http://i-a-i.com.



crisp, the analysis requires querying and running analytics
across geographically distributed data stores. In addition to
the volume of data, the variety of the data makes the an-
alytics more complex. To address these challenges, we are
building a system that consists of five layers, namely Ap-
plications Layer, Semantic Layer, Analytics Layer, Storage
Layer, and Distribution Layer. Based on the Warfighter’s
question, we walk through the layers, as follows.

Application Layer: The interactions with the end users
are enabled via Ozone Widgets [6]. The Ozone Widgets
are customizable open-source light weights web applications
that assemble the tools needed to accomplish a broad class
of tasks and enable those tools to communicate with each
other. The visualization is also an important component in
this layer.

Semantic Layer: This layer digests natural language
questions, determines the category of the questions, and
parses and analyzes the questions by using UC Berkeley
FrameNet [7]. Then the query abstract is prepared. The
query abstract process involves populating the query when
possible. In the case of social uprising, a relevant social
movement ontology could be used. The main challenge in
this layer is to achieve semantic interoperability across di-
verse datasets.

Figure 1: IAI Big Data analytics architecture.

Analytics Layer: This layer is responsible for Big Data
analytics, computation, and the bulk of the processing. In
general, both batch processing and near-real-time analytics
are expected to be supported. The batch processing can
be wrapped inside Hadoop Core, is executed as MapReduce
jobs and is supported by other Hadoop ecosystem compo-
nents such as Pig, HBase, and Hive. The graph analytics
can be supported by GraphLab [8], which uses a shared
memory architecture. Storm [9] can be leveraged to sup-
port short Command and Control decision cycles. As an
example, consider full motion video depicting some activ-
ity and Twitter messages, which contain negative sentiment
against US deployment in the particular port. From the
video, we can extract various features depicting suspicious
activities. Then we use topic modeling algorithms such as
Latent Dirichlet Algorithm [10] to classify the activity and
predict whether there is a threat or not. Similarly, one could
check whether the Twitter messages are becoming viral or
not using, for example, graph analytics. Of course, the chal-
lenge is to build the capability of running these algorithms
using vast amount of data limiting false alarm rates. The
high-level architecture we are developing at IAI to support
the analytics capabilities is shown in Figure 1.

Storage Layer: As mentioned before the data does not
need to be stored in a data center and can sometimes re-
side close to the sensor and at aggregate nodes. Then the

challenge is to support content replication and maintain the
desired consistency and availability across data stores. Also
distributed indexing such as distributed hash tables should
support data discovery in a reasonable amount of time.

Distribution Layer: This layer is mainly responsible
for content distribution. After documents are submitted by
content providers, the documents are first stored in an origin
server. The content is then replicated on other surrogates
(caching servers) in several situations, such as distribution
tasks, content provider’s preferences, content access statis-
tics, or load balancing requirements. In all these situations,
content and relevant documents are copied to one or more
surrogates in other regional networks to speed up data ac-
cess for end users.

3.2 Use Case 2: Man-Machine Crowdsourc-
ing using MapReduce Framework

Crowdsourcing is becoming an effective mechanism to ac-
complish tasks online. The evolving tactical cloud architec-
ture is well suited to allow crowdsourcing to be used dur-
ing crisis response periods. However, the implementation
of crowdsourcing as a distributed analytic capability for a
commander during a crisis response mission is expected to
be different than the commercial use of this technique. In
particular, to accommodate crowdsourcing (e.g., for disaster
and crises responses) it is necessary to receive from both hu-
mans and machines with different levels of capabilities and
should be carefully combined for reliable task execution.

To enable and support effective use of crowdsourcing dur-
ing crisis response periods, Intelligent Automation, Inc. en-
visions a “Crowdsourcing for Crisis and Disaster Applica-
tions (CrowdApp)” system. The architecture is inspired by
CrowdForge [2]. CrowdApp, in broad terms, is a framework
for accomplishing complex tasks from both human intelli-
gence and machine analytical functions. The CrowdApp
framework populates workflows from small tasks that can
be combined and nested, to address disaster and crisis ap-
plications including data collection and recognizing social
changes or activity.

Both human intelligence and machine analytic problem
solving processes follow the map reduce construct, where in-
termediate < key, value > pairs are fed to either “reduce”-
tasked humans (workers) or compute nodes. For humans,
the map and reduce steps are populated to solve cognitively
loaded and pattern recognition focused tasks, while the tasks
for machines focus on computationally loaded tasks. The in-
dividual results are automatically reduced by appropriately
combining them. CrowdApp automatically manages avail-
able resources by optimally scheduling task primitives based
on (i) human expertise and cognitive load, and (ii) machine
availability, capability, and reliability, hence taking full ad-
vantage of data locality.

Using Figure 2, some of the advantages of our framework
can be enumerated as:

• CrowdApp allows complex tasks to be submit-
ted (#1) and automatically populates a work-
flow with optimal scheduling of primitive tasks
(#2): Previous works mainly focus on simple tasks
such as image labeling or judging the relevance of search
results [3]. Here we envision a more general purpose
framework for accomplishing complex tasks such as
social uprising detection(e.g., situational awareness re-
garding a foreign embassy) or disaster relief (e.g., flood



Figure 2: The envisioned CrowdApp architecture.

area mapping). Our framework allows dynamic parti-
tioning so that workers (human resources in the sys-
tem) themselves can decide a task partition, with their
results in turn generating new subtasks (as opposed to
the task designer asking for fully specified partitions
beforehand). CrowdApp also allows multi-level parti-
tions in which a task can be broken up by more than
one partition.

We can run automatic node discovery that leverages
advanced social media analytics based on graph-based
community detection [4]. This can be followed by op-
timal scheduling for both humans and machines based
on the knowledge of available resources such as (i) hu-
man expertise, cognitive load, and (ii) machine avail-
ability, processing power, and reliability.

• CrowdApp admits crowdsourcing for Human-
Intelligence Tasks (HIT) with automated re-
duce process (#3): We follow a three step process
(partition, map, and reduce) to crowdsource complex
tasks to accomplish high quality results. In particular,
using the partition step, a larger task is broken down
into discrete subtasks. In map tasks, a specified sub-
task is processed by one or more workers, and finally,
in reduce tasks, the results of multiple workers tasks
are merged into a single output via voting process in
general. This three-step process admits seamless man-
agement of subtasks and flows between tasks.

• CrowdApp allows crowdsourcing for Machine
Analytic Functions based on MapReduce (#4):
While the most popular implementation of the map
reduce construct is Hadoop in a cloud environment,
this two-step problem solving methodology can be ap-
plied to other processing nodes as well. Therefore, we
consider all processing units, especially those closer to
the Warfighter and disaster area to be available for
distributed machine analytic computation so that the
system can effectively exploit data locality. If a data
center is available, i.e., a traditional cloud, then we
can use Hadoop and its ecosystem to solve the prim-
itive tasks assigned to this data center. If less pow-
erful nodes are available, one option is to use Sec-

tor/Sphere [5] to carry out distributed task primitives,
which allows parallel data processing with very simple
APIs. Sector/Sphere is can also operate in a wide area
network (WAN) setting that is suited to the tactical
cloud.

• CrowdApp supports a data fusion workflow to
use both human and machine responses (#5):
The tasks from #1-#4 output the results from (i) hu-
mans and (ii) machine analytic functions. However,
the data quality, trustworthiness, confidence and in-
formation value of the outputs differ depending on
whether the subtask is processed by humans or ma-
chines. In the data fusion step, we consider the human
and machine factors that go into the decision process.
For example, there is no concept of expertise in ma-
chines or the humans produce different results based
on their cognitive workload, expertise, and even time
of the day. Systematic study of these factors along
with other cognitive factors aims to produce a set of
data fusion rules/functions based on well-studied the-
ories of data fusion such as Bayesian and fuzzy logic
that automatically “reduces” the outputs from partial
decision processes.

The overall system can be implemented by leveraging avail-
able APIs and other tools such as Ushahidi or Amazon Me-
chanical Turk [3] under representative crisis and disaster sce-
narios such as detection of social uprising, intelligence report
writing, and disaster area mapping.

4. CONCLUSION/DISCUSSION
We envision, as tactical clouds mature, that more services

and analytical capabilities will be enabled. One application
is automated sensor planning (or sensor management) based
on shared situation awareness (SA). In other words, sensors
can be dynamically tasked (or re-tasked) based on the lat-
est status of information requirements and on-line analytic
predictive processing (OLAP). In particular, a systematic
approach based on cloud computing could provide scalable
data mining/analysis algorithms as well as tools and plat-
forms for ingesting real-time sensor data (e.g., technical, se-
mantic, unstructured) for shared SA and predictive process-
ing, and drive the sensor planning loop.
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