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In this paper, we propose a strategy for distributed Kalman filtering over sensor networks, based on node
selection, rather than on sensor fusion. The presented approach is particularly suitable when sensors with
limited sensing capability are considered. In this case, strategies based on sensor fusion may exhibit poor
results, as several unreliable measurements may be included in the fusion process. On the other hand, our
approach implements a distributed strategy able to select only the node with the most accurate estimate and
to propagate it through the whole network in finite time. The algorithm is based on the definition of a metric
of the estimate accuracy, and on the application of an agreement protocol based on max-consensus. We prove
the convergence, in finite time, of all the local estimates to the most accurate one at each discrete iteration,
as well as the equivalence with a centralised Kalman filter with multiple measurements, evolving according to
a state-dependent switching dynamics. An application of the algorithm to the problem of distributed target
tracking over a network of heterogeneous range-bearing sensors is shown. Simulation results and a comparison
with two distributed Kalman filtering strategies based on sensor fusion confirm the suitability of the approach.
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1. Introduction

In the last decades, sensor networks have received significant attention by many researchers
in different fields of engineering, such as robotics, control theory, and image processing (Zhao
and Guibas (2004)). As a general principle, sensor networks perform estimates of the state of
dynamical processes through computation and communication among the network nodes. Recent
technological innovations have made possible to deploy a large number of inexpensive and low-
power sensors to cover wide areas (Dargie and Poellabauer (2010)), making a wide range of
applications possible and affordable, such as habitat monitoring, animal tracking, environment
observation, forecasting, surveillance, and domotics.
The communication scheme of a sensor network determines whether the estimation algorithm

is centralised, distributed or hierarchical. Centralised algorithms make use of a fusion centre,
able to receive data from each node and to compute a global estimate of the system state (Ghaf-
farkhah and Mostofi (2009), Taj and Cavallaro (2009)). The presence of a single fusion centre
simplifies the process of computing a unique and optimised estimate. On the other hand, this
may lead to high data transfer rates and to lack of scalability, energy efficiency, and fault tol-
erance, because of the presence of a single point of failure. These limitations can be overcome
through distributed approaches (Mahmoud and Khalid (2013)). Steps towards the realisation of
effective distributed approaches have been at first made by considering all-to-all communication
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schemes over the sensor network, which yield the elimination of the fusion centre, but may in-
troduce a heavy communication overhead (Rao et al. (1993)). Further approaches consider local
connection schemes, by making use of local fusion centres which communicate only with subsets
of nodes (Oruc et al. (2009), Wang and Wu (2008)). In this case, hierarchical or hybrid archi-
tectures come into action. The transition to fully distributed estimation algorithms requires the
definition of suitable agreement procedures, able to lead all the nodes towards the production
of a common estimate without the support of centralizing units, and possibly with limited com-
munication and computation burdens. To this aim, consensus algorithms (Cao and Ren (2010),
Ren and Beard (2007)) have been widely adopted. Remarkable applications of consensus algo-
rithms have been carried out in different contexts, such as task coordination (Olfati-Saber et al.
(2007), Ren et al. (2005, 2007)), task assignment (Di Paola et al. (2011)), formation control (Fax
and Murray (2004)), flocking (Buscarino et al. (2006, 2007), La and Sheng (2012), Olfati-Saber
(2006)), rendez-vous (Martinez et al. (2005)), and distributed estimation (Millán et al. (2013),
Yang et al. (2011), Yang and Shi (2012), Yu et al. (2011)).
The transition from centralised to distributed algorithms has touched nearly all the fields of

estimation over networks, including the well-known Kalman filter (Kalman (1960)). The Cen-
tralised Kalman Filter with multiple measurements (CKF) is, in fact, a centralised estimation
strategy which can be implemented over sensor networks (Mitchell (2007)). Further, much effort
has been devoted to the implementation of distributed estimation schemes based on Kalman
filtering, such as the Kalman-Consensus Filter (KCF) (Olfati-Saber (2007)), or the Diffusion
Kalman Filter (DKF) (Cattivelli and Sayed (2010)). Nevertheless, these approaches do not guar-
antee the convergence of all the individual estimates to a common value, and require a further
phase of sensor fusion, even though this is performed on a subset of the network nodes, with the
aim of containing the communication and computational burden. It is well known that special
care must be taken in sensor fusion, when sensors with limited sensing capability are consid-
ered, as the phenomenon of catastrophic fusion may occur (Mitchell (2007)). Limited sensing
capability is a realistic scenario in applications, such as, for example, indoor surveillance and
target tracking. There, sensors have usually a limited sensing range and, at a given time instant,
it may happen that the majority of sensors does not even possess a measurement. With this
in mind, one can easily figure out the effect of involving many unreliable sensors in the fusion
operation. Therefore, it may be the case that particular operational conditions, such as that of
limited sensing capability, call for a different strategy in the computation of a unique estimate
from the network data, giving up sensor fusion to go in favour of node selection (Yang and Shi
(2012)). This means that only some, if not a single network node is selected as the holder of the
best estimate, which is propagated to all the network nodes.
In this paper, we introduce a fully distributed approach to the realisation of an algorithm for

Distributed Kalman filtering with Node Selection (DKNS) for heterogeneous sensor networks,
where nodes have limited sensing capability. Considering heterogeneous nodes has important
consequences in the algorithm design, since the accuracy of the measurements performed by
each sensor may change over space and time, thus involving different uncertainties on estimates
to be accounted for during the agreement process over the network.
Beyond being fully distributed, another viable property of DKNS is that it guarantees that at

each iteration, every network node owns the same estimate of the process state. Node selection is
achieved using a strategy based on the max-consensus protocol (Nejad et al. (2009)), performed
on a measurement accuracy metric called perception confidence value, strictly related to the
Fisher information (Grocholsky et al. (2003), Martinez and Bullo (2006)). The approach is tested
on a distributed target tracking application (Giannini et al. (2013), Petitti et al. (2011)), where
a realistic range-bearing sensor model is considered. Simulation results are satisfactory, and
a comparison with two distributed Kalman filtering strategies, namely those in (Cattivelli and
Sayed (2010), Olfati-Saber (2007)), confirms that our approach is more effective when substantial
limitations to the sensing capability are present.
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The paper is organised as follows. Section 2 explains in full detail the proposed algorithm. In
Section 3, the performance of the proposed algorithm is assessed via numerical simulations on
the distributed target tracking application. Finally, conclusions and future directions are drawn.

2. Distributed Kalman Filtering via Node Selection

This section presents the Distributed Kalman filtering with Node Selection (DKNS) algorithm,
starting from the node and network model, to the description of its working principle, ending
with some discussion on DKNS properties.

2.1. Sensor Network and Node Model

We consider a sensor network modeled by an undirected graph G = {I, E}, where I
△
= {1, . . . , n}

is the node set, and E ⊆ I × I is the set of edges (links), representing a point-to-point commu-
nication network. The neighbour set of node i ∈ I is defined as Ni = {j ∈ I | (i, j) ∈ E}. Each
network node i ∈ I is a sensor able to estimate the state x(k) ∈ R

m of a time-discrete process
through a Kalman filter, and to exchange information only with its one-hop neighbours. In ac-
cordance with the classic Kalman filter theory, we assume that the process state x(k) evolves
according to a linear model, as

x(k) = A(k)x(k − 1) + ω(k), (1)

where A(k) is the state transition matrix and ω(k) is the process noise, which is assumed to be
drawn from a zero mean multivariate normal distribution with covariance matrix Q(k), that is,
ω(k) ∼ N(0,Q(k)).
Moreover, we assume that measurements zi(k) of the state x(k) are performed by the generic

i-th node as:

zi(k) = Hi(k)x(k) + υi(k), (2)

where Hi(k) is the measurement output matrix of the i-th node and υi(k) is the related obser-
vation noise, which is assumed to be zero mean Gaussian white, with covariance matrix Ri(k),
that is, υi(k) ∼ N(0,Ri(k)). The noise vectors at each time step are assumed to be mutually
independent.
The generic node i ∈ I is represented by the tuple:

〈x̂i(k), Xi(k), γi(k), xi(k)〉. (3)

In (3), x̂i(k) is the local state estimate produced by the sensor i at the discrete time k. To model
the limited sensing capability of each sensor, the sensing set Xi(k) ⊂ R

m is defined, so that node
i is able to perform a measurement of the state x(k) if and only if x(k) ∈ Xi(k). Heterogeneity
of sensors is assumed, by defining individual sensing sets. We define the set of the sensing nodes

S(k)
△
= {i ∈ I |x(k) ∈ Xi(k)}. The set difference P(k) = I \ S(k) is defined as the set of

predicting nodes. The quantity γi(k) is dubbed as perception confidence value and quantifies the
estimate accuracy of node i. To work effectively, the perception confidence value must have the
property of being larger as long as the estimate is more accurate. More formally, considering two
state estimates x̂i(k) and x̂j(k), where i and j ∈ I; if E[||x̂i(k)−x(k)||2] < E[||x̂j(k)−x(k)||2],
then γi(k) > γj(k) must hold (where E[·] indicates statistical expectation). Finally, xi(k) is the
value of the state estimate obtained after the procedure of node selection.
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Algorithm 1 Estimation phase for node i at iteration k

Input: xi(k − 1), Pi(k − 1)
Output: γi(k), x̂i(k), Ψi(k)

1: x̂−
i (k) = A(k)xi(k − 1)

2: P−
i (k) = A(k)Pi(k − 1)AT (k) +Q(k)

3: if i ∈ S(k) then
4: [Pi(k)]

−1 = [P−
i (k)]

−1 +HT
i (k)R

−1
i (k)Hi(k)

5: x̂i(k) = Pi(k){[P
−
i (k)]

−1x̂−
i (k) +HT

i (k)R
−1
i (k)zi(k)}

6: Ψi(k) = Pi(k)
7: else

8: x̂i(k) = x̂−
i (k)

9: Ψi(k) = P−
i (k)

10: end if

11: γi(k) = 1/Trace [Ψi(k)]

Each iteration of DKNS consists of two phases: estimation and node selection. In the former
phase, each node performs an individual estimate through a local Kalman filter. In the latter,
all the nodes agree on the best available estimate in a distributed fashion. We now describe the
two phases in detail at iteration k, therefore assuming that each node owns the information of
the tuple (3) at iteration k − 1.

2.2. Phase 1: Estimation Phase

The estimation phase is schematised in Algorithm 1. Each node locally runs a Kalman filter.
Specifically, the local Kalman filter starts, at each iteration, from a given state estimate xi(k−1)
and covariance matrix Pi(k − 1), which are the best ones available over the network, obtained
and propagated during iteration k−1. If at iteration k, node i is a sensing node, i.e., i ∈ S(k), a
full Kalman filter iteration is run (lines 1–2 and 4–6 of Algorithm 1); on the contrary, in the case
of a predicting one, i.e., i ∈ P(k), only the prediction part of the Kalman filter is run (lines 1–2
and 8–9). Then, each node ends the estimation phase by computing the perception confidence
value γi(k) as:

γi(k)
△
=







1
Trace[Pi(k)]

if i ∈ S(k)

1
Trace[P−

i (k)]
if i ∈ P(k)

, (4)

that is, if node i is a sensing one, the perception confidence value γi(k) is computed on the
basis of the a posteriori error covariance matrix, otherwise, the operation refers to the a priori
error covariance matrix. It is well known that minimizing the trace of the error covariance
matrix is equivalent to minimize the expected value of the square of the magnitude of the error
vector (Siouris (1979)); therefore it is clear that γi(k) grows with the accuracy of the estimation
performed by the node i at time k, thus, computing the perception confidence value as in Eq. (4)
fulfils the definition given in Section 2.1.
Eventually, at the end of Phase 1, each node i stores the perception confidence value γi(k),

the local state estimate x̂i(k), and the local error covariance matrix Ψi(k) (output line of Algo-
rithm 1).



Distributed Kalman Filtering via Node Selection in Heterogeneous Sensor Networks 5

Algorithm 2 Node Selection phase for node i at iteration k

Input: γi(k), x̂i(k), Ψi(k)
Output: xi(k), Pi(k)

1: ζi(0) = γi(k)
2: χi(0) = x̂i(k)
3: Πi(0) = Ψi(k)
4: for t = 1 to D do

5: Send(ζi(t− 1),χi(t− 1),Πi(t− 1))
6: Receive(ζj(t− 1),χj(t− 1),Πj(t− 1)), ∀j ∈ Ni

7: ζi(t) = maxj∈Ni∪i {ζj(t− 1)}
8: µi(t) = argmaxj∈Ni∪i {ζj(t− 1)}
9: χi(t) = χµi

(t− 1)
10: Πi(t) = Πµi

(t− 1)
11: end for

12: xi(k) = χi(D)
13: Pi(k) = Πi(D)

2.3. Phase 2: Node Selection Phase

The node selection phase, schematised in Algorithm 2, is run to select, in a totally distributed
fashion, the node with the highest perception confidence value, and to propagate its estimate
and the related error covariance matrix over the network in finite time. To achieve this, a max-
consensus based strategy (Nejad et al. (2009)) is run in lines 4–11 of Algorithm 2. Please note
that in this phase of the algorithm, a new discrete time index t is defined, making the max-
consensus protocol run on a different sampling time (typically, shorter than the one associated
with the time-discrete index k, which is the actual sampling time of DKNS).
Algorithm 2 works as follows: node i initially sets its internal variables to values obtained from

Phase 1, i.e., the perception confidence value, the state estimate, and the covariance matrix
(line 1–3 of Algorithm 2). Then, a protocol based on max-consensus lets the internal variable
ζi(·) to converge to the maximum of all perception confidence values over the network (line
7). Correspondingly, line 8 selects the node which performed the estimate of the process state
with the best accuracy, whereas lines 9 and 10 select the corresponding best estimate and error
covariance matrix. It can be proved (Nejad et al. (2009)) that the node selection loop (lines
4–11) converges in at most D steps, where D is the diameter of the graph G (Bondy and Murty
(2008)). Convergence issues will be dealt with later in this section. For each iteration t of the
node selection loop, node i shares the variables ζi(t− 1),χi(t− 1),Πi(t− 1) with its neighbours
through a send/receive procedure (lines 5–6). After line 7, which implements the dynamics of
the max-consensus protocol, µi(D) will take the index of the node which performed the best
estimate (line 8), χi(D), andΠi(D) will take the corresponding estimate and covariance estimate
matrices, respectively (line 9–10). At the end of Phase 2, an agreement both on the best estimate
of the process state and on the related a posteriori covariance matrix is achieved. Each node will
store these values in its variables xi(k) and Pi(k) (lines 12–13), respectively. These two variables
will be fed back to the next iteration (k+1) of Phase 1, in order to let the Kalman filter of each
node start from the best available estimate, and therefore to improve the individual prediction
performance.

Remark 1 : Line 7 of Algorithm 2 requires a tie-break rule in the case that the maximum
value for ζj(t− 1), j ∈ Ni, is allocated in more than one of the neighboring nodes. The tie-break
rule must guarantee convergence and has to be performed in a distributed way. Examples of
this kind of tie-break rules are: choosing an index at random among those corresponding to the
maximum, or performing, on lines 9 and 10, an average of χµi

and Πµi
along the involved indices
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µi, rather than a variable assignment.

Remark 2 : It is important to note that yet predicting nodes can be selected as those possessing
the best estimate of the process state. In the case of heterogeneous sensor networks, in fact,
it is possible that a predicting node that makes a prediction starting from a very accurate
past measurement performs better than a sensing node which is directly measuring with poor
accuracy.

2.4. Convergence Properties

The DKNS algorithm makes each node converge in finite time to the estimate of the process state
owned by the node with the highest perception confidence value, at each discrete time step k.
This is made possible thanks to the convergence property of the max-consensus protocol (Nejad
et al. (2009)), which are here briefly recalled before providing our main result on the DKNS
convergence.

Theorem 2.1 : Consider a network of n dynamical systems, connected over an undirected
graph G = {I, E}. Each dynamical system has a state variable ςi(t) ∈ R, i ∈ I, t ∈ N0. The
discrete time max-consensus protocol is defined as

ςi(t+ 1) = max
j∈Ni

⋃
i
ςj(t). (5)

Assume that each node of the network G runs the protocol in Eq.(5). If G is connected, then

ςi(t) = ςj(t)

= max (ς1(0), · · · , ςn(0)) ∀i, j ∈ I, ∀t ≥ D,

where D is the graph diameter.

Proof : The proof is provided in Theorem 4.1 of (Nejad et al. (2009)). �

The following theorem proves the convergence of the DKNS.

Theorem 2.2 : Given a network of n nodes modeled as an undirected connected graph G =
{I, E}, and assuming that each node runs the DKNS algorithm; then, at the end of each discrete
iteration k ∈ N0, the following holds: xi(k) = xj(k) = xj⋆(k)(k) ∀ i, j ∈ I, and j⋆(k) =
argmax

j∈I
γj(k).

Proof : The proof comes from the analysis of the steps of Algorithm 2. Note that line 7 in
Algorithm 2 is the update rule of the discrete time max-consensus protocol over the perception
confidence values of each node of the network (assigned to variables ζi(t) in Algorithm 2).
Theorem 2.1 proves that this protocol converges to the maximum of the initial states in a
finite number of steps, upper bounded by the graph diameter D, if and only if G is connected.
Therefore, in D steps, it is guaranteed that

ζi(D) = ζj(D) = max
l∈I

ζl(0) = max
l∈I

γl(k), ∀ i, j ∈ I.

Correspondingly, in D steps, the assignment in line 8 allows each node to store the index of the
node where the maximum of the perception confidence values is located, i.e., µi(D) = j⋆(k) =
argmax

l∈I
γl(k). Thus, χi(D) = χj⋆(k) and Πi(D) = Πj⋆(k), ∀i ∈ I. Finally, the assignment in line

12 concludes the proof of the theorem. �
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Remark 3 : A single iteration of DKNS consists of two cascaded phases, therefore its duration
is the sum of the durations of the two phases. The estimation phase consists of a sequence of
variable assignments, therefore it terminates in finite time, indicated as te. Taking into account
the result of Theorem 2.2, the convergence of the node selection phase is guaranteed if the node
selection loop (lines 4–11 in Algorithm 2) is run for at least D steps. The graph diameter D can
be easily computed, even in a totally distributed framework (Cardoso et al. (2009)). Real time
applications of DKNS require that the node selection phase is completed before a new instance
of the estimation phase is started. Thus, defining ε the sampling time associated to the single
iteration of the DKNS algorithm (related to discrete time index k), and τ the sampling time
associated to one iteration of the node selection loop (i.e., associated to the discrete time index
t) in Algorithm 2, the inequality te +Dτ < ε, must hold. We also remark that the diameter of
the graph D is related to the number of nodes n and to the graph topology. Thus, the network
structure can concur to impose constraints to the choice of the sampling time ε.

2.5. Analysis of the Node Selection Mechanism

Here, the equivalence between the DKNS and a particular Centralised Kalman Filter (CKF) is
shown.
In CKF with multiple measurements (Mitchell (2007)), a fusion centre collects the measure-

ments, zi(k), the measurement output matrices, Hi(k), and the observation covariance matrices,
Ri(k), from all nodes i, i = 1, . . . , n. Then, a Kalman filter is run at the fusion centre level (An-
derson and Moore (1979)). In distributed approaches, no centralisation of the information is
admitted. Hence, each node can communicate with a limited set of neighbours. Distributed
Kalman filters have been proposed in literature to overcome the limitations of centralised ap-
proaches; yet retaining some aspects of hierarchical organisation (Cattivelli and Sayed (2010),
Olfati-Saber (2007)). Distributed versions of CKF needs to locally approximate the covariance
matrix

[P(k)]−1 = [P−(k)]−1 +

n
∑

j=1

HT
j (k)R

−1
j (k)Hj(k) (6)

at the node level 1. It is straightforward to note that in CKF all the sensors contribute to the
update of the a posteriori covariance matrix. On the other hand, in distributed approaches each
node approximates locally the summation in Eq. (6). For example, this is done through a local
summation within the neighbourhood of each node, as

[Pi(k)]
−1 = [P−

i (k)]
−1 +

∑

j∈Ni

HT
j (k)R

−1
j (k)Hj(k), (7)

where [Pi(k)]
−1 is the local estimate of the centralised a posteriori inverse covariance matrix (6)

carried out by node i, and Ni is the set of the direct neighbours of node i.

Theorem 2.3 : Given a network of n nodes modelled as an undirected connected graph G =
{I, E}, and assuming that each node has limited sensing capability, that is, the measurement set
is given by zj(k) = Hj(k)x(k)+υj(k), with j ∈ S(k); then, running DKNS is equivalent to run a
Centralised Kalman Filter with multiple measurements and state-dependent switching dynamics,

1Please note that the update of the covariance matrix is written by using the well known information form of the Kalman
filter (Anderson and Moore (1979)).
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whose evolution is dictated by:

x̂−(k) = A(k)x̂(k − 1), (8)

P−(k) = A(k)P(k − 1)AT (k) +Q(k), (9)

[P(k)]−1 = [P−(k)]−1 + 1Xj⋆(k)
(x(k))[HT

j⋆(k)(k)R
−1
j⋆(k)(k)Hj⋆(k)(k)], (10)

x̂(k) = P(k){[P−(k)]−1x̂−(k) + 1Xj⋆(k)
(x(k))[HT

j⋆(k)(k)R
−1
j⋆(k)(k)zj⋆(k)(k)]}; (11)

where j⋆(k) = argmax
j∈I

γj(k),

γj(k)
△
=







1
Trace[Pj(k)]

if x(k) ∈ Xj(k)

1
Trace[P−

j (k)]
if x(k) 6∈ Xj(k)

,

P−
j (k), Pj(k) are, respectively, the a priori and a posteriori error covariance matrices associated

to the measurement zj(k), j ∈ S(k), and 1Xi(k)(·) is the indicator function of the set Xi(k),
1Xi(k) : R

m → {0, 1}, defined as

1Xi(k)(x(k))
△
=

{

1 if x(k) ∈ Xi(k)

0 if x(k) 6∈ Xi(k)
.

Proof : The proof comes from the analysis of the steps of Algorithms 1 and 2. Let us focus
on iteration k. Thanks to Theorem 2.2, we already proved that, at the start of Algorithm 1,
all the nodes in the network own the state estimate and the covariance matrix of the node
selected at the end of iteration k − 1 of Algorithm 2, that is, xi(k − 1) = x̂j⋆(k−1)(k − 1),

Pi(k−1) = Pj⋆(k−1)(k−1), ∀i ∈ I. Lines 1 and 2 of Algorithm 1 are common to all the network
nodes, thus all the a priori state estimations and a priori error covariance matrices are identical,
for any node i ∈ I, and are given by

{

x̂−
i (k) = A(k)xi(k − 1)

P−
i (k) = A(k)Pi(k − 1)AT (k) +Q(k)

, ∀i ∈ I. (12)

The computation of the a posteriori differs, on the other hand, between sensing and predicting
nodes. Namely, for sensing nodes,

{

[Pi(k)]
−1 = [P−

i (k)]
−1 +HT

i (k)R
−1
i (k)Hi(k)

x̂i(k) = Pi(k){[P
−
i (k)]

−1x̂−
i (k) +HT

i (k)R
−1
i (k)zi(k)}

, ∀i ∈ S(k),

is computed, while, the following holds for predicting nodes

{

Pi(k) = P−
i (k)

x̂i(k) = x̂−
i (k)

, ∀i ∈ P(k).
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Each node possesses its own perception confidence value, so that, γi(k), ∀i ∈ I, is available to
Algorithm 2. Theorem 2.2 proves that, in finite time, all the nodes store in xi(k) and in Pi(k),
in finite time, the state estimation and its corresponding error covariance matrix of a specific
node, that is, node j⋆(k) = argmax

j∈I
γj(k). It can be easily verified that, if j⋆(k) is a sensing

node, that is, x(k) ∈ Xj⋆(k),

{

[Pi(k)]
−1 = [P−

i (k)]
−1 + [HT

j⋆(k)(k)R
−1
j⋆(k)(k)Hj⋆(k)(k)]

xi(k) = Pi(k){[P
−
i (k)]

−1x−
i (k) +HT

j⋆(k)(k)R
−1
j⋆(k)(k)zj⋆(k)(k)}

, ∀i ∈ I, (13)

is obtained. On the other hand, if j⋆(k) is a predicting node, that is, x(k) 6∈ Xj⋆(k),

{

Pi(k) = P−
i (k)

xi(k) = x̂−
i (k)

, ∀i ∈ I, (14)

holds. Noting that Eqs. (12)—(14) hold for all i ∈ I, so that they can be made node-independent
by dropping index i, that Eqs. (13)–(14) are mutually exclusive at any given time instant k, and
that they can be unified thanks to the indicator function 1Xj⋆(k)

(x(k)), the theorem is proved. �

3. Application: Distributed Target Tracking

In this section, we apply DKNS to the distributed tracking of a maneuvering target performed by
a network of heterogeneous range-bearing sensors with limited sensing capability. To this aim,
we specialise to the case of interest some of the equations concerning the sensing process.
As it will be shown, different sensing ranges characterise the heterogeneity of the sensor net-

work. Due to the limited sensing capability, only a subset of nodes can sense the target during a
given time interval, and some uncovered areas of the space may even exist. The aim of distributed
target tracking is to estimate and track the target state in the environment in discrete time, by
using a distributed algorithm involving message-passing between one-hop nodes of a sensor net-
work. Here, we illustrate the details of the distributed tracking problem formulation, providing
suitable models for the environment, the target, and the sensor nodes. Then, we assess numer-
ically the performance of the proposed approach, and we make a comparison between DKNS
applied to target tracking, the Centralised Kalman Filter with multiple measurements (CKF),
and two more target tracking algorithms based on distributed Kalman filtering (Cattivelli and
Sayed (2010), Olfati-Saber (2007)).

3.1. Environment, Target, and Network Model

The network and the target lay on a two-dimensional environment E
△
= [−L/2, L/2] ×

[−L/2, L/2] ⊂ R
2, L > 0, that is a square field with side length L. An earth-fixed Carte-

sian coordinate system {X,Y }, with unit vectors {̂ı, ̂}, respectively, is used to locate points in
E. The target describes a trajectory ξ(s) ∈ E where ξ(s) are the Cartesian coordinates of the
target position at the continuous time s ∈ R

+. The estimates of the target state are carried out
in discrete time, so that a sampling ξ(k) = [ξ[1](k), ξ[2](k)]T ∈ E, k ∈ N0, is performed by the
network nodes. The discrete time index k is associated to a constant sampling time ε. Moreover,
we denote with the vector v(k) = [v[1](k), v[2](k)]T ∈ R

2 the target velocity at the discrete time
k. Finally, the state vector to be estimated is defined as x(k) = [ξ[1](k), v[1](k), ξ[2](k), v[2](k)]T .
A network of n sensors is deployed in the environment E, so that each sensor is located at



10 Donato Di Paola, Antonio Petitti, Alessandro Rizzo

Figure 1. Abstract representation of the distributed target tracking scenario.

the position pi = [p
[X]
i p

[Y ]
i ]T ∈ E. Sensors are connected through an undirected communication

graph G = {I, E}, with node set I = {1, . . . , n}. The edge set E is determined by a communication
radius, rc, identical for each node, so that E = {(i, j) | ||pi − pj|| ≤ rc}. This is also known as
a rc-disk communication graph (Bullo et al. (2009)). Moreover, we assume that the graph G is
connected and has diameter D. Finally, the limited sensing capability of each sensor is expressed
via a suitable sensing radius, rsi . A sensor can perform a direct measurement of the target state
if and only if the target is located within its sensing range, so that the sensing set Xi of the
generic node i is given by

Xi =
{

x ∈ R
4 | ||ξ − pi|| ≤ rsi ,∀v

}

, ∀i ∈ I. (15)

Please note that the sensing radius, and consequently its related sensing set, are considered
constant in time for ease of presentation. Nevertheless, as proved in Section 2, the approach can
be extended to time-varying quantities. Figure 1 shows an abstract representation of the sensor
network in the case of four nodes.

3.2. Sensor Network Node Model

As stated above, we consider range-bearing sensors with limited sensing capability. Range-
bearing sensors are able to perform direct measurements of the target distance, di(k), and
bearing, θi(k), with respect to a sensor-fixed reference coordinate system. We assume that each
sensor node is aware of its position pi and orientation θ0i

, with respect to the earth-fixed coor-
dinate frame, so that it is able to provide an estimate of the target position with respect to the
latter frame through a simple coordinate transformation.
Range-bearing measurements are affected by noise, which we assume to be white Gaussian with

zero mean and covariance matrix Bi(k). Assuming ηi(k) = [di(k) θi(k)]
T , the related covariance

matrix is given by (Anderson and Moore (1979)):

Bi(k) = E[ηi(k)ηi(k)
T ] =





σ2
di
(k) 0

0 d2i (k)σ
2
θi
(k)



 .

In range-bearing measurements, the noise grows with the distance of the target from the sensor.
Therefore, to consider a realistic sensor model, a non constant variance is used. In Burguera
et al. (2009), it is shown that for range-bearing sensors the variance has an almost constant
trend at small distance, whereas it increases exponentially when approaching the maximum
measurable value. We refer to the experimental data reported in Burguera et al. (2009), and
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Figure 2. Trend of the standard deviation of the measurement noise σdi
, for

a generic node i, versus the distance from the target, as modeled by Eq. (16).
The values on the abscissa are normalised with respect to the value of the
sensing range (rsi ).

select the interpolation functions

σdi
(k) = kd

(

1 + ekr[(di(k)−rsi )/rsi ]
)

, di(k) ≤ rsi , (16)

and

σθi(k) = kθ
di(k)

rsi
, di(k) ≤ rsi , (17)

whose trends are suitable to fit the provided experimental data. It is clear that the values of
σdi

(k) and σθi(k) are not defined for di(k) > rsi . Figure 2 shows the trend of σdi
(k), as expressed

in Eq. (16).
According to the range-bearing model (Anderson and Moore (1979)), we assume that a sensing

node (i.e., i ∈ S(k)) is able to compute the position of the target with respect to the earth-fixed
Cartesian coordinate frame, as

zi(k) = [p
[X]
i + di(k) cos(θ0i

+ θi(k)), p
[Y ]
i + di(k) sin(θ0i

+ θi(k))]
T . (18)

Keeping in mind that each node runs a local Kalman filter, and assuming that sensing nodes
cannot measure directly the target velocity, we formalise the observation equation (18) as

zi(k) = Hx(k) + νi(k), (19)

where H is the measurement output matrix, defined as:

H =

[

1 0 0 0

0 0 1 0

]

,

and νi(k) ∈ R
2 is the measurement noise, for which each component is assumed to be white

Gaussian with zero mean and covariance matrix Ri(k), which is given by (Anderson and Moore
(1979))

Ri(k) = Ti(k)Bi(k)T
T
i (k),
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where Ti(k) is the rotation matrix

Ti(k) =

[

cos(θi(k)) − sin(θi(k))

sin(θi(k)) cos(θi(k))

]

.

The dynamical model of the target motion, embedded in each node’s Kalman filter, is defined
as:

x(k) = Ax(k − 1) + ω(k), (20)

where

A = I2 ⊗

[

1 ε

0 1

]

,

ε is the time step, ⊗ is the Kronecker product of matrices, and ω(k) ∈ R
4,

ω(k) =
[

ω[1](k) ω[2](k) ω[3](k) ω[4](k)
]T

,

is a noise term that is white Gaussian with zero mean and covariance matrix Q, i.e., ω(k) ∼
N(0,Q). Here, we assume

ω[1](k) = ε
2ω

[2](k), ω[3](k) = ε
2ω

[4](k), (21)

to take into account the influence of the maneuvering target on the positional coordinates (An-
derson and Moore (1979)). Thus, matrix Q, is given by

Q =















ε2

4 σ
2
ω[2]

ε
2σ

2
ω[2] 0 0

ε
2σ

2
ω[2] σ2

ω[2] 0 0

0 0 ε2

4 σ
2
ω[4]

ε
2σ

2
ω[4]

0 0 ε
2σ

2
ω[4] σ2

ω[4]















, (22)

where σ2
ω[2] and σ2

ω[4] are the variances of the stochastic processes ω
[2](k) and ω[4](k), respectively.

3.3. Tracking Setup

The performance of the DKNS algorithm is analysed by running a campaign of Monte Carlo
simulations. Each set of experiments consists of the tracking of 100 repeated random target
trajectories. With the aim of comparing our approach with KCF and DKF (Cattivelli and Sayed
(2010), Olfati-Saber (2007)), we simulate a sensor network tracking the position of a maneuvering
target moving inside a square field E with side length L = 90 and with a communication radius
set as rc = 3 L

⌈√n⌉+1
+ 2. The nodes are placed at random positions in the environment, yet

preserving connectedness of the network. In order to evaluate more in depth the performance
of the DKNS, we define the percentage sensing coverage ratio ρ, that is the ratio between the
sensing area covered by all nodes, and the total area of the field E,

ρ =
A(

⋃n
i=1 Xi)

A(E)
· 100 , (23)
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Figure 3. DKNS simulations of a random generated target trajectory for a
network of n = 20 heterogeneous nodes. The target comes from the bottom
right corner of the environment, and the filled circle indicates its last position.
(a) A simulation of the target tracking with ρ = 45%. (b) The tracking of the
same target trajectory with ρ = 78%. In the latter case, due to the increasing
coverage ratio ρ, the tracking accuracy α is higher than in the former.

where A(∪n
i=1Xi) is the area of the union of all Xi sensing sets, and A(E) = L2, is the area

of the environment. Given the random distribution of the positions of the sensor nodes in the
environment, we achieve a desired coverage ratio ρ by setting at first the sensing radius rsi , for
each node i ∈ I, to a suitable value rρ, computed to guarantee the coverage ratio ρ. A suitable
algorithm to find rρ is adopted, which takes into account the existence of overlapping sensing
areas. Then, heterogeneity in the sensor network is achieved by adding to the sensing radii rsi ,
for each node i ∈ I, a Gaussian noise with zero mean and standard deviation σρ = 0.03rρ. The
initial guess of the estimated target state is xi(0) = 0, ∀i ∈ I. Moreover, the variances σω[2]

and σω[4] of the process noise covariance matrix of the Kalman filter in Eq. (22), are chosen as
σω[2] = σω[4] = 3, ∀i ∈ I. The variances related to the range-bearing sensing process, σdi

(k) and
σθi(k), are modeled by Eqs. (16-17), setting kd = 1.056, kr = 10.07 and kθ = 0.1, in order to fit
the experimental dataset in Burguera et al. (2009). Finally, again for comparison purposes we
set P(0) = 10σ2

0I4, where σ0 = 5.
Among the several aspects regarding performance assessment in target tracking applica-

tions (Zhao and Guibas (2004)), in this work we will focus on tracking accuracy, by evaluating
the mean square error between estimated and actual target trajectory. As a metric for target
tracking accuracy, the following mean square error (in norm) is computed:

α =
1

kf

kf
∑

k=1

‖H xi(k)− ξ(k)‖2 (24)

where kf is the duration (in time samples) of the target trajectory, ξ(k) is the actual target
position at discrete time k, H xi(k) is any of the global target position estimates xi(k) at time
k. We remind that, as proved in Theorem 2.2, the global target position estimates are identical
for each network node. Obviously, the ideal condition of perfect tracking is α = 0, and the
tracking accuracy is better as long as α is smaller.
Furthermore, we define a third index, ϕ, which is the average percentage of sensing nodes
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Figure 4. Performance evaluation of DKNS algorithm. Values of α (a) and
ϕ (b) as function of the coverage ratio ρ for networks with n = 10, n = 25,
n = 50, and n = 100 nodes. Each point is computed by averaging 100 random
trajectories.

during a single run. It is defined as

ϕ =
1

kf

kf
∑

k=1

|S(k)|

n
· 100 , (25)

where | · | is the set cardinality operator.

3.4. DKNS Performance Evaluation

Two single experiments of the aforementioned simulation campaign are illustrated in Figure 3.
In particular, the same trajectory is estimated via the DKNS algorithm by a network of n = 20
nodes, under two different coverage ratio conditions, and the estimated trajectory performed by
the sensor network is plotted against the one of the target. It is important to note that, keeping
constant the number of sensor nodes n, the performance improves as long as the coverage ratio
ρ increases. As an example, in Figure 3(a), a tracking accuracy α = 42.81 is obtained with a
coverage ratio ρ = 45%, while in Figure 3(b) a tracking accuracy α = 2.47 is obtained with a
coverage percentage of ρ = 78%.
It can be noted from Figure 3, that when the target is not sensed by any node, the estimate is

performed only through the linear model defined in Eq. (8). Then, when the target comes back
into the sensing set of any sensor, the estimate is performed by exploiting the whole Kalman
filter, thus improving the corresponding estimate.
An extensive evaluation of the performance of DKNS, made on the entire simulation campaign,

is illustrated in Figure 4. In Figure 4(a), the tracking accuracy α is plotted versus the coverage
ratio ρ, for different values of the number of nodes n. As can be noted, the tracking accuracy
improves as long as the coverage ratio ρ increases. Furthermore, it can be observed that the
performance tends to be independent from the number of nodes when the coverage ratio ρ grows
(in Figure 4(a), the performance is practically independent from the number of sensors for
ρ > 60%). It can also be noted that the same tracking accuracy α can be obtained for different
pairs of the number of nodes n and of the coverage ratio ρ. For example, the performance index
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Figure 5. Comparison between DKNS and three other tracking algorithms:
CKF, KCF, and DKF. Values of α as function of the coverage ratio ρ for
networks with n = 10 (a), n = 15 (b), n = 25 (c), and n = 50 nodes (d). Each
point is computed by averaging 100 random trajectories.

α = 100 is achieved with (n = 10, ρ = 33.82%), (n = 25, ρ = 27.52%), (n = 50, ρ = 30.73%),
(n = 100, ρ = 24.12%). From the simulation results, it is evident that to guarantee a desired
accuracy, the number of network nodes and the coverage ratio are of fundamental importance.
Nevertheless, one can make up for a small number of sensor nodes via the setting of a suitable
coverage ratio, obtained both an effective spatial deployment, and by setting large enough sensing
radii. The last consideration can help in overcoming, in real-time applications, the growth of the
convergence time of the max-consensus algorithm, which increases with the diameter D of the
network, that can be influenced by the number of nodes n (See Section 2.3).
Figure 4(b) illustrates the average number (in percentage) of sensing nodes ϕ during a run of

the algorithm, versus the coverage ratio ρ, for different values of the number of nodes n.

3.5. Comparison with other Target Tracking Algorithms based on Distributed Kalman

Filtering

In this section, we compare the performance of the DKNS algorithm with a centralised and
two distributed target tracking approaches based on Kalman filtering. The first algorithm is the
Centralised Kalman filter with multiple measurements (CKF) (Mitchell (2007)), which is known
to be optimal in the sense of the minimization of the error variance, thus exhibiting the best
performance. The second algorithm is the Kalman Consensus Filter (KCF) with message passing
(Algorithm 3 in Olfati-Saber (2007)), and the third one is the Diffusion Kalman Filter (DKF),
presented by Cattivelli and Sayed (2010).
The comparison is performed through 100 repeated random trajectories for different values

of the coverage ratio ρ, and of the number of sensor nodes, n. More specifically, the average
value of α over the 100 test trajectories has been computed for each value of ρ, and compared
with the corresponding performance parameter obtained through the CKF, KCF, and DKF
algorithms, run on the same test trajectories. Figure 5 shows that the DKNS algorithm generally
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Figure 6. (a) Values of ϕ as function of the coverage ratio ρ for networks
with n = 10, 15, 25, 50 nodes. (b) Values of α as function of the index ϕ for a
network of n = 15 nodes.

outperforms KCF and DKF and, for a given value of the coverage ratio ρ, the gap in performance
generally increases as long as the number of network nodes increases. Nevertheless, the gap in
performance decreases as long as the coverage ratio ρ increases. It is also important to note
that DKNS closely approaches the optimal performance of the CKF, as long as the number of
network nodes increases. The explanation of this behaviour resides in the trend of the average
percentage of sensing nodes ϕ, illustrated in Figure 6(a). In fact, keeping constant the coverage
ratio ρ, and increasing the number of network nodes, yields a decrease of the average number of
sensing nodes ϕ. Hence, it can be noted that the lower is ϕ, the better is the approximation of
the centralised tracking exhibited by DKNS. This is well explained by considering that the one-
term approximation of Eq. (6), expressed in Eq. (10), is better as long as the number of sensing
nodes is smaller. This statement is supported by the numerical results illustrated in Figure 6(b),
where it can be observed that the performance of DKNS is quite independent from the value of
ϕ, which is not the case when KCF and DKF are considered. Moreover, it is evident that the
application of DKNS is not the best option in any case: in fact, when the average number of
sensing nodes ϕ grows, KCF and DKF tend to perform better than DKNS. In our simulations,
this happens for ϕ > 20% for DKF, and for ϕ > 57% for KCF.

4. Conclusions

In this paper, we have addressed the problem of distributed Kalman filtering over heterogeneous
sensor networks, by introducing a novel approach, called Distributed Kalman filtering with Node
Selection (DKNS). This is proved to be equivalent to a centralised Kalman filter with multiple
measurements, which evolves according to a state-dependent switching dynamics, able to select
and propagate the best estimate of the process state through the sensor network in finite time.
The optimality of the estimate accuracy is assessed through the definition of a metric, called
perception confidence value, which is strictly related to the Fisher information.
DKNS is particularly suitable in case of sensor networks with limited sensing capability, that

is, in those cases in which only a few sensors in the network can actually perform a direct
measurement of the process state. In these cases, in fact, fusing information may often lead to
poor results, whereas node selection may constitute a better option. Conversely, when many
reliable measurements are available, information fusion may result in better performance than
node selection.
We have applied the algorithm to the discrete-time tracking of a maneuvering target, performed

by a network of heterogeneous range-bearing sensors with limited sensing capability, achieving
very satisfactory results. The performance comparison with existing algorithms based on sensor
fusion reflects what mentioned above in general terms, that is, DKNS is a viable and more
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effective option as long as limitations on the sensing capability are present.
Further work will cope with the possible presence of malicious or misbehaving nodes. In fact,

if a generic node of the network, either deliberately or due to a fault, provides an inaccurate
prediction, while exhibiting a high perception confidence value, then the tracking algorithm will
converge to an estimate which may not be optimal. Moreover, future research directions in the
study of DKNS will deal with the removal of the hypothesis concerning the synchronicity of
operations. Interesting research paths are also envisioned when the selection of more than one
node, or the execution of the agreement phase for a number of iterations less than that needed for
the convergence of the max-consensus protocol, are considered. Finally, on the application side,
our plan is to extend the distributed target tracking algorithm based on DKNS through the in-
clusion of sensor nodes carried by mobile agents, in order to improve the estimation performance
(consequently, a time-varying topology of the network will be considered).

Acknowledgements

We would like to thank Paolo Da Pelo for inspiring discussions and Grazia Cicirelli for contri-
butions to the early idea of this approach.

References

Anderson, B.D.O., and Moore, J.B., Optimal Filtering, Thomas Kailath Editor (1979).
Bondy, A., and Murty, U., Graph Theory, Graduate Texts in Mathematics, Springer (2008).
Bullo, F., Cortés, J., and Mart́ınez, S., Distributed Control of Robotic Networks, Electronically

available at http://coordinationbook.info, Applied Mathematics Series, Princeton University
Press (2009).
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