
From Requirements Documents to System Models: a Tool for Interactive
Semi-Automatic Translation

Leonid Kof
Fakultaet fuer Informatik, Technische Universitaet Muenchen,
Boltzmannstr. 3, D-85748, Garching bei Muenchen, Germany

kof@in.tum.de

Abstract—Natural language is the main presentation
means in industrial requirements documents. This leads to
the fact that requirements documents are often incomplete
and inconsistent. Despite the fact that documents are mostly
written in natural language, natural language processing
(NLP) is barely used in industrial requirements engineering.

The presented paper shows, how a natural language
processing (NLP) approach can be integrated in a CASE tool.
This enables the integrated tool to learn on the fly, which
grammatical construction represents which model element.
A valuable side effect of the proposed integration is tracing
between the textual document and the constructed model.
The presented integrated tool was evaluated in several case
studies that have shown practical applicability of the tool.

Keywords-requirements analysis, system modeling, natural
language processing

I. INTRODUCTION: FROM REQUIREMENTS TO MODELS

At the beginning of every software project, some kind
of requirements document is usually written. The majority
of these documents are written in natural language. This
results in the fact that the requirements documents are
imprecise, incomplete, and inconsistent. It is one of the
goals of requirements analysis, to find and to correct
the deficiencies of requirements documents. A practical
way to detect errors in requirements documents is to
convert informal specifications to system models. In this
case, errors in documents would lead to inconsistencies or
omissions in models, and, due to more formal nature of
models, inconsistencies and omissions are easier to detect
in models than in textual documents.

The goal of the presented paper is to show, how a natural
language processing (NLP) approach can be integrated
in a CASE tool (AutoFOCUS, http://af3.in.tum.de/) and
enriched with machine learning techniques, so that the
integrated system provides text-to-model translation with-
out constraining the allowed natural language. The main
benefit of the integration of an NLP approach is not the
extracted model itself, but the extraction procedure: the
inmplemented procedure is interactive, which contributes
to thorough exploration of the requirements document.

II. INTERACTIVE TEXT-TO-MODEL TRANSLATION

A. Training Data Collection: Manual Modeling

The prerequisite for text-to-model translation is a train-
ing data set, which is gathered by the means of manual

This work was partially funded by the Deutsche Forschungsgemein-
schaft (German Research Foundation), grant “Inserve III, BR 887/19-3”

modeling. From the point of view of user interaction, the
tool distinguishes two types of model elements:

• entities, characterized solely by their names, and
• relations, characterized both by their names and the

entities involved in the relation.
For example, a state of an automaton is an entity, as it is
characterized solely by its name, but a state transition is a
relation, as it is characterized by its name, and two states
involved in the transition.

To create a model element, the tool user has to mark a
word sequence in the text field showing the requirements
document, and then to select the model element type from
the context menu. The marked word sequence becomes
the name of the newly created model element. The tool
creates the model element and asks the user to select
the container for the newly created model element. For
relations, additionally to the container, the tool asks the
user to select the entities involved in the relation to be
created. For example, for a state transition the tool asks
the user to select the source and the target state.

When creating a new model element, the tool creates
an explicit trace between the model element and the
previously marked word sequence. Every trace specifies
the sentence, the exact position of the word sequence used
to create the model element name, and the model element
itself. These traces are used later as training data items for
the automatic text-to-model translation.

B. Automatic Extraction of Entities

From the point of view of the tool user, extraction of
entities looks similar to the manual creation of model
elements: the user selects a document section, and then
chooses from the context menu, which model element type
should be extracted. Then, the tool proposes the names
of potential new model elements to the user. The user
selects, which names should be used to create new model
elements, and, analogously to the manual creation, selects
the container for the newly created model elements.

Internally, the tool keeps track of the user decision
and augments the training data: for every model element
name selected by the user, the tool creates a trace from
the name occurrence in the text to the newly created
model element, and makes the created trace to a positive
example (new training data item). Every not selected
name becomes a negative example and is not presented
to the user again, in order that the user is not bothered
with already declined suggestions. The tool does not



Figure 1. Training data management

distinguish between manually created and automatically
extracted model elements and puts them in the same sets
of positive/negative examples, as shown in Figure 1. Thus,
the tool does not force the user to create all the training
data first, but, instead, allows for arbitrary interleaving of
manual modeling and automatic extraction.

For automatic extraction of model element names, the
tool performs two steps: (1) for every training data item,
the tool decides, which of the built-in heuristics (named
entity, sentence predicate, subject, . . . ) is most suitable for
the extraction of this data item, and then (2) applies the
heuristics, that is used for the most training data items, to
the whole document section. For a training data item, the
heuristic that extracts a string most close to this data item
is considered most suitable.

C. Automatic Extraction of Relations

In order to extract relations (for example, state tran-
sitions), it is necessary not only to extract the name of
the relation, but also to determine the entities involved
in the relation. (E.g., in the case of state transitions, it
is necessary to determine the involved states.) In order
to find the entities involved in a relation, the tool uses
a simple discourse model. The prerequisite for the usage
of this discourse model is a LATEX-like structure of the
input requirements document: the document must consist
of sections, that, in turn, consist of subsections, etc.

For training, the tool takes a set of relations, and for
every relation it considers the involved entities. Then,
for every relation and every involved entity, the tool
determines the shortest path from the relation name to
the entity name. “Shortest path” means that the structured
requirements documents is considered as a graph (tree),
and the tool searches for the shortest path in this graph.
The leaves of this graph are single sentences, and its inner
nodes are sections and subsections.

In order to extract relations, the tool extracts relation
names first, using the procedures presented in Section II-B.
Then, for every relation name that was accepted by the
user, the tool looks for entities potentially involved in the
relation: It follows text paths obtained from the training
data and searches for the names of entities already existing
in the model. The found entities, potentially involved in the
relation, are presented to the user. The user selects, which
entities are really involved in the relation, and after that
the tool creates the relation, using the extracted relation
name and the selected entities.

Question Answers
1 Are all the model element names

suggested by the automatic extractor
represent genuine model elements?

9×no

2 Does the extractor suggest model
element names representing genuine
model elements that you overlooked
when reading the text?

6×yes
1×maybe
2×no

3 In your opinion, does the extractor
speed up the modeling process?

1×no answer
7×maybe
1×no

4 What model elements are explicitly
specified in the text, but not con-
tained in the model?

Different entities
and relations listed
(subject-dependent).

Table I
EVALUATION RESULTS

III. EVALUATION

The tool was evaluated in two stages: firstly, the tool
author used the tool in order to translate four specifications
to system models. The Steam Boiler specification [1],
Autopilot [2], Bay Area Rapid Transit (BART) [3], and
Instrument Cluster [4] were used for this purpose. For all
four specifications, the tool kept up with the expectations
of the tool author.

Secondly, the tool was evaluated with independent sub-
jects. The subjects (9 PhD students in computer science)
were asked to use the tool and to model the Steam Boiler
and the Instrument Cluster, as these two specifications con-
tain concepts that can be directly modeled in AutoFOCUS.
After the modeling session, every subject was individually
(not in a group) asked to answer the questions about the
tool. The questions and answers are presented in Table I.

The models produced by the subjects were highly dif-
ferent, but every model represented a valid interpretation
of the corresponding requirements document. It shows
that it is not possible to produce the model in the early
modeling phase. To summarize, the evaluation showed that
the translator fulfills its main purpose, namely to support
the exploration of the requirements document.

REFERENCES

[1] J.-R. Abrial, E. Börger, and H. Langmaack, “The steam
boiler case study: Competition of formal program specifi-
cation and development methods,” in Formal Methods for
Industrial Applications, ser. LNCS, J.-R. Abrial, E. Borger,
and H. Langmaack, Eds., vol. 1165. Springer, 1996.

[2] R. W. Butler, “An introduction to requirements capture
using PVS: Specification of a simple autopilot,” NASA
Langley Research Center, Hampton, VA, NASA Technical
Memorandum 110255, May 1996.

[3] V. Winter, F. Kordon, and M. Lemoine, “The BART case
study,” in Formal Methods for Embedded Distributed Sys-
tems, F. Kordon and M. Lemoine, Eds. Springer Nether-
lands, 2004, pp. 3–22.

[4] K. Buhr, N. Heumesser, F. Houdek, H. Omasreiter,
F. Rothermehl, R. Tavakoli, and T. Zink, “Daimler-
Chrysler demonstrator: System specification instrument clus-
ter,” 2004, http://www.empress-itea.org/deliverables/D5.1
Appendix B v1.0 Public Version.pdf.


