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Abstract—In this paper we analyze the delay performance of
a single user with perfect channel state information transmitting
data over a wireless fading channel. We consider a dynamic
resource allocation policy that maximizes average capacity by
adapting transmission power, as well as a policy that adapts
instantaneous bandwidth. Nakagami fading is assumed, and the
impact of the fading parameter,m, as well as the channel quality
in terms of signal-to-noise ratio on the mean queuing delay of
transmitted data is analyzed. We show that resource allocation
policies that achieve superiority over competing strategies in
terms of maximizing average capacity do not necessarily result
in superior delay performance.

Index Terms—Queuing analysis, fading channels, Information
rates, dynamic resource allocation, average delay

I. I NTRODUCTION

Data communications in wireless networks generally take
place over fading channels with time-varying characteristics.
The extent to which the dynamic nature of the wireless
medium impacts the Quality of Service (QoS) of transmitted
data depends on factors such as the severity of the fading
channel and the resource allocation policy being employed
to adapt to the time-varying channel. This is in contrast
to wired point-to-point links where QoS is exclusively a
function of the data traffic arrival statistics and the fixed
capacity of the transmitter. In the wired case, QoS attributes,
such as delay performance, can usually be studied by using
appropriate queuing models and analyses. The time-varying
wireless channel, on the other hand, poses a challenge in terms
of queuing analysis and performance evaluation.

The measurement of achievable performance of wireless
communications over fading channels has historically been
relegated to the realm of information theory, where channel
capacity is the figure of merit. The delay component that
accounts for the time that data spends in a transmit buffer,
as well as other measures of QoS, are typically decoupled
from the information theoretic problem, and often times simply
ignored. This separation is reasonable for wired links where
a constant transmit data rate can be assumed, but results
in an inability to capture the important relationship between
physical layer behavior and higher layer performance in a
wireless network. Some of these issues are discussed in [1]
where the authors consider a system in which transmit power
is adapted according to channel state information as well
as buffer occupancy. A dynamic programming approach is
employed to explore the tradeoffs associated with average

transmit power and average delay. A further application of
this general approach to cross-layer design methodologiesis
considered in [2].

A number of authors (see [3], [4], and [5] for example)
have used queuing theoretic techniques in an attempt to
approximate the delay induced on data by wireless channels.
However, simple models that express mean delay as a function
of the wireless fading environment, including the presence
of outages, do not exist. Such models would be helpful in
coming to a fuller understanding of the tradeoffs associated
with dynamic resource allocation strategies, as well as in
performing QoS provisioning functions such as call admission
and traffic policing in wireless networks. Toward this end, a
capacity model for wireless channels is proposed in [6] where
the authors provide a framework for translating physical layer
wireless channel attributes to an available channel capacity that
could potentially be useful to higher layer protocols for QoS
provisioning. Ultimately, a great deal more needs to be done
in order to provide the necessary linkage between network
QoS behavior and wireless channel dynamics, particularly in
the presence of adaptive resource allocation policies at the
physical layer.

In this paper, we present a queuing model for the delay
analysis of a single user wireless fading channel with outages.
The proposed model utilizes a two priority M/G/1 queue
in which link outages are approximately modeled by high-
priority customers. Nakagami-m fading is assumed, and the
impact of the fading parameter,m, as well as the channel
quality in terms of signal-to-noise ratio, on the mean queuing
delay of transmitted data is analyzed. We consider a dynamic
resource allocation policy that maximizes average capacity by
adapting transmission power, as well as a policy that adapts
instantaneous bandwidth. We show that resource allocation
policies that achieve superiority over competing strategies in
terms of maximizing average capacity do no necessarily result
in superior delay performance.

II. L INK MODEL

We investigate a single user channel subject to time varying,
slow, flat fading with additive white Gaussian noise (AWGN)
at the receiver. The fading is modeled as Nakagami-m [7],
which has been shown to be a suitable model for a number of
wireless environments (see [8] and [9], for example). Under
this type of fading, the SNR is gamma distributed; therefore
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the probability density function (pdf) of the SNR is given by

f(γ) =

(

m

γ̄

)m
γm−1

Γ(m)
e−γ m

γ̄ ,

where m is the Nakagami fading parameter,Γ( · ) is the
Gamma function, and̄γ is the expected value of the SNR
random variable,γ.

At low SNR, the data transmission rate is reduced to a
level such that transmission may not be justified. Hence, links
are considered to be in outage when the SNR is below a
predetermined threshold, denotedγth and referred to as the
SNR threshold. When in an outage, no data may be transmitted
over the link.

In the face of outages and time varying fading, adaptive
resource allocation strategies have been developed to more
efficiently use the wireless resource. Typically, the perfor-
mance of resource allocation policies is measured in terms
of mean capacity and mean spectral efficiency. Unfortunately,
in a wireless network these metrics may not be ideal mea-
sures of link performance, because links, rather than data,
are their frame of reference. A more practical measure of
link performance is delay, which measures the experience of
data in the system. The delay experienced by data influences
application performance and the overall utility of the network.
Because delay is composed of transmit time and time waiting
in transmit buffers, we develop and utilize a queuing analysis
to measure the mean delay on links for various resource
allocation strategies.

III. QUEUING MODEL

The fading model determines, in part, the time varying
channel capacity. Thus, the link can be modeled as a variable
rate queue, where the queue represents the transmit buffer and
the service rate is equal to the time varying capacity. We
assume Poisson arrivals. The service time,S, is a function
of SNR and the specific resource allocation policy, and hence
must take a general form in our analysis, resulting in an M/G/1
model. Link outages are modeled through the introduction
of high-priority “outage customers” that receive head of line
priority, thereby approximating the delay experienced by data
in the presence of an outage. The mean delay experienced by
data in this priority queue is given by [10]

d̄ =
λE

{

S2
}

2 (1 − ρo) [1 − (ρo + ρd)]
+ E {S} , (1)

whereλ is the total arrival rate of outage customers and data
customers,S is the overall distribution of service times for
both classes of customers,ρo is the utilization due to outage
customers, andρd is the utilization due to data customers. The
total arrival rate is simply the sum of the mean arrival rates
of outage and data customers. Since both data and outages
arrive according to Poisson arrival processes, there exists an
implicit assumption that the interarrival times of outagesare
independent and identically distributed (iid).

The utilization due to an outage,ρo, is the proportion of time
the server spends serving outage customers, and is equivalent

to the probability the link is in an outage, which is given by

ρo =

∫ γth

0

f(γ) dγ.

As noted above, the service time distribution,S, is a func-
tion of both the fading and the particular resource allocation
scheme. In this paper we investigate several resource allocation
strategies and their impact on mean spectral efficiency and
mean delay.

IV. RESOURCEALLOCATION STRATEGIES

For each resource allocation strategy considered, it is
assumed that perfect, zero delay channel state information
is available at the transmitter and receiver. Three resource
allocation strategies are investigated: static resource allocation,
adaptive power allocation, and adaptive bandwidth allocation.
We also provide results for the additive white Gaussian noise
(AWGN) channel for comparison.

A. Static Resource Allocation

In the case of static resource allocation (SRA) the link
bandwidth and power are predetermined and are not adapted
in response to fading. Therefore, the instantaneous capacity is
given by

cSRA(t) =

{

0 γ(t) < γth

B log2(1 + γ(t)) γ(t) ≥ γth,
(2)

where B is the bandwidth of the wireless channel. Conse-
quently, the mean capacity under SRA is

E {CSRA} =

∫

∞

γth

B log2(1 + γ)f(γ) dγ. (3)

Following the pattern set out in [11], an expression for (3) can
be derived. By definingξ = 1 + γth and

β(x, q) =
B

ln 2Γ(x)
e−q x

γ̄ ,

the general expression for (3) becomes

E {CSRA} =β(m, γth)

m
∑

k=1

(m − 1)!

(m − k)!

(

m

γ̄

)m−k

[

γm−k
th ln ξ + eξ m

γ̄

m−k
∑

j=0

(

m − k

j

)

γ
j
thξ

m−k−j

Γ(m − k − j + 1)Γ

(

k + j − m, ξ
m

γ̄

)

]

,

(4)

whereΓ( · , · ) designates the upper incomplete gamma func-
tion [12].

In Rayleigh fading, (4) simplifies to

E {CSRA} = β(1, γth)

[

ln ξ + e
ξ

γ̄ E1

(

ξ

γ̄

)

]

, (5)

whereE1 ( · ) denotes the exponential integral [12].



The following functions,η and ζ, are defined in order to
facilitate the derivation of the capacity and service time pdfs
under an SRA policy:

η(x, q) =

(

m

γ̄

)m
ln 2

BΓ(m,x)
qm−1e−q m

γ̄ ,

and
ζ(x) = 2

x
B − 1.

The pdf of the SRA capacity random variable is given by

f(cSRA) =







ρo cSRA = 0
0 0 < cSRA < B log2 ξ

η(0, ζ(cSRA))2
cSRA

B cSRA ≥ B log2 ξ.
(6)

The probability density function of the SRA service time
random variable,SSRA = C−1

SRA, is given by

f(sSRA) = η

(

γth
m

γ̄
, ζ

(

1

sSRA

))

2
1

sSRAB
1

s2
SRA

, (7)

from which the first and second moments can be determined,
and used in (1) to compute mean delay.

B. Adaptive Power Allocation

Adaptive power allocation (APA) strategies have been stud-
ied for extending battery life in wireless nodes and optimizing
capacity of wireless links. In [13] the authors derive the APA
scheme that maximizes the mean capacity of a link, subject
to an average power constraint. As described in [13], the
instantaneous capacity of an APA link is

cAPA(t) =

{

0 γ(t) < γth

B log2

(

γ(t)
γ0

)

γ(t) ≥ γth,
(8)

where γ0 is a cutoff SNR that ensures the average power
allocation is equal to the average power constraint.γ0 may
or may not be equal toγth. In order to achieve the optimal
power allocation,γ0 andγth must be equal. For the purposes
of this analysis, however,γth is greater thanγ0 so that the
mean service time can be computed (otherwise the service
time is infinite whenγ(t) = γ0).

The mean capacity may be found by

E {CAPA} =

∫

∞

γth

B log2

(

γ

γ0

)

f(γ) dγ (9)

Following the pattern set out in [11], the following general
expression for (9) can be derived:

E {CAPA} =β(m, γth)(m − 1)!

m−1
∑

k=0

1

k!

[

ln

(

γth

γ0

)(

γth
m

γ̄

)k

+ eγth
m
γ̄ Γ

(

k, γth
m

γ̄

)

]

.

(10)

In Rayleigh fading, this simplifies to

E {CAPA} = β(1, γth)

[

ln

(

γth

γ0

)

+ e
γth
γ̄ E1

(

γth

γ̄

)

]

. (11)

The mean capacity may also be found directly from the pdf
of the APA capacity random variable, which, in Nakagami
fading, is

f(cAPA) =















ρo cAPA = 0

0 0 < cAPA < B log2

(

γth
γ0

)

η (0, ν(cAPA)) ν(cAPA) cAPA ≥ B log2

(

γth
γ0

)

,

(12)
where theν function is defined as

ν(x) = γ02
x
B .

The probability density function of the APA service time
random variable is given by

f(sAPA) = η

(

γth
m

γ̄
, ν

(

1

sAPA

))

ν

(

1

sAPA

)

1

s2
APA

, (13)

from which the first and second moments can be derived and
substituted into (1).

C. Adaptive Bandwidth Allocation

Adaptive bandwidth allocation (ABA) schemes attempt to
modify the link bandwidth so that it is efficiently utilized.
Any unallocated bandwidth could potentially be utilized by
other nodes in a wireless network. In [14] the authors derive
a bandwidth allocation scheme that maximizes mean capacity
of a link without outages, subject to an average bandwidth
constraint. Here, we consider for the first time a bandwidth-
adaptive link with outages. The resulting bandwidth allocation
strategy is

B(γ(t)) =
B̄

γ̄ − γ̇
γ(t), (14)

where

γ̄ − γ̇ =

∫

∞

γth

γf(γ) dγ.

In Nakagami fading, this quantity becomes

γ̄ − γ̇ = γ̄Q

(

m + 1, γth
m

γ̄

)

,

where Q( · , · ) is the regularized upper incomplete gamma
function [15].

In an ABA channel, the instantaneous capacity is given by

cABA (t) =

{

0 γ(t) < γth

B(γ(t)) log2

(

1 + γ(t) B̄
B(γ(t))

)

γ(t) ≥ γth,

whereB̄ is the mean bandwidth of the channel, and theB̄
B(γ(t))

term is due to the fact thatγ(t) is measured relative to some
reference bandwidth (in this casēB). By performing substitu-
tions and simplifying, the instantaneous capacity equation can
be expressed as

cABA (t) =

{

0 γ(t) < γth
B̄

γ̄−γ̇
γ(t) log2[1 + (γ̄ − γ̇)] γ(t) ≥ γth.

Therefore, the mean capacity of the ABA channel is

E {CABA} = B̄ log2[1 + (γ̄ − γ̇)], (15)



which approaches the Shannon limit asγth approaches 0 or as
γ̄ approaches∞. The mean spectral efficiency can be found
by taking the mean of the instantaneous spectral efficiencies,
and is given by

E

{

CABA

B(γ)

}

= log2[1 + (γ̄ − γ̇)]Q

(

m, γth
m

γ̄

)

. (16)

In Nakagami fading, the ABA capacity pdf is given by

f(cABA ) =











F (γth) cABA = 0
0 0 < cABA < mγth

γ̄κ

κm c
m−1

ABA
Γ(m) e

−cABA κ cABA ≥ mγth
γ̄κ

,

(17)

whereκ = m(γ̄−γ̇)
γ̄B̄ log

2
[1+(γ̄−γ̇)]

.
The pdf of the service time random variable, in Nakagami

fading with outages, is given by

f(sABA ) =
κm

Γ
(

m, γth
m
γ̄

)

1

sm+1
ABA

e
−

κ
sABA . (18)

The first moment of the ABA service time random variable
can be easily derived from the pdf. It is

E {SABA} = κ
Γ

(

m − 1, γth
m
γ̄

)

Γ
(

m, γth
m
γ̄

) . (19)

Similarly, the second moment of the ABA service time
random variable is

E
{

S2
ABA

}

=























κ2

Γ(m,γth
m
γ̄ )

γ̄
γth

E2

(

γth
m
γ̄

)

for m = 1

κ2

Γ(m,γth
m
γ̄ )

E1

(

γth
m
γ̄

)

for m = 2

κ2

Γ(m,γth
m
γ̄ )

Γ
(

m − 2, γth
m
γ̄

)

for all otherm,

(20)
whereE2 ( · ) is a special case of theEn function defined in
[12].

V. RESULTS

We investigate the performance of the resource allocation
strategies in terms of mean spectral efficiency and mean delay
in Rayleigh fading (m = 1). In obtaining the results, a signal-
to-noise ratio threshold of3 dB was used.

In Fig. 1 we plot the spectral efficiency of the three resource
allocation policies discussed earlier. As illustrated in [13],
SRA and APA mean spectral efficiency converge but do not
approach the mean spectral efficiency of the AWGN channel.
The mean spectral efficiency of ABA, on the other hand,
approaches that of the AWGN channel at large mean SNRs.
At lower mean SNRs, ABA is less efficient spectrally than
APA and SRA. In terms of mean capacity, however, ABA
outperforms the other resource allocation strategies, as shown
in Fig. 2 for Rayleigh fading. Therefore, ABA offers higher
potential mean capacity at the cost of lower spectral efficiency
on low mean SNR links.

Figs. 1 and 2 reveal that manipulating bandwidth to over-
come poor channel conditions, even according to an algorithm
that maximizes mean capacity, can be wasteful. It is somewhat
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Fig. 1. Mean spectral efficiency of various resource allocation strategies in
Rayleigh fading (m = 1) with γth = 3 dB.
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Fig. 2. Mean capacity of various resource allocation strategies in Rayleigh
fading with B̄ = B = 50 kHz andγth = 3 dB.

surprising that the benefit of adapting bandwidth to maximize
mean capacity only manifests itself (in terms of spectral
efficiency) at higher mean SNR. This is because, for anyγ1,
B(γ1) for a link with mean SNR̄γ1 is greater thanB(γ1) for a
link with mean SNRγ̄2 providedγ̄2 > γ̄1, equivalentB̄, and
equivalentγth. Therefore, on low mean SNR links, constant
bandwidth resource allocation strategies are more spectrally
efficient than adaptive bandwidth allocation strategies.

In Figs. 3 and 4 we consider delay performance. We
measure delay in terms of the mean delay in system—that
is, the mean queuing delay in addition to the mean service
time—given above in (1).

Fig. 3 illustrates the effect of fading intensity on mean
delay for ABA. Naturally, as the fading becomes less severe
with increasingm, the mean delay performance improves.
The magnitude of the improvement, however, is less for larger
values ofm, as the mean delay performance approaches the
optimal (the AWGN channel).

Fig. 4 shows the mean delay of various resource allocation
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Fig. 3. Mean delay of adaptive bandwidth allocation in Nakagami fading of
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Fig. 4. Mean delay of various resource allocation strategies in Rayleigh
fading with B̄ = B = 50 kHz, γ̄ = 20 dB, andγth = 3 dB.

strategies in Rayleigh fading. The performance of SRA is
indistinguishable from that of APA at the chosen bandwidth.
Both SRA and APA are close to the AWGN channel in terms
of delay at low utilization, and remain close to the AWGN
channel performance even at high utilizations. ABA, on the
other hand, performs worse than the other allocation strategies
considered here. ABA provides a higher mean capacity than
the other resource allocation strategies, yet APA and SRA
experience much lower delay over the same channels. This
is due to the fact that, as shown in [14], the instantaneous
bandwidth follows the SNR in order to maximize mean
capacity. Under Nakagami-m fading, this results in a service
time distributionf(SABA ) that is much less favorable from
a queuing perspective than those for APA and SRA. This
yields the interesting observation that mean capacity and mean
spectral efficiency are not always the best predictors of QoS
performance, particularly in the presence of adaptive resource
allocation.

VI. CONCLUSIONS

We have presented an approach to analyzing delay over a
flat fading channel with outages under various resource allo-
cation strategies. The model is capable of capturing the impact
of the Nakagami fading parameter,m, on delay performance.
Our results indicate that commonly used information theoretic
measures of wireless performance are not always the best
indicators of achievable network QoS. A bandwidth-adaptive
channel that achieves superior channel capacity performance
over other strategies was shown to experience substantially
worse packet delays when compared to these same strategies.
However, these results are applicable only to a single user,
and we are investigating the spectrum sharing aspects of such
bandwidth adaptive techniques and their potential to outper-
form other allocation strategies in a multi-user environment.
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