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Abstract—In this paper we analyze the delay performance of transmit power and average delay. A further application of

a single user with perfect channel state information transmitting  this general approach to cross-layer design methodolagies
data over a wireless fading channel. We consider a dynamic considered in [2].

resource allocation policy that maximizes average capacity by
adapting transmission power, as well as a policy that adapts A number of authors (see [3], [4], and/[5] for example)

instantaneous bandwidth. Nakagami fading is assumed, and the have used queuing theoretic techniques in an attempt to
impact of the fading parameter, m, as well as the channel quality approximate the delay induced on data by wireless channels.
in terms of signal-to-noise ratio on the mean queuing delay of However, simple models that express mean delay as a function
transmitted data is analyzed. We show that resource allocation of the wireless fading environment, including the presence

policies that achieve superiority over competing strategies in . -
terms of maximizing average capacity do not necessarily result of outages, do not exist. Such models would be helpful in

in superior delay performance. coming to a fuller understanding of the tradeoffs assodiate
Index Terms—Queuing analysis, fading channels, Information with dynamic resource allocation strategies, as well as in
rates, dynamic resource allocation, average delay performing QoS provisioning functions such as call adrissi

and traffic policing in wireless networks. Toward this end, a
capacity model for wireless channels is proposed in [6] @her
Data communications in wireless networks generally takke authors provide a framework for translating physiceéta
place over fading channels with time-varying charactiesst wireless channel attributes to an available channel cgpiheit
The extent to which the dynamic nature of the wirelessould potentially be useful to higher layer protocols forQo
medium impacts the Quality of Service (QoS) of transmittegrovisioning. Ultimately, a great deal more needs to be done
data depends on factors such as the severity of the fadingorder to provide the necessary linkage between network
channel and the resource allocation policy being employ€bS behavior and wireless channel dynamics, particularly i
to adapt to the time-varying channel. This is in contrashe presence of adaptive resource allocation policies at th
to wired point-to-point links where QoS is exclusively ghysical layer.
function of the data traffic arrival statistics and the fixed In this paper, we present a queuing model for the delay
capacity of the transmitter. In the wired case, QoS atteibut analysis of a single user wireless fading channel with egag
such as delay performance, can usually be studied by usifige proposed model utilizes a two priority M/G/1 queue
appropriate queuing models and analyses. The time-varyingwhich link outages are approximately modeled by high-
wireless channel, on the other hand, poses a challengens tepriority customers. Nakagami» fading is assumed, and the
of queuing analysis and performance evaluation. impact of the fading parametem,, as well as the channel
The measurement of achievable performance of wirelegsality in terms of signal-to-noise ratio, on the mean gngui
communications over fading channels has historically beeelay of transmitted data is analyzed. We consider a dynamic
relegated to the realm of information theory, where channelsource allocation policy that maximizes average capagit
capacity is the figure of merit. The delay component thadapting transmission power, as well as a policy that adapts
accounts for the time that data spends in a transmit bufferstantaneous bandwidth. We show that resource allocation
as well as other measures of QoS, are typically decoupledlicies that achieve superiority over competing straedn
from the information theoretic problem, and often timesgym terms of maximizing average capacity do no necessarilyitresu
ignored. This separation is reasonable for wired links whein superior delay performance.
a constant transmit data rate can be assumed, but results
in an inability to capture the important relationship betwe Il. LINK MODEL
physical layer behavior and higher layer performance in aWe investigate a single user channel subject to time vayying
wireless network. Some of these issues are discussed in gfw, flat fading with additive white Gaussian noise (AWGN)
where the authors consider a system in which transmit powadrthe receiver. The fading is modeled as Nakagami7],
is adapted according to channel state information as walhich has been shown to be a suitable model for a number of
as buffer occupancy. A dynamic programming approach \greless environments (see [8] and [9], for example). Under
employed to explore the tradeoffs associated with averathgs type of fading, the SNR is gamma distributed; therefore
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the probability density function (pdf) of the SNR is given byto the probability the link is in an outage, which is given by

m m,ym—l _m Yth
s =(2) s, po= [ran
where m is the Nakagami fading parametdr,-) is the  As noted above, the service time distributic,is a func-
Gamma function, andy is the expected value of the SNRtion of both the fading and the particular resource allacati
random variabley. scheme. In this paper we investigate several resourceaitboc
At low SNR, the data transmission rate is reduced to sirategies and their impact on mean spectral efficiency and
level such that transmission may not be justified. Henc&slinmean delay.
are considered to be in outage when the SNR is below a
predetermined threshold, denotegl and referred to as the
SNR threshold. When in an outage, no data may be transmittedrfor each resource allocation strategy considered, it is
over the link. assumed that perfect, zero delay channel state information
In the face of outages and time varying fading, adaptivie available at the transmitter and receiver. Three resourc
resource allocation strategies have been developed to maltecation strategies are investigated: static resoutaeadion,
efficiently use the wireless resource. Typically, the perfoadaptive power allocation, and adaptive bandwidth allooat
mance of resource allocation policies is measured in term& also provide results for the additive white Gaussianenois
of mean capacity and mean spectral efficiency. Unfortupate{ AWGN) channel for comparison.
in a wireless network these metrics may not be ideal mea- . .
sures of link performance, because links, rather than dafh, @tic Resource Allocation
are their frame of reference. A more practical measure ofin the case of static resource allocation (SRA) the link
link performance is delay, which measures the experience lEndwidth and power are predetermined and are not adapted
data in the system. The delay experienced by data influena@sesponse to fading. Therefore, the instantaneous dstdaci
application performance and the overall utility of the netkv  given by
Because delay is composed of transmit time and time waiting

IV. RESOURCEALLOCATION STRATEGIES

- - i Il 0 Y(t) < n
in transmit buffers, we develop and utilize a queuing ansalys csra(t) = { (2)
to measure the mean delay on links for various resource Blogy(1+7(t)) (t) = vn,
allocation strategies. where B is the bandwidth of the wireless channel. Conse-
IIl. QUEUING MODEL guently, the mean capacity under SRA is
The fading model determines, in part, the time varying E{Csra} = Blogy(1 +7)f(v) dy. 3)
channel capacity. Thus, the link can be modeled as a variable in

rate queue, where the queue represents the transmit botfer Rollowing the pattern set out in [11], an expression for @) c
the service rate is equal to the time varying capacity. W derived. By defining = 1 + vy and
assume Poisson arrivals. The service tirfe,is a function

of SNR and the specific resource allocation policy, and hence Bz, q) = _B -5,
must take a general form in our analysis, resulting in an I/G/ In2T'(x)

model. Link outages are modeled through the introductiqRe general expression fdr|(3) becomes

of high-priority “outage customers” that receive head okl . I
priority, thereby approximating the delay experienced btad ElC _ (m —1)! m

in the presence of an outage. The mean delay experienced by{ sral =0(m, ) Z (m—k)!' \ 7

— Y
data in this priority queue is given by [10] [ i

m—k
m— m m—=Fk\ 5 .
it s 3 (7 et

=0

AE {52}

2(1 = po) [1 = (po + pa)]

where )\ is the total arrival rate of outage customers and data I'(m—Fk—j+1)T (k +j— m,f?)] ,
5

customers,S is the overall distribution of service times for
both classes of customers, is the utilization due to outage (4)

customers, ang, is the utilization due to data customers. Th@vherel“(- ) designates the upper incomplete gamma func-
total arrival rate is simply the sum of the mean arrival rat n [12] ’

J:

+E{S}, @)

of outage and data customers. Since both data and outaggg Rayleigh fading,(4) simplifies to
arrive according to Poisson arrival processes, there sexgist '
£ £
independent and identically distributed (iid). E{Csra} = B(1,7n) | In& + €7 By (7>1 , (5)
The utilization due to an outagg,, is the proportion of time

implicit assumption that the interarrival times of outagee
the server spends serving outage customers, and is equivalehere £, (- ) denotes the exponential integral [12].




The following functions,n and ¢, are defined in order to The mean capacity may also be found directly from the pdf
facilitate the derivation of the capacity and service tintiisp of the APA capacity random variable, which, in Nakagami

under an SRA policy: fading, is
m " ln 2 m— —g pO CAPA — 0
o= (2) e
o BT (m, x) Flcapn) = 0 0 < capa < Blog, (%)
and z 1(0,v(capa)) v(capa)  capa = Blog, (%) ;
((z) =27 — 1. (12)
The pdf of the SRA capacity random variable is given by Where thev function is defined as
Do csra =0 v(r) = 702F .
f(csra) = 0 0 < csra < Blog, & - . . . .
c The probability density function of the APA service time
17(0,((csra))2 5" csra > Blog, €. g ¢ Y

random variable is given by

The probability density function of the SRA service time B m 1 1 1 13
random variableSsra = Cgga, is given by Flsapn) =1 TS Coarn ) )Y \saen ) S2on (13)
f(ssmm) = m ¢ 1 o5 1 ) from which the first and second moments can be derived and
SSRA) = 37> \ ssra S3ra’ substituted intof (1).

from which the first and second moments can be determineg], Adaptive Bandwidth Allocation

and used in/ (1) to compute mean delay. Adaptive bandwidth allocation (ABA) schemes attempt to

B. Adaptive Power Allocation modify the link bandwidth so that it is efficiently utilized.
é_ny unallocated bandwidth could poientially be utilized by
other nodes in a wireless network. In [14] the authors derive
pa bandwidth allocation scheme that maximizes mean capacity
é)éta link without outages, subject to an average bandwidth
I;&gnstraint. Here, we consider for the first time a bandwidth-
adaptive link with outages. The resulting bandwidth altamsa

Adaptive power allocation (APA) strategies have been stu
ied for extending battery life in wireless nodes and optingz
capacity of wireless links. In [13] the authors derive theAA
scheme that maximizes the mean capacity of a link, subj
to an average power constraint. As described/in [13], t
instantaneous capacity of an APA link is

strategy is ~
0 Y(t) < Yih B
t) = 8 B(y(t)) = ——=(1), (14)
CAPA( ) { BlOg2 ('Yé;)) ,Y(t) > Yehs ( ) v =7
. where
where 7, is a cutoff SNR that ensures the average power o o0
allocation is equal to the average power constrajgtmay T = / V() dr.
Yth

or may not be equal toy,. In order to achieve the optimal o ) _
power allocation;y, and -~ must be equal. For the purposes? Nakagami fading, this quantity becomes

of this analysis, howevery, is greater thany, so that the L m
mean service time can be computed (otherwise the service Y= =7CQ (m + LWW) ’
time is infinite wheny(t) = o). _ . .

The mean capacity may be found by Wher_e Q(-, -) is the regularized upper incomplete gamma

- function [15].
E{Capa} = Blog, (7> f(v) dy 9) In an ABA channel, the instantaneous capacity is given by

Following th tt %ht t in [11], the followi lcaga (1) { ) 7 <

ollowing the pattern set out i , the following generalcaga () = B >
expression forl (9) can be derived: Bl (E)log, (1 ) Bh(ﬂ)) () = 70

m-1 4 m\*  WwhereB is the mean bandwidth of the channel, and the/;;
— 1) (2 m ) . ) 5(t))
E{Capa} =p(m, yin)(m — 1)! Z ik ¥ Vth—= term is due to the fact that(¢) is measured relative to some
k=0 " 0 reference bandwidth (in this cag#). By performing substitu-
22 m tions and simplifying, the instantaneous capacity equatan
+ev T kﬁthg : be expressed as

(10) cnon (t) = { 0 Y(t) < Yn

AL = L) logyll + (7 - 9)] () = n

. ~ Therefore, the mean capacity of the ABA channel is
3 (”‘) (11)

_ gl =
B {Chea} = B(1, o) [1 () B{Chm} = Blog;[1+ (-9, (9)

In Rayleigh fading, this simplifies to



which approaches the Shannon limitgsapproaches 0 or as

—~ 10
~ approacheso. The mean spectral efficiency can be found ¥} \
by taking the mean of the instantaneous spectral efficisncie g —+— AWGN Channel
and is given by £ 8[| —e—APA
c < ---SRA
ABA . m o —ABA
E =logy[1 4+ (¥ — %) Q(m,mh>. (16) S 6f
{ B(v) } d | 7 S
In Nakagami fading, the ABA capacity pdf is given by T .
= 4
F(7th) capa =0 8
flensn) =4 O O<caen <58 (17) & 5
K™ 7?‘(87‘,‘1)6_“5” CABA = n%,:‘”’ qcr\g !
= ¢ ‘ ‘ ‘ ‘ ‘
wherer = ——10=9) % 5 10 15 20 25 30
FBlog, [T+ (7-)]"
The pdf of the service time random variable, in Nakagami Mean SNR (dB)

fading with outages, is given b . - , o
9 ges, 9 Y Fig. 1. Mean spectral efficiency of various resource aliocastrategies in
K™ 1 _ =k Rayleigh fading f» = 1) with vy, = 3 dB.

f(spea) = SITE CheAL (18)
T (m, %h%) SABA s
x 10
The first moment of the ABA service time random variable |
can be easily derived from the pdf. It is —— AWGN Channel
@ 4 |—e—APA
P(m_]-v%h%> 2 ||---srA
E{Spea} = N (19) = 5l [——ABA
m > Of
r (m, M ) .*;g
Similarly, the second moment of the ABA service time <3 ol
random variable is 2
®©
2 ()
W%E (’Yth*) form=1 =1t
2 o HQ m _ +
E{Siea} = F(m’ymW/’)E (%h‘) for m = 2 K : : : : :
& T ( — 2,y 2 ) for all other 0 5 10 15 20 25 30
F(m Yih %) m IS m, Mean SNR (dB)
(20)
where E; (- ) is a special case of thg,, function defined in Fig. 2. Mean capacity of various resource allocation sgiatein Rayleigh
@] fading with B = B = 50 kHz and vy, = 3 dB.
V. RESULTS

We investigate the performance of the resource allocatiSHrprising that the benefit of adapting bandwidth to maxamiz
strategies in terms of mean spectral efficiency and meary defaéan capacity only manifests itself (in terms of spectral
in Rayleigh fading £» = 1). In obtaining the results, a signal-efficiency) at higher mean SNR. This is because, for any
to-noise ratio threshold of dB was used. B(v1) for alink with mean SNRy, is greater tharB(v,) for a

In Fig./1 we plot the spectral efficiency of the three resourd®k with mean SNRy, providedy, > ¥, equivalentB, and
allocation policies discussed earlier. As illustrated i8][ equivalentyy. Therefore, on low mean SNR links, constant
SRA and APA mean spectral efficiency converge but do neandwidth resource allocation strategies are more spigctra
approach the mean spectral efficiency of the AWGN channéfficient than adaptive bandwidth allocation strategies.

The mean spectral efficiency of ABA, on the other hand, In Figs.[3 and 4 we consider delay performance. We
approaches that of the AWGN channel at large mean SNR3gasure delay in terms of the mean delay in system—that
At lower mean SNRs, ABA is less efficient spectrally thais, the mean queuing delay in addition to the mean service
APA and SRA. In terms of mean capacity, however, ABAime—given above in (1).

outperforms the other resource allocation strategieshawrs Fig. (3 illustrates the effect of fading intensity on mean

in Fig.[2 for Rayleigh fading. Therefore, ABA offers higherdelay for ABA. Naturally, as the fading becomes less severe
potential mean capacity at the cost of lower spectral effigie with increasingm, the mean delay performance improves.

on low mean SNR links. The magnitude of the improvement, however, is less for large

Figs.[1 and R reveal that manipulating bandwidth to ovevalues ofm, as the mean delay performance approaches the
come poor channel conditions, even according to an algoritroptimal (the AWGN channel).
that maximizes mean capacity, can be wasteful. It is somewhaFig.4 shows the mean delay of various resource allocation
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strategies in Rayleigh fading. The performance of SRA

indistinguishable from that of APA at the chosen bandwidth.

Both SRA and APA are close to the AWGN channel in ter

of delay at low utilization, and remain close to the AWGN11]
channel performance even at high utilizations. ABA, on the

other hand, performs worse than the other allocation sfiege

considered here. ABA provides a higher mean capacity thag
the other resource allocation strategies, yet APA and SRA
experience much lower delay over the same channels. Thi
is due to the fact that, as shown in [14], the instantaneous
in order to maximize mean

capacity. Under Nakagamir fading, this results in a service!

bandwidth follows the SNR

time distribution f(Saga) that is much less favorable from

a queuing perspective than those for APA and SRA. This
yields the interesting observation that mean capacity asaim [t

VI. CONCLUSIONS

We have presented an approach to analyzing delay over a
flat fading channel with outages under various resource allo
cation strategies. The model is capable of capturing theanp
of the Nakagami fading parameter, on delay performance.
Our results indicate that commonly used information théore
measures of wireless performance are not always the best
indicators of achievable network QoS. A bandwidth-adaptiv
channel that achieves superior channel capacity perfarenan
over other strategies was shown to experience substgntiall
worse packet delays when compared to these same strategies.
However, these results are applicable only to a single user,
and we are investigating the spectrum sharing aspects bf suc
bandwidth adaptive techniques and their potential to autpe
form other allocation strategies in a multi-user environime
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