
Des Autom Embed Syst (2010) 14: 415–443
DOI 10.1007/s10617-010-9066-y

Co-optimization of buffer layer and FTL
in high-performance flash-based storage systems

Hyotaek Shim · Dawoon Jung · Jaegeuk Kim ·
Jin-Soo Kim · Seungryoul Maeng

Received: 21 September 2009 / Accepted: 4 October 2010 / Published online: 4 November 2010
© Springer Science+Business Media, LLC 2010

Abstract NAND flash-based storage devices have rapidly improved their position in the
secondary storage market ranging from mobile embedded systems to personal computer and
enterprise storage systems. Recently, the most important issue of NAND flash-based storage
systems is the performance of random writes as well as sequential writes, which strongly
depends on their two main software layers: a Buffer Management Layer (BML) and a Flash
Translation Layer (FTL). The primary goal of our study is to highly improve the overall
performance of NAND flash-based storage systems by exploiting the cooperation between
those two layers. In this paper, we propose an FTL-aware BML policy called Selective Block
Padding and a BML-based FTL algorithm called Optimized Switch Merge, which overcome
the limitations of existing approaches on performance enhancement. When using both the
proposed techniques, evaluation results show that the throughput is significantly increased
over that of previous studies.

H. Shim (�) · S. Maeng
Computer Science Department, Korea Advanced Institute of Science and Technology (KAIST),
335 Gwahangno, Yuseong-gu, Daejeon, Republic of Korea
e-mail: htshim@calab.kaist.ac.kr

S. Maeng
e-mail: maeng@calab.kaist.ac.kr

D. Jung · J. Kim
Memory Division, Samsung Electronics Co., Ltd., Hwaseong, Republic of Korea

D. Jung
e-mail: dw0904.jung@samsung.com

J. Kim
e-mail: jaegeuk.kim@samsung.com

J.-S. Kim
School of Information and Communication Engineering, Sungkyunkwan University (SKKU),
300 Cheoncheon-dong, Jangan-gu, Suwon, Republic of Korea
e-mail: jinsookim@skku.edu

mailto:htshim@calab.kaist.ac.kr
mailto:maeng@calab.kaist.ac.kr
mailto:dw0904.jung@samsung.com
mailto:jaegeuk.kim@samsung.com
mailto:jinsookim@skku.edu

416 H. Shim et al.

Keywords Buffer management layer · Flash translation layer · NAND flash memory ·
Solid state drive

1 Introduction

As a notable non-volatile storage medium, NAND flash memory [1, 2] has been widely
adopted in mobile embedded devices, for instance, mobile phones, digital cameras, and MP3
players, because it supports many attractive features such as low power consumption, low
access latency, and shock resistance [3–5]. In addition, the capacity of NAND flash memory
is under continuous development, extending its coverage from small mobile storage systems
to large-scale server storage systems [6].

Recently, NAND flash-based Solid State Drives (SSDs) have been introduced, which
offer the same I/O interface as that of Hard Disk Drives (HDDs) [7, 8]. SSDs provide bet-
ter random access performance than HDDs by removing mechanical operations including
disk platter rotation and disk arm movement. A multi-channel architecture [9] for SSDs has
also enhanced sequential access performance beyond HDDs. As a competitive alternative to
HDDs, SSDs are extending their share in the secondary storage market [10]. The advent of
SSDs has been accelerating the migration from HDDs to NAND flash-based storage devices.

However, NAND flash-based storage devices, simply called flash storage devices, have
a drawback where the random write latency is significantly longer than the random read
latency due to some idiosyncrasies of NAND flash memory. Basically, a write (or program)
operation takes longer than a read operation, and data must be erased in bulk before being
overwritten in NAND flash memory. These features make SSDs considerably vulnerable to
random writes [10]. Accordingly, when we employ SSDs in personal computer and server
storage systems with complicated write patterns, achieving high performance is a challeng-
ing issue [11].

To hide the awkward features of NAND flash memory, flash storage devices dispose a
software layer called a Flash Translation Layer (FTL) that carries out logical-to-physical ad-
dress mapping, providing block device interface. The random write latency of flash storage
devices strongly relies on FTL algorithms including address mapping algorithms, mapping
granularity, and flash erase policies.

Flash storage devices also adopt a small-sized DRAM as a buffer cache, which is faster
than NAND flash memory, to absorb random writes and to serve frequently requested data
instead of FTL [11–16]. The buffer cache is controlled by a software layer called a Buffer
Management Layer (BML), which is another key factor for performance enhancement. BML
policies, such as how to select and evict victims, determine input request patterns for FTL
and thus have a significant impact on the FTL behavior. Therefore, to obtain opportunities
for extraordinary performance improvement, BML and FTL should be taken into account
together.

In recent years, to enhance the performance of flash storage systems, many studies have
focused on developing BML policies and FTL algorithms, separately. Previous approaches
can be classified as follows. First, various FTL algorithms have been devised by adjust-
ing trade-offs between performance gains versus memory consumption for storing mapping
information. This approach is very effective for tuning flash storage systems to the charac-
teristic of workloads. However, most existing FTL schemes [17–25] assume that there is no
information about BML policies or there is no buffer cache. Because write patterns are en-
tirely changed through BML before reaching FTL, it is necessary to develop FTL algorithms
that consider the BML policies. Second, several flash-aware buffer management schemes

Co-optimization of buffer layer and FTL in high-performance 417

have been proposed [11–14]. These schemes exploit the superficial behaviors of FTL al-
gorithms and the characteristics of NAND flash memory. In this approach, BML strives to
generate write patterns favorable for reducing the overhead of FTL. However, those existing
schemes assume traditional FTL algorithms optimized for write patterns from the host, not
from BML, missing opportunities for better performance.

To overcome the limitation of the existing studies that improved either the BML policy
or the FTL algorithm, each should be aware of and optimized for the other. In this paper,
we focus on the cooperative optimization between both the software layers. This advanced
optimization is possible in common flash storage devices, such as SSDs and various mobile
embedded devices, where those two software layers can be executed on the same embedded
processor [15].

As a co-optimization (CO-OP) scheme, we introduce two novel techniques for BML and
FTL, respectively. One is an FTL-aware BML policy, called Selective Block Padding (SBP),
that provides FTL with well-suited write patterns by recognizing the state information of
FTL. The other is a BML-assisted FTL algorithm, called Optimized Switch Merge (OSM),
that significantly reduces extra operations in NAND flash memory, supported by the SBP
technique. For this CO-OP scheme, we devised additional interfaces between BML and
FTL, which will be explained in Sect. 5. Through trace-driven simulation, we confirm that
the proposed scheme achieves the best performance under various workloads and evaluation
configurations, compared with the previous studies.

The rest of this paper is organized as follows. Section 2 contains brief descriptions about
the architecture of typical flash storage systems, NAND flash memory, and FTL algorithms.
Section 3 explains the previous studies on flash-aware buffer management and buffer cache-
aware FTL. Section 4 gives an explanation of the effect of a block padding technique. Sec-
tion 5 describes the proposed techniques in detail. Section 6 explains simulation environ-
ment and analyzes evaluation results. Finally, Sect. 7 summarizes and concludes this paper.

2 Backgrounds

2.1 NAND flash-based storage system

Figure 1 shows the overall architecture of a typical NAND flash-based storage system in-
cluding two main software layers: BML and FTL. When a read request arrives in the flash
storage device, BML checks whether the requested data exist in the DRAM-based buffer
cache. If the data is there, the read request is served by the buffer cache, otherwise is redi-
rected to FTL. On a write request, if the write data is previously cached, the data is simply
overwritten. For a new write request, BML allocates empty buffer space. If there is no more
empty space, BML selects and flushes victim buffer data to FTL. Considering the longer
write latency and erase operations in NAND flash memory, it is more effective to use the
buffer cache only for write caching, not for read caching, in flash storage devices [11, 15].

2.2 Characteristics of NAND flash memory

NAND flash memory consists of an array of blocks, each of which contains a fixed number
of pages, and it offers three basic operations: read, write (or program), and erase operations.
The unit of read and write operations is a page, and the unit of erase operations is a block.
A read operation obtains data from a page, while a write operation stores data into a page.
An erase operation clears all data in a block. There are two types of NAND flash memory.

418 H. Shim et al.

Fig. 1 Architecture of a NAND
flash-based storage system

Table 1 Specification of NAND
flash memory (Samsung
Electronics K9WAG08U1M [1],
K9GAG08UXM [2])

Flash type Unit size (KB) Access time (µs)

Page Block Read Write Erase

SLC 2 128 72.8 252.8 1500

MLC 4 512 165.6 905.6 1500

Single Level Cell (SLC) NAND [1] stores one bit per cell, whereas Multi Level Cell (MLC)
NAND [2] stores two or more bits per cell, supporting larger capacity. The specific operation
time and unit size are shown in Table 1.

As previously mentioned, NAND flash memory has some awkward characteristics. It
suffers from asymmetric read/write latency, which means that write operations take quite
longer than read operations. In addition, there is the erase-before-write characteristic that
write operations can be allowed only on previously-erased pages. Since the unit of erase
operations is larger than the unit of write operations, before erasing a block, we should
copy valid pages in the block to another previously-erased block, which is called valid page
migration or valid page copies. When using large block NAND flash memory, there is an
additional restriction where all pages within a block must be written in sequence from the
first to the last page.

In NAND flash memory, the number of erase operations on a block is limited, typically,
from 5,000 to 100,000 [1, 2]. If the erase count of a block is over the limit, the block is likely
to be worn out and cannot be written any more. Hence, erase operations should be evenly
distributed in all blocks, which is called wear leveling. Considering this constraint, we need
to reduce the number of erase operations not only to enhance the performance but also to
extend the lifetime of flash storage devices.

2.3 Power failure recovery

Buffered data and mapping information stored in a volatile DRAM-based cache can be lost
by unexpected power failures. Simple approaches to prevent the loss of the important data
in the device cache are to employ either (1) non-volatile memory devices [26] such as phase
change RAM (PRAM) [27] and ferroelectric RAM (FRAM) [28], (2) traditional battery-
backed DRAMs, or (3) supercapacitor that provides enough power to flush all of the dirty
data in the device cache to NAND flash memory.

Co-optimization of buffer layer and FTL in high-performance 419

Without the non-volatile buffer cache, the host can periodically issue flush cache com-
mands that completely flush the write cache to alleviate the loss of write-cached data. This
will be helpful for reducing the possibility of data loss, but the write cache may be almost
empty, increasing write operations in NAND flash memory.

The Lightweight Time-shift Flash Translation Layer (LTFTL) is an example of software-
based approach that aims at maintaining FTL consistency in case of abnormal shut-
down [29]. In this scheme, FTL maintains previous data pages in the log area without
reclaiming them until a checkpoint. After detecting the abnormal shutdown at initializa-
tion, LTFTL turns back to the previous state of time periods, which preserves consistency,
by changing the mapping of data pages in the log area to their previous data pages. This
technique is well suited for the out-of-place update property of NAND flash memory.

2.4 Flash Translation Layer

The main role of FTL is to make a flash storage device emulate a traditional storage device
that provides a block device interface, covering the idiosyncrasies of NAND flash memory;
through this compatibility, flash storage devices can be easily adopted in existing storage
systems. To cope with the erase-before-write characteristic, FTL assigns write requests to
empty pages, which are erased in advance, and updates the logical-to-physical mapping
information. In this way, the pages that contain old data are invalidated. If there are no
available empty pages, FTL selects victim blocks and triggers garbage collection in order
to recycle them as free blocks. Before reclaiming the victim blocks, FTL carries out valid
page migration from the victim blocks to some free blocks reserved for garbage collection.
After this, the victim blocks are converted to free blocks by erase operations.

According to mapping granularity, we divide existing FTL schemes into three categories:
page mapping, block mapping, and hybrid mapping schemes. In page mapping schemes, a
logical page number is translated to a physical page number in NAND flash memory. Due
to the flexibility in assigning empty pages, the best performance is accomplished even for
random write patterns [17]. However, they demand large memory resources to maintain the
fine-grained mapping information. Moreover, the size of mapping information considerably
increases in proportion to the capacity of flash storage devices. For example, when assigning
4 bytes for each page mapping entry with MLC NAND flash memory shown in Table 1, we
need a 64 MB memory for 64 GB flash capacity. Accordingly, the page mapping scheme is
not suitable for consumer-based flash storage devices that involve the constraint of memory
resources. To alleviate such a problem, the Demand-based FTL scheme (DFTL) [18] has
been developed to create balance between the performance and the memory consumption.
Basically, DFTL applies a caching mechanism to existing page mapping schemes.

In block mapping schemes, FTL maintains coarse-grained mapping information that
translates a logical block number to a physical block number in NAND flash memory.
Among three categories, block mapping schemes require the smallest memory resources
to store the mapping information, while their performance is quite low due to the restric-
tion that all the pages in a block must be fully and sequentially written and located on their
appointed offset. Accordingly, to overwrite some pages in a block, the other valid pages in
the block should be migrated to a free block together with the new pages. This valid page
migration seriously degrades the performance of flash storage systems.

To balance the advantages of page and block mapping schemes, hybrid mapping schemes
have been devised. Basically, this scheme is similar with the block mapping scheme since
it offers block mapping for most of the blocks called data blocks, but it also supports page
mapping for a small fixed number of blocks called log blocks to handle write requests.

420 H. Shim et al.

Incoming write data is written in the log blocks incrementally from the first page, thus
reducing the overhead of valid page migration. When all free blocks are consumed, FTL
copies all valid pages within victim log blocks and their related data blocks into reserved
free blocks, which should be fully and sequentially written to become new data blocks.
Thereafter, FTL erases the victim log blocks and old data blocks.

Many hybrid mapping schemes have been developed [19–23]. Among them, Block As-
sociative Sector Translation (BAST) [19] and Fully Associative Sector Translation (FAST)
[20] are well known for competitive performance with the small usage of computing and
memory resources, and they are most widely used in research and industrial areas [11, 13–
15, 25, 30]. In this paper, we focus on developing the co-optimization techniques in these
two famous hybrid mapping schemes.

2.4.1 Block-Associative Sector Translation (BAST)

The BAST scheme (or the log block scheme) allocates at most one log block for each data
block. Write requests to a data block can be written in its allocated log block until all empty
log pages are consumed, when FTL merges the log block with the corresponding data block.
Figure 2 illustrates three types of merge operations in BAST: a switch merge, partial merge,
and full merge.

As shown in Fig. 2(a), if all pages in a log block are sequentially written in their des-
ignated page offset, FTL can simply convert the log block into a new data block, and the
original data block is reclaimed by an erase operation, which is called a switch merge. Fig-
ure 2(b) illustrates a partial merge. If a log block is partially written in a sequential manner
from the first page, FTL fills up the remaining empty pages of the log block by copying
the omitted pages from the data block, and then it operates like a switch merge. Figure 2(c)
describes a full merge. If a log block is written in non-sequential order, FTL must copy the
valid pages owned by the log block and the data block to another free block, which becomes
a new data block. Then FTL erases the log and old data blocks, and converts them into free
blocks. This full merge requires N page reads, N page writes, and two block erases, where
N is the number of pages per block.

Fig. 2 Three types of merge operations in BAST

Co-optimization of buffer layer and FTL in high-performance 421

In addition to the merge operations caused by fully-written log blocks, when FTL falls
short of free blocks, one of the pre-allocated log blocks should be reclaimed, e.g., in Least
Recently Used (LRU) order. If the number of log blocks is smaller than the working set size
of write patterns, FTL can suffer log block thrashing, which means that log blocks allocated
for data blocks are repeatedly reclaimed before consuming all of their empty pages, lowering
the utilization of the log blocks.

2.4.2 Fully-Associative Sector Translation (FAST)

To prevent log block thrashing, Fully Associative Sector Translation (FAST) [20] has been
proposed. In this scheme, there are two types of log blocks, RW and SW log blocks. FAST
allocates only one SW log block for sequential writes, and the remaining log blocks are used
for handling random writes as RW log blocks. In FAST, all random updates for data blocks
can be located in any RW log blocks, since all data blocks share all RW log blocks. From
this, FAST brings two advantages. First, RW log blocks can be fully utilized. Second, log
pages in RW log blocks are likely to be invalidated by overwriting, reducing overheads for
valid page migration. Those invalidated pages in RW blocks can increase more if there are
enough RW log blocks and the workload exhibits high temporal locality for write requests.

If there are no more free RW log blocks, one of them is reclaimed by a round-robin
fashion. To reclaim an RW log block, FAST should merge all associated data blocks that
keep valid pages in the RW log block. To merge an associated data block, FAST copies all
valid pages that belong to the associated data block into a free block by searching all RW
log blocks. After this, the free block becomes a new data block and the associated data block
is erased. This is called a full merge. These full merges are repeated until all the associated
data block are merged into new data blocks, and finally the victim RW log block is erased.

FAST distinguishes random and sequential writes as follows. If the first-page offset of a
write request is zero (the first page in a block) and the SW log block is empty, or if the first
offset is located on the next page of the recently-written page in the SW log block, the write
request is considered as sequential writes and is written into the SW log block. In this way,
the SW log block can be written only in a sequential manner from the first to the last page.
If the SW log block is fully written, it becomes a new data block, and the old data block
becomes a free block simply by a switch merge. If the first-page offset of a write request is
zero but the SW log block is not empty, FTL triggers a partial merge for the SW log block
to accommodate the write request. For the other cases, write requests are stored into RW log
blocks, considered as random writes.

3 Related works

The Flash-Aware Buffer (FAB) management scheme [13] was proposed to reduce the merge
cost of log block-based FTLs by increasing the probability of switch merges. In FAB, buffer
pages that belong to the same logical block are managed together by a block-level LRU pol-
icy. If the buffer cache becomes full, FAB selects a buffer block that has the largest number
of valid pages as a victim block and then flushes all dirty pages in the victim block. If there
are multiple buffer blocks that have the largest number, block-level LRU order is applied to
select a victim block among them. This largest block-based victim selection exploits a be-
havioral characteristic of log block-based FTLs; when complete blocks are flushed to FTL,
namely complete-block flushes, switch merges are likely to occur. Accordingly, FAB helps
FTL change costly full merges into low-cost switch merges, and provides better performance
under sequential write patterns, compared with a page-level buffer replacement policy.

422 H. Shim et al.

Block Padding Least Recently Used (BPLRU) [11] is another buffer management scheme
optimized for log block-based FTLs to cope with even random write patterns. This scheme
consists of two main techniques: LRU compensation and a page padding technique, which
we call a block padding technique in this paper. In BPLRU, a victim block in the buffer
cache is selected by block-level LRU order.

First, LRU compensation improves the effectiveness of the block-level LRU policy in
the buffer cache. If a buffer block is fully written, the block is moved to the LRU position,
not the Most Recently Used (MRU) position. This technique assumes that a fully-written
buffer block is unlikely to be overwritten shortly, considering sequential write patterns. LRU
compensation is effective for addressing the mixed patterns of sequential and random writes.

Second, when a victim buffer block is flushed, the block padding technique fills up all
omitted pages in the victim block by reading them from FTL, and flushes the complete block
to FTL. This technique eliminates full and partial merges, and always derives switch merges
from FTL. That is why the performance of BPLRU is not affected by the number of log
blocks in FTL. Under sequential write patterns, this scheme is highly effective to diminish
the cost of merge operations with few log blocks.

To reduce the padding overheads, the Block Padding Recently-Evicted-First (BP-REF)
scheme [14] devised a conditional block padding technique. This scheme keeps the fixed
number of victim buffer blocks that contain the largest number of pages within a victim
window. If the number of dirty pages in the victim block is larger than a predefined threshold,
the victim block is flushed after being padded. Otherwise, BP-REF flushes an LRU page
within the victim blocks. This conditional padding technique can be more cost-effective than
the unconditional padding technique of BPLRU under random write patterns. However, the
conditional padding technique can cause numerous full merges involving padding overheads
if padded victim blocks are repeatedly flushed to partly-written log blocks in BAST.

The Buffer-Aware Garbage Collection (BA-GC) scheme [15] was also proposed to re-
duce the merge cost of FTL. In BA-GC, unlike the previous studies that concentrated on
the BML policies, a buffer-aware FTL technique was introduced. This scheme targets the
environment where FTL can access and control the buffer cache. During garbage collec-
tion, some read operations for valid page copies are served from the buffer cache instead of
NAND flash memory if the valid pages are cached in the buffer cache, which is called Buffer-
Aware Block Merge (BA-BM). Thereafter, the states of the accessed dirty buffer pages are
changed to clean, since these buffer pages already hold the same data as those in NAND
flash memory, thus avoiding following flushes. To amplify the effect of BA-BM, the number
of dirty buffer pages for each log block is taken into consideration when a victim log block
is selected in FTL, which is called Buffer-Aware Victim Block Selection (BA-VBS).

In BA-GC, if many dirty buffer pages are rewritten shortly after their states are changed
to clean by BA-BM, the benefit that reduces dirty page flushes will diminish. To avoid this
scenario, BA-GC uses the 3-region LRU buffer that maintains an update probability for each
buffer block, which is used to sort out cold pages that are unlikely to be updated. Supported
by the 3-region LRU buffer, BA-GC selects log blocks that have many dirty and cold buffer
pages as victim log blocks in FTL to decrease the number of dirty pages to be flushed and
read operations for valid page migration.

4 Motivation

The previous studies explained in the above section have been developed to improve the
performance of flash storage systems. One of them, BPLRU, is a well-known scheme that

Co-optimization of buffer layer and FTL in high-performance 423

Table 2 Model parameters to analyze the trade-offs of the unconditional block padding technique

Notation Description

N # of pages per block

Nf # of buffer flushes corresponding to the target log block

Ni # of dirty pages of the ith buffer flush

Nσ # of dirty pages flushed to the target log block during Nf flushes (Nσ = ∑Nf

i=1 Ni)

Nr (Sect. 5.1.3) # of remaining empty pages in the target log block

Tr , Tw , Te Read, write, erase operation time in NAND flash memory

GCFM Full merge cost: N · (Tr + Tw) + 2 · Te

GCSM Switch merge cost: Te

focused on elevating the random write performance through refining buffer management
policies. In this scheme, BML is optimized for FTL, while the FTL algorithm is unaware of
the BML policies. In other words, BML struggles to make beneficial input requests for FTL
without cooperation with FTL, thus giving severe restriction to enhancing the performance.

To illustrate this limitation, we analyze the effect of the block padding technique pro-
posed in BPLRU [11], which provides trade-offs between removing costly full merges and
increasing the overhead caused by unconditionally padding a victim block for each flush. If
a victim block is almost full of valid pages, the performance benefit of replacing full merges
with switch merges exceeds the padding overhead. Conversely, if a victim block has few
valid pages, the padding overhead can be considerably larger than the benefit.

With respect to the trade-offs, we compare the block padding technique with the non-
padding technique. To find parameters that determine the costs of both the techniques, we
set up a model, where we use the notations summarized in Table 2. This model calculates
the cost occurred on one log block in FTL as follows. Within a given period, there are Nf

flushes of a victim buffer block that corresponds to the target log block simply called the log
block. For each flush, a victim buffer block contains Ni (0 < Ni ≤ N) dirty pages, whose
sum is Nσ that means the total number of flushed dirty pages during Nf flushes. Nf ranges
from 1 up to Nσ , and the case of Nf = Nσ is even possible, for example, if a victim block
is flushed Nσ times with only one dirty page.

We define Cpad as the cost including the padding overhead during the given period with
the block padding technique. During the same period, we also define Cnopad as the cost with-
out the block padding technique. In this analysis, we consider only full merges for Cnopad ,
assuming that the log block is written in non-sequential order, with the consideration of
random write patterns; in cases where switch merges are made by sequential flush requests,
the non-padding technique is more cost-beneficial. If Nσ is not a multiple of N , the log
block is partly written after the last flush in Cnopad . In this case, we assume that the log
block is ultimately reclaimed by a full merge to make the same state of the log block for
both the techniques after the last flush. The costs of the two techniques are calculated by the
following formulas:

Cnopad =
Nf∑

i=1

Ni · Tw +
⌈∑Nf

i=1 Ni

N

⌉

· GCFM

= Nσ · Tw +
⌈

Nσ

N

⌉

· GCFM

424 H. Shim et al.

Fig. 3 Cost comparison of the
padding and non-padding
techniques

Cpad =
Nf∑

i=1

(
Ni · Tw + (N − Ni) · (Tr + Tw) + GCSM

)

= (Nf · N − Nσ) · Tr + Nf · N · Tw + Nf · GCSM

Cnopad involves Ni page writes for each flush and overall �Nσ /N� full merges including
the log block redemption after the last flush. Cpad contains Ni page writes, the padding
overhead (N − Ni page reads and writes), and one switch merge, for each flush. Figure 3
shows a comparison of Cpad and Cnopad according to Nf and Nσ . To calculate the operation
time, we used the specification of MLC NAND flash memory shown in Table 1. Note that if
Nf = 1, Nσ is limited from 1 to N , since the number of dirty pages of a victim block in the
buffer cache cannot exceed N .

As Nσ increases Cnopad increases, which is regardless of Nf , but Cpad is seriously affected
by Nf rather than Nσ . In Cpad , Nσ /Nf means the average rate of dirty pages for all flushes,
which we simply call the dirty rate. As Nf decreases under the same Nσ , the dirty rate
increases and the padding overhead is mitigated, achieving better performance for the block
padding technique (Cpad). However, the larger the number of flushes (Nf), the larger Cpad

beyond Cnopad because each of flushes accompanies considerable padding overheads for
victim blocks with the small dirty rate. Under random write patterns, the dirty rate is likely
to be lower than that under sequential write patterns, incurring a great number of flash reads
and writes for padding. Moreover, considering that Nf ranges up to Nσ in the worst case,
the padding overhead may overwhelm the benefit of removing full merges.

This analysis describes the limitation of the block padding technique when using the
unmodified FTL algorithm that is unaware of the BML policies. This technique exploits
only superficial information of FTL behavior; this is about the condition to generate switch
merges in FTL. Accordingly, this technique unconditionally pads a victim block, thus re-
sulting in numerous extra operations. Therefore, we need a more intelligent BML policy
as cross-layer optimization through communicating with FTL in order to ensure better and
stable performance not affected by the dirty rate.

5 Co-optimization between BML and FTL

For better performance of flash storage systems, BML and FTL should be aware of and
optimized for each other. From this point of view, the BML policy can cooperate with the
FTL algorithm with the consideration of the FTL state to provide appointed input requests,
and FTL should be prepared for the refined input requests. As a co-optimization (CO-OP)

Co-optimization of buffer layer and FTL in high-performance 425

Table 3 CO-OP interfaces provided by FTL for BML

Notation Description

BAST # of free pages in the LBN log block/∅ ← Get_NFreePG_Log(LBN)

True/false ← Is_Seq_Log(LBN)

of free log blocks ← Get_NFreeLog()

LBN of the next victim log block ← Get_Victim_Log()

FAST Threshold length for random write requests ← Get_Thres_RW()

scheme, we propose two techniques: Selective Block Padding (SBP) and Optimized Switch
Merge (OSM). We apply these techniques to two popular FTL algorithms: BAST and FAST.
These hybrid FTLs are widely adopted in various cost-sensitive consumer-based flash stor-
age devices due to their small memory and computing resource consumption. For this co-
optimization, we state the CO-OP interfaces from BML to FTL, which will be used in the
following SBP algorithms, for the two target FTLs in Table 3.

5.1 Case study with Block-Associative Sector Translation (BAST)

In the CO-OP scheme with BAST, a victim block in the buffer cache is flushed to FTL
with padding only if a full merge is expected through the flush, and then FTL exploits this
complete-block flush to avoid the full merge. By means of this cooperative optimization,
we propose an advanced flushing process, whose one example is presented and compared
with a non-optimized case in Fig. 4. Figure 4(a) illustrates a flushing process without the
co-optimization, and it proceeds as follows. The remaining empty pages of the log block
are written by the front dirty pages (0, 1, and 2) of the victim buffer block, and the fully-
consumed log block is reclaimed by an expensive full merge. Thereafter, a log block is
reallocated, and the remaining dirty pages (4, 5, 6, and 7) are written into the new log block.
In this example, the total cost of the flushing process is 8 page reads, 15 page writes, and 2
block erases in NAND flash memory.

In the advanced flushing process shown in Fig. 4(b), the CO-OP scheme pads the victim
block before flushing it in anticipation of a full merge that will be triggered by the flush, and
then the victim block is fully written to another free block instead of the original log block.
After being written, the free block becomes a new data block, and then the old log and data
blocks are erased. In this way, CO-OP saves 7 page reads and writes, compared with the
flushing process shown in Fig. 4(a). Moreover, following merge operations can be further
delayed since FTL obtains a completely-empty log block after the buffer flush. When adopt-
ing the proposed scheme, we can significantly reduce unnecessary flash operations through
replacing costly full merges with low-cost switch merges. For this enhanced optimization,
we need the cooperation between both the software layers, BML and FTL, which will be
explained in detail in the following subsections.

5.1.1 Selective Block Padding

We propose a new BML policy called Selective Block Padding (SBP) for co-optimization
with BAST. In this policy, a victim buffer block is selected in block-level LRU order, and
LRU compensation of BPLRU [11] is adopted to prevent sequential writes from unnecessar-
ily occupying the buffer cache. In our approach, BML can be aware of the state information

426 H. Shim et al.

Fig. 4 Buffer flushing examples with and without the CO-OP scheme in BAST

of log blocks in FTL such as the number of written pages and how they were written, se-
quentially or non-sequentially, by using the CO-OP interfaces. With this information, SBP
selectively applies the padding technique. When BML flushes a victim buffer block, it de-
cides whether to pad the victim block, depending on the state of the corresponding log block.
If the log block can accommodate the flush without merge operations or will be merged by
a switch merge after the flush, BML flushes the victim block without padding to minimize
the padding overhead. If the log block must be merged by a full merge through the flush,
BML pads the victim block to furnish FTL with a condition for avoiding the full merge.

Algorithm 1 describes the algorithm of the proposed SBP policy that exploits the CO-OP
interfaces in Table 3. Blkvic denotes a victim buffer block, and Pd(Blkvic) is the collection
of dirty pages in Blkvic. If the number of dirty pages in the victim block is smaller than
the number of empty pages in the corresponding log block (|Pd(Blkvic)| < NfreePG) or if the
log block has not been allocated yet (NfreePG = ∅), SBP flushes the victim block without
padding. In this case, the dirty pages are simply written to the corresponding log block in
FTL, and no merge operation occurs in the log block. In particular, if Pd(Blkvic) fits into the
empty pages of the log block and the log block was written in sequence (Is_Seq_Log(LBN
of Blkvic) = True), SBP also does not pad the victim block to remove unnecessary padding
overhead. In this case, FTL simply converts the log block to a new data block by a switch
merge. In the other cases, SBP flushes the victim block (Blkvic) after padding it to produce a
complete-block flush since a full merge is anticipated.

SBP also considers an unfavorable scenario in BAST, where one of the pre-allocated
log blocks must be reclaimed by a full or partial merge if BML flushes a victim block

Co-optimization of buffer layer and FTL in high-performance 427

Algorithm 1 Selective Block Padding for BAST
1: procedure FLUSH_BUFFER(Blkvic)
2: // LBN: Logical Block Number
3: // NPB: Number of Pages per Block
4: NfreePG ⇐ Get_NFreePG_Log(LBN of Blkvic)
5: if (NfreePG �= ∅) then
6: if (|Pd(Blkvic)| < NfreePG) then
7: Flush Blkvic without padding
8:

9: else if (|Pd(Blkvic)| > NfreePG) then
10: Flush Blkvic with padding
11:

12: else if (First dirty page offset of Blkvic = NPB −NfreePG)
13: ∧ (Is_Seq_Log(LBN of Blkvic) = True) then
14: Flush Blkvic without padding
15: else
16: Flush Blkvic with padding
17: end if
18: else if (NfreePG = ∅) then
19: NfreeLog ⇐ Get_NFreeLog()
20: LBNvicLog ⇐ Get_Victim_Log()
21: BlkvicLog ⇐ Find_Buffer(LBNvicLog)
22:

23: if (NfreeLog = 0 ∧ BlkvicLog �= ∅) then
24: Flush BlkvicLog with padding
25: end if
26: flush Blkvic without padding
27: end if
28: end procedure

(Blkvic) that holds no log block (NfreePG = ∅) and if there is no available free block in FTL
(NfreeLog = 0). In addition, if dirty pages that correspond to this reclaimed log block are
cached in the buffer cache and flushed shortly, another pre-allocated log block should be
reclaimed again to allocate a new log block. To remove full or partial merges caused by
the repeated log block redemption in this scenario, before flushing the victim block (Blkvic),
SBP pads and flushes the buffer block (BlkvicLog) that contains dirty pages for the expected
victim log block. For this additional optimization, BML should recognize the number of free
log blocks and LBN of the expected victim log block, which are also given by the CO-OP
interfaces. In the following subsection, we explain how the underlying FTL manages those
complete-block flushes generated by SBP in order to avoid costly full merges.

5.1.2 Optimized Switch Merge

The BAST-based FTL is also optimized for the BML behavior by installing a new merge
technique called Optimized Switch Merge (OSM). On a write request, FTL can determine
whether the write request is a complete-block flush by checking the first-page offset and
length without an additional interface. If FTL receives a complete-block flush from BML
to one of the pre-allocated log blocks, it writes the buffer flush to a free block instead of

428 H. Shim et al.

the pre-allocated log block, and the fully-written free block becomes the new data block.
Thereafter, the corresponding data and the pre-allocated log blocks are simply reclaimed
by two erase operations. Consequently, FTL replaces a costly full merge with a lightweight
switch merge.

In addition, FTL equipped with the OSM technique obtains a completely empty log block
at the end of the buffer flush, which provides an additional benefit that raises the possibil-
ity of making switch merges. In cases where the corresponding log blocks have not been
allocated yet, original switch merges take place when FTL receives complete-block flushes.

5.1.3 Cost analysis of the CO-OP scheme: SBP and OSM

In this section, we analyze the cost of the CO-OP scheme, compared with those of
BPLRU [11], FAB [13], BP-REF [14], BA-GC [15]. From this analysis, we can also directly
compare the proposed technique with the existing unconditional and conditional padding
techniques.

For the following analysis, we use the notations described in Table 2. Ni is defined as
the number of dirty pages of a victim buffer block, and Nr means the number of remaining
empty pages of the corresponding log block, simply called the log block, in FTL. When
flushing a victim block that contains Ni dirty pages to the log block that holds Nr re-
maining empty pages, we compute the costs of the five different schemes. CFAB, CBPLRU ,
and CBP-REF mean the costs of the non-padding, unconditional block padding, and condi-
tional block padding policies, respectively. CBA-GC is the result when using the BA-BM
technique explained in Sect. 3, and CCO-OP is caused by both the proposed techniques,
SBP and OSM. Note that in the cases of Ni < Nr or switch merges, we can simply say:
CCO-OP = CFAB = CBA-GC ≤ CBPLRU , CBP-REF . Considering random write patterns, we as-
sume that the log block is reclaimed by a full merge for Ni ≥ Nr and Nr > 0. The cost of
each policy can be formulated as follows:

CFAB = Nr · Tw + GCFM + (Ni − Nr) · Tw + Cpot(Ni−Nr)

= Ni · Tw + GCFM + Cpot(Ni−Nr)

(
Cpot(Ni−Nr) = GCFM · (Ni − Nr)/N

)

CBPLRU = Cprev(N−Nr) + Cpad(N−Ni) + N · Tw + GCSM
(
Cprev(N−Nr) = Nr · (Tr + Tw) + GCSM

)

(
Cpad(N−Ni) = (N − Ni) · Tr

)

CBP-REF = Cpad(N−Ni) + Nr · Tw + GCFM + (N − Nr) · Tw + Cpot(N−Nr)

(
Cpad(N−Ni) = (N − Ni) · Tr

)

(
Cpot(N−Nr) = GCFM · (N − Nr)/N

)

CBA-GC = Nr · Tw + GCBA-BM
(
GCBA-BM = GCFM − (Ni − Nr) · Tr

)

CCO-OP = Cpad(N−Ni) + N · Tw + GCOSM
(
Cpad(N−Ni) = (N − Ni) · Tr

)

(GCOSM = 2 · Te)

Co-optimization of buffer layer and FTL in high-performance 429

In FAB as the non-padding policy, the Nr remaining empty pages of the log block are
fully written by a part of dirty pages of the victim block. Thereafter, the log block is re-
claimed by a full merge, and the remaining Ni − Nr dirty pages of the victim block are
written to the newly-allocated log block. As a result, after the victim block is flushed, the
new log block is written as many as Ni − Nr pages, antedating the following merge opera-
tion. Accordingly, we additionally compute the potential overhead as Cpot(Ni−Nr), which is
derived from the Ni − Nr page writes to the new log block.

In BPLRU using the unconditional padding technique, Nr cannot be more than zero since
BPLRU triggers only switch merges. For fair comparison and making Nr zero, we include
the padding and switch merge overheads (Cprev(N−Nr)) for the previously flushed N − Nr

pages (Ni−1), assuming that Nf was 1. Note that the cost of BPLRU can be considerably
larger with a low dirty rate having large Nf as explained in Sect. 4. To flush Ni dirty pages,
BPLRU pads the omitted N − Ni pages (Cpad(N−Ni)) and flushes a complete block (N · Tw).
Then, the log block is merged by a switch merge (GCSM). Since BPLRU obtains completely
empty log block after the flush of Ni dirty pages, there is no potential overhead.

In BP-REF, we should carefully consider the conditional block padding technique. In this
analysis, we assume that BP-REF did not pad the previous flush of N − Nr pages (Ni−1)
but pads the current flush of Ni pages. For the current flush, BP-REF fills up the omitted
pages of the victim block (Cpad(N−Ni)), and flushes some of dirty pages to the remaining Nr

empty log pages. After the log block is reclaimed by a full merge (GCFM), the remaining
dirty pages are flushed to the newly-allocated log block, generating the potential overheads
(Cpot(N−Nr)).

If BP-REF pads both the flushes, the cost of BP-REF becomes the same as that of
BPLRU. Conversely, if both the flushes are not padded, the cost is the same as that of FAB.
If BP-REF pads only the previous flush, the cost just after the current flush will change
according to Nr and Ni . From the next flush, however, the cost will follow this analysis
because the log block is already occupied by the Ni written pages.

In BA-GC, the Nr remaining empty pages of the log block are fully written by a part
of dirty pages of the victim block like the FAB policy. Then, the log block is merged by
BA-BM whose cost is GCBA-BM . During the BA-BM operation, since the remaining Ni −Nr

dirty pages of the victim block can be read from the buffer cache for valid page migration,
Ni − Nr page reads of NAND flash memory are saved, compared with GCFM . After this
merge operation, the remaining Ni −Nr dirty pages of the victim block are already changed
to clean pages. Then, these remaining clean pages of the victim block are simply evicted
from the buffer cache without flushing, and thus CBA-GC can be lower than CFAB.

Finally, in CO-OP, SBP pads the victim block by reading the N −Ni omitted pages from
FTL due to Nr ≤ Ni , and then reclaims the log block and its data block by OSM, whose cost
is GCOSM , after simply writing the complete block to a free block. The following inequality
describes the comparison of the costs generated by five different schemes.

CCO-OP < CBPLRU(= CBA-GC) ≤ CFAB ≤ CBP-REF

= 0 < Nr · (Tr + Tw) ≤ Ni · (Tr + Tw) + Cpot(Ni−Nr) ≤ N · (Tr + Tw) + Cpot(N−Nr)

From this analysis, when flushing a victim block of the buffer cache for Nr ≤ Ni and Nr > 0,
we demonstrate that CCO-OP always shows the lowest cost, compared with the other schemes.

5.2 Case study with Fully-Associative Sector Translation (FAST)

The CO-OP scheme including the SBP and OSM techniques can be also employed in FAST
to enhance the performance. The proposed CO-OP scheme presents FAST a more intelligent

430 H. Shim et al.

criterion for redirecting buffer flushes to RW log blocks or the SW log block. This co-
optimization is an advanced approach to reduce partial merges in the SW log block as well
as full merges in RW log blocks.

To reduce full merges in FAST, random writes that exhibit high temporal locality should
be stored in RW log blocks. Such random writes are likely to be invalidated in RW log blocks
by following updates. If all valid pages that belong to the same associated data block in an
RW log block are invalidated, FAST can avoid a full merge for the associated data block
when reclaiming the RW log block. We call this a Full Merge (FM) hit. From preliminary
workload analysis with the traces in Table 5, we observed that buffer flushes that contain a
small number of dirty pages can make more FM hits in RW log blocks. In the existing FAST
algorithm, however, RW log blocks are occupied by various-sized write requests, lowering
the FM hit ratio. Furthermore, FAST is vulnerable to multiple sequential write streams and
the mixture of random and sequential write patterns, since FAST maintains only one SW log
block. For example, if there are many small random writes whose first-page offset is zero,
the SW log block is repeatedly reclaimed by numerous partial merges.

Considering those problems in FAST, the CO-OP scheme distinguishes random and se-
quential writes by means of the number of dirty pages in a victim buffer block to remove
expensive full and partial merges. Figure 5 shows the examples of flushing processes based
on the CO-OP scheme. In this example, the SBP technique selectively pads the victim buffer

Fig. 5 Buffer flushing examples with the CO-OP scheme in FAST

Co-optimization of buffer layer and FTL in high-performance 431

block according to the number of dirty pages. As shown in Fig. 5(a), the CO-OP scheme
flushes the victim block without padding if the number of dirty pages is within the Random
Write (RW) threshold. The FTL equipped with the OSM technique writes the buffer flush
to RW log blocks from regarding the flush as random writes. This is helpful for reducing
partial merges and unnecessary padding overheads and also for increasing the FM hit ratio.
Note that, in the Fig. 5(a), the 0 dirty page in the victim block should be written into the
SW log block without OSM. As shown in Fig. 5(b), if the number of dirty pages is larger
than the RW threshold, SBP pads the omitted pages of the victim block, and FTL flushes
the complete-block to the SW log block. After this, the related log pages and the data block
are invalidated and erased, respectively. In this way, the underlying FTL can redirect a write
request into RW or SW log blocks, depending on whether the request is a complete-block
flush, not on the first-page offset of the request.

5.2.1 Selective Block Padding

Algorithm 2 shows the algorithm of Selective Block Padding (SBP) for FAST. When flush-
ing a victim block (Blkvic) from the buffer cache, BML checks whether the number of dirty
pages in the victim block is larger than the RW threshold (ThresRW), which is obtained by the
CO-OP interface (Get_Thres_RW()). If the number of dirty pages is within the RW thresh-
old (ThresRW), BML flushes the victim block without padding. Otherwise, BML flushes the
victim block after padding it to provide a complete-block flush for FTL. In the next subsec-
tion, we explain how the underlying FTL exploits these write patterns generated by the SBP
technique as a co-optimization.

Algorithm 2 Selective Block Padding for FAST
1: procedure FLUSH_BUFFER(Blkvic)
2: ThresRW ⇐ Get_Thres_RW()
3: if (# of dirty pages in Blkvic ≤ ThresRW) then
4: Flush Blkvic without padding
5: else
6: Flush Blkvic with padding
7: end if
8: end procedure

5.2.2 Optimized Switch Merge

For the cooperative optimization with BML, Optimized Switch Merge (OSM) should be also
adopted in the existing FAST algorithm. The FTL equipped with the OSM technique writes
a complete-block flush, which denotes sequential writes, to the SW log block, which is
simply reclaimed by a switch merge. In the other cases, buffer flushes are redirected to RW
log blocks, considered as random writes. These filtered random writes can be more effective
for increasing the FM hit ratio in the RW log blocks. Moreover, the complete-block flushes
always trigger switch merges in the SW log block, thus eliminating costly partial merges.

For this co-optimization between the SBP and OSM techniques, FTL should offer the RW
threshold, which is demanded by the CO-OP interface (Get_ Thres_RW()). In the proposed
CO-OP scheme, the initial RW threshold is set as 70 when the number of pages per block
is 128, and the RW threshold is dynamically adjusted considering the FM hit ratio and
workload characteristics.

432 H. Shim et al.

6 Performance evaluation

We evaluated the CO-OP scheme with two widely-used FTL algorithms: BAST and FAST,
compared with the existing BML and FTL schemes summarized in Table 4. Although the
BA-GC scheme was expounded only for FAST in the paper [15], we modified and adopted
the BA-GC algorithm properly for BAST, based on the comment from the first author. In
the modified algorithm, when a victim log block is selected by BA-VBS, a log block that re-
serves enough free pages for accommodating the dirty buffer pages to be flushed is excepted
from candidates to avoid unnecessary merge operations. To clearly compare the proposed
scheme with the non-padding policy, we additionally define BLRU, which is identical with
BPLRU [11] without the block padding technique.

6.1 Simulation configurations

The following simulation is configured for MLC NAND flash memory [2] that provides a
larger capacity and a cheaper price than SLC NAND flash memory [1], and that is more suit-
able for consumer-based flash storage devices. The specifications of both types of NAND
flash memory are described in Table 1. According to the previous studies [21, 22], the por-
tion of extra blocks is configured as 3% of the overall NAND flash memory whose size is
64 GB.

The DRAM size ranges from 4 MB to 32 MB. A part of the DRAM is used for the FTL
mapping cache, and the remaining part is used for the buffer cache. For example, BPLRU
can utilize almost all of the DRAM space for the buffer cache since it requires few log
blocks. As previously mentioned, the buffer cache is used only for write caching, not for
read caching [11, 15].

We implemented a trace-driven simulator that operates with the various block-level
traces, which are summarized in Table 5. We classify the traces into three groups. First,
Pic and MP3 traces model the workloads of mobile embedded devices such as digital cam-
eras, MP3 players, and Portable Media Players (PMPs). To generate these workloads, we

Table 4 Summary of the existing BML and FTL schemes

Target Buffer management Victim BML flushing FTL merge

policy unit policy algorithm

FAB [13] BML Largest block-based Block Non-padding Unmodified

victim selection

+ block-level LRU

BPLRU [11] BML Block-level LRU Block Unconditional Unmodified

+ LRU compensation block padding

BP-REF [14] BML Page-level LRU Block/page Conditional Unmodified

+ victim window block padding

BA-GC [15] FTL 3-region LRU Block Non-padding BA-VBS

BA-BM

CO-OP BML + FTL Block-level LRU Block Selective Optimized

+ LRU compensation block padding switch

merge

Co-optimization of buffer layer and FTL in high-performance 433

Table 5 Summary of the block-level traces that model various workloads

Name Description Req. ratio Req. size Working set

[read/write] [read/write] [read/write]

(%) (KB) (GB)

Pic Copying and deleting picture
files repeatedly (avg. file size =
1.9 MB)

–/100 –/55.8 –/1.69

MP3 Copying and deleting MP3
files repeatedly (avg. file size =
4.4 MB)

–/100 –/63.1 –/1.89

Multi Multimedia-based works by
using web camera applications,
video editors, audio editors,
photoshop, 3D Maya, etc.

43.6/56.4 10.1/19.6 15.4/6.8

Web Web-based works such as web
browsing, audio playing, file
downloading, and running
email clients and messengers

24.5/75.5 7.8/9.2 6.5/5.2

TPC-C Running the open-source
TPCC-UVa benchmark that
creates and tests a new data-
base [31]

1.4/98.6 20.6/9.5 0.1/1.2

HM_Server Hardware monitoring function
in data center servers [32]

35.5/64.5 7.4/8.3 1.9/1.6

repeatedly deleted and created 2 GB worth of picture or MP3 files 10 times for each trace
after creating 6 GB worth of the multimedia files. Second, we employed two realistic work-
loads from common desktop systems such as the Multi and Web traces. Finally, we used
server workloads such as the TPC-C and HM_Server traces to evaluate the performance in
On-Line Transaction Processing (OLTP) environments and in data center servers. The mo-
bile embedded workloads mainly consist of sequential writes, while the other workloads
contain many random writes with some temporal locality. These three-grouped traces were
helpful to evaluate the performance of the proposed techniques under the various workloads
of mobile embedded, desktop, and server systems.

6.2 Throughput

We measured the throughput (KB/s), which means the rate of the total amount of read and
written data to the overall operation time, by using all the traces with different DRAM sizes
from 4 MB to 32 MB. As shown in Figs. 6 and 7, CO-OP outperforms the competitors in
most cases. For instance, when the DRAM size is 16 MB in the Multi trace with FAST, the
throughput is improved by 55% over that of BLRU, the next closest competing scheme.

As shown in the mobile embedded traces of Fig. 6(a), (b) and Fig. 7(a), (b), most schemes
show similar performance with more than 16 MB DRAM, since these workloads consist
of many sequential writes and a few random writes. However, we observed that FAB and
BP-REF exhibit poor performance with less than 16 MB DRAM. In FAB, a buffer block
that holds the largest number of valid pages is selected as a victim block in preference to
comparing temporal locality. Accordingly, in the buffer cache, sequential blocks that con-
tain sequential writes are likely to face a higher probability of being evicted than random

434 H. Shim et al.

Fig. 6 Throughput comparison under various workloads with BAST

Fig. 7 Throughput comparison under various workloads with FAST

blocks that contain random writes. If the buffer space is insufficient, these random blocks
thoroughly occupy the buffer cache with a lower probability of being evicted. In this circum-
stance, sequential blocks tend to be flushed early due to their larger dirty pages before they

Co-optimization of buffer layer and FTL in high-performance 435

are fully filled with following sequential writes and become complete blocks. Furthermore,
even sequential blocks being currently written can be victim blocks without considering
their temporal locality. These early-evicted sequential blocks become the main cause of full
merges in FTL, which we call an early eviction problem. Since BP-REF employs the FAB-
like victim selection policy within the victim window, it suffers the same problem, which
also can involve unnecessary padding overheads. However, if the buffer cache accommo-
dates most random writes and leaves enough space for gathering sequential writes, FAB and
BP-REF can avoid this problem as shown in the results with more than 16 MB DRAM of
Figs. 6(a), (b) and 7(a), (b).

Unlike FAB and BP-REF, there is no such a problem in BPLRU, BLRU, and CO-OP
since they are based on the block-level LRU replacement policy. In this policy, sequential
writes can be freely assembled into complete blocks in the buffer cache. In addition, by
means of LRU compensation, these complete blocks can be flushed to FTL preferentially,
supporting lightweight switch merges.

In the random workloads of the desktop and server groups, BA-GC exhibits better per-
formance than BLRU in the results of Fig. 6(c)–(f) with BAST in accordance with the pre-
ceding analysis of Sect. 5.1.3. In Fig. 7(c)–(e) with FAST, however, the performance of
BA-GC sinks more or less below that of BLRU, the non-padding policy, due to the lower
buffer hit ratio of the 3-region LRU policy and the lower FM hit ratio in RW log blocks.
In these workloads, since the working set size of write patterns is larger than the amount
of log blocks unlike the other workloads, there is an additional behavior where one of pre-
allocated log blocks must be reclaimed whenever there are no more free blocks. For this
behavior, in the BA-VBS technique of BA-GC, a log block that holds many dirty and cold
pages in the buffer cache is selected as a victim in FTL regardless of the temporal locality
of the log block. Practically, in FAST, an RW log block that keeps many dirty pages in the
buffer cache can be invalidated by flushing the dirty pages and thus can reduce full merges.
In this way, the log pages that contain hot data can be repeatedly invalidated within RW log
blocks without full merges because these random workloads exhibit some temporal local-
ity for write requests. However, if the RW log block is selected as a victim by BA-VBS, it
should be reclaimed by full merge-based BA-BM. In other words, the BA-VBS technique
of BA-GC can select an RW log block to be naturally invalidated as a victim in FTL instead
of the LRU RW log block, lowering the FM hit ratio.

In all the results under the random workloads shown in Figs. 6(c)–(f) and 7(c)–(f), CO-
OP always achieves better performance than the other schemes including BLRU, while
BPLRU and BP-REF deliver similar or lower performance than BLRU. These results con-
firm that the unconditional or conditional padding technique involves large padding over-
heads under random write patterns, but CO-OP ensures stable performance enhancement
even under random write patterns with the different DRAM sizes.

6.3 FTL merge overhead

Figures 8 and 9 present the breakdowns of the merge count and cost when the DRAM size
is 16 MB with BAST and FAST, respectively. The overall merge count and cost for each
scheme are normalized to the largest value among the six schemes. In this breakdown, there
are three types of fundamental merge operations such as switch, partial, and full merges, and
three types of particular merge operations such as Padding Switch Merge (PSM), BA-BM,
and OSM for the BPLRU, BA-GC, and CO-OP schemes, respectively.

For BPLRU and BP-REF, we classify the switch merges into two groups, original switch
merges and PSMs artificially made by the unconditional or conditional block padding tech-
nique. In CO-OP, the count of OSM increases when a complete block is flushed from the

436 H. Shim et al.

Fig. 8 Breakdown of FTL merges: normalized merge count and merge cost with BAST

buffer cache after being padded to avoid full or partial merges. In BPLRU, BP-REF, or CO-
OP, the padding overhead that involves flash reads and writes is included in the cost of PSM,
full merges, or OSM. In BA-GC, BA-BM is counted when FTL reads valid pages from the
buffer cache or changes the state of dirty buffer pages into clean for each merge operation.
The write cost, as many as the number of these dirty buffer pages, is excluded in the cost of
BA-BM for fair comparison.

FAB presents many full and partial merges in the breakdowns even under the sequential
workload shown in Figs. 8(a) and 9(a) due to the early eviction problem where sequen-
tial blocks are shoved by random blocks in the buffer cache as explained in the previous
subsection. For the random workloads in Figs. 8(c)–(f) and 9(c)–(f), full merges also oc-
cupy a large portion of the breakdowns since there are few complete-block flushes. That
is why a multitude of full or partial merges augment the total merge cost. Note that few
full merges occur with FAST under some workloads that present a small working set size
in Fig. 9(a), (b), (e), because there is no full merge operation until all RW log blocks are
consumed.

BPLRU generates mainly PSMs and switch merges without full and partial merges, but
for most of the results it takes the largest number of merge operations, which is identical
with the number of flushes. In the sequential workload, the cost of PSM is relatively low
due to small padding overheads, while, in the random workloads, numerous PSMs with

Co-optimization of buffer layer and FTL in high-performance 437

Fig. 9 Breakdown of FTL merges: normalized merge count and merge cost with FAST

large padding overheads significantly raise the overall merge cost of BPLRU beyond those
of the competitors.

BP-REF shows a smaller merge cost than BPLRU with FAST, but there is a critical
problem under random write patterns with BAST. If BP-REF pads and flushes a victim
buffer block to the log block that already contains written pages, a full merge occurs instead
of a switch merge, also encountering the padding overhead. Therefore, the merge cost of
BP-REF is considerably larger than that of BLRU as the non-padding policy, and we call
this a conditional padding problem, which was previously analyzed in Sect. 5.1.3. Even
with FAST under most of the workloads, the performance of BP-REF falls behind that of
BLRU due to large padding overheads caused by the unawareness of the underlying FTL
state.

Compared with BLRU, CO-OP replaces many full merges in BAST and all of the partial
merges in FAST with lightweight OSMs, extending opportunities for reducing the overall
merge count and cost. In particular, CO-OP entirely removes full merges with sufficient log
blocks in BAST as shown in Fig. 8(e). As shown in Fig. 8(d), with BAST, CO-OP also can
increase the number of original switch merges because it obtains completely empty blocks
after victim log blocks are reclaimed by OSM. Moreover, in FAST, CO-OP eliminates all
of the frequent partial merges by exploiting the SBP and OSM techniques, which is a key
factor of the significant performance enhancement.

438 H. Shim et al.

Fig. 10 Comparison of the number of erase operations with BAST

Fig. 11 Comparison of the number of erase operations with FAST

Although the merge costs between BA-GC and the other schemes are quite different in
the MP3 trace shown in Figs. 8(b) and 9(b), there is no great difference with the overall
performance among all the competitors, because the portion of the merge cost is less than
just 3% of the total operation time in that trace unlike the other traces.

6.4 Erase count of NAND flash memory

The erase count of NAND flash memory is an important factor that directly affects the
lifetime as well as the performance of flash storage devices. Figures 10 and 11 show the
number of erase operations in the three traces from each workload group according to the
DRAM size; each result is normalized to the largest count.

In most of the results, there are many erase operations when employing BPLRU or BP-
REF. Although BPLRU results in only switch merges each of which consists of one block
erase, the merge count is significantly large. Exceptionally, the erase count is rather in-
creased from 4 MB to 8 MB in Fig. 10(c) with BP-REF. This is because the conditional
padding technique based on the predefined threshold unnecessarily causes more of the con-
ditional padding problems when using the larger buffer cache.

Under the sequential workloads shown in Figs. 10(a) and 11(a), FAB generates a large
number of erase operations with the small buffer size due to the early eviction problem,
since it incurs many full or partial merges. Under the random workloads, the write hit ratio

Co-optimization of buffer layer and FTL in high-performance 439

Fig. 12 Effects of the periodic flush cache command with BAST

Fig. 13 Effects of the periodic flush cache command with FAST

of the buffer cache in FAB and BP-REF is lower than the other schemes because their victim
selection policy is based on the number of dirty pages for each buffer block prior to temporal
locality. These write requests missed from the buffer cache also increase the erase count.

Considering CO-OP provides the smallest erase count under the various workloads and
DRAM sizes with BAST and FAST, we anticipate that the proposed scheme helps flash
storage devices extend the lifetime as well as enhance the performance comparatively.

6.5 Effect of flush cache commands

To prevent the loss of write-buffered data in the non-volatile buffer cache under unexpected
power failures, a flush cache command to the flash storage device can be periodically issued
by the host or by itself. Whenever the flush cache command is received, the buffer cache is
completely flushed. If the frequency of the flush cache command is very high, write requests
are likely to be flushed before being gathered in the buffer cache, so that there are almost no
write buffering and caching benefits. To analyze the effects of the periodic flush commands,
we measured the throughput (KB/s) under different flush command intervals from 10 to 640
requests with three traces from each workload group with 16 MB DRAM.

As shown in Figs. 12(a)–(c) and 13(a)–(c), the performance of CO-OP outperforms that
of the other schemes in all of the results. In the Multi and TPC-C traces with BAST shown
in Fig. 12(b), (c), the performance gap between CO-OP and FAB or BLRU narrows more

440 H. Shim et al.

Fig. 14 Performance according to the number of extra blocks with BAST

Fig. 15 Performance according to the number of log blocks with FAST

than the performance gap without the flush cache command. This is because these work-
loads consist of small random writes that reduce Ni of buffer flushes, which was explained
in Sect. 5.1.3. In the other results, however, the performance gap is more widely extended
because frequent full and partial merges create many opportunities to improve performance
for CO-OP. From these results, we expect that the proposed scheme can reliably enhance
the performance even under frequent flush cache commands.

6.6 Effect of the log block ratio

By adjusting the log block (extra block) ratio up to 5% of the overall flash capacity, we
measured the throughput (KB/s) when the DRAM size is 16 MB under the three realistic
workloads, which exhibit a large working set size. In the other workloads with a small
working set size, the performance difference between the competitors shows only slight
changes according to the log block ratio.

As shown in Figs. 14 and 15, CO-OP outperforms the other schemes not only with a small
number of log blocks but also with a large number of log blocks. Moreover, the performance
gap with the competitors is more widened as the log block ratio increases. In BAST, CO-OP
can create more opportunities for lightweight OSMs with sufficient log blocks because there
is no log block thrashing where pre-allocated log blocks are repeatedly reclaimed. Also, in
FAST, CO-OP can increase the FM hit ratio with enough log blocks by cooperatively dis-

Co-optimization of buffer layer and FTL in high-performance 441

tinguishing random and sequential writes. However, the other schemes do not show notable
performance enhancement even with sufficient log blocks especially in FAST.

In particular, BPLRU always obtains the same performance under different log block
ratios because its policy is not affected by the number of log blocks. Since BPLRU produces
only switch merges, most of the log blocks remain as free blocks, and the unused mapping
space in DRAM is utilized for write caching. If the number of log blocks is extremely small,
BPLRU may be relatively more cost-beneficial than the other schemes. However, this means
a strict limit on elevating the performance.

In Fig. 14(a) with BAST, the performance of BP-REF is rather reduced as the log
block ratio increases, because of the conditional padding problem previously mentioned
in Sect. 6.3. Paradoxically, if there are a small number of log blocks, the problem is allevi-
ated because padded victim blocks are likely to be flushed to data blocks that do not hold
pre-allocated log blocks. From this evaluation, we can confirm that the proposed scheme
achieves the best performance even in a wide range of the log block ratio.

7 Conclusion

Recently, we have witnessed the rapid growth of NAND flash-based storage devices as no-
table secondary storage devices. To enhance their performance, we focused on the coopera-
tive optimization (CO-OP) of two major software layers: Buffer Management Layer (BML)
and Flash Translation Layer (FTL). For improved cooperation between those two layers, we
proposed two main techniques: an FTL-aware BML policy called Selective Block Padding
(SBP) and a BML-assisted FTL algorithm called Optimized Switch Merge (OSM).

Unlike the existing unconditional or conditional block padding techniques, the SBP tech-
nique selectively pads a victim buffer block only when it can derive favorable behavior from
FTL by cooperating with FTL in order to minimize extra operations in NAND flash mem-
ory. In addition, the OSM technique transforms complete-block flushes supported by SBP
into low-cost switch merges instead of costly full or partial merges in FTL. After finish-
ing OSM, we procure completely empty log blocks, which provide additional benefits that
further delay upcoming merges and raise the probability of lightweight switch merges in
FTL.

To evaluate the performance of the proposed ideas, we set up an analytical model that
computes the cost of flushing the buffer cache according to competing approaches, and we
also implemented a trace-driven simulator executed by various block-level workloads from
mobile embedded, desktop, and server systems. The analysis and simulation results demon-
strate that the CO-OP scheme outperforms previous studies even with different DRAM sizes,
log block ratios, and periodic flush commands under varying workloads. In this paper, we
applied the CO-OP scheme to two widely-used FTL algorithms: BAST and FAST. We ex-
pect that the CO-OP scheme can also be further extended to other FTL algorithms like
page-level mapping FTLs.

Acknowledgement This work was supported by the IT R&D Program of MKE/KEIT [2010-KI002090,
Development of Technology Base for Trustworthy Computing].

References

1. 1 G × 8 Bit/2 G × 8 Bit/4 G × 8 Bit NAND flash memory (K9WAG08U1M) data sheets, Samsung
Electronics, Nov 2005

2. 2 G × 8 Bit NAND flash memory (K9GAG08UXM) data sheets, Samsung Electronics, Dec 2006

442 H. Shim et al.

3. Baek S, Choi J, Ahn S, Lee D, Noh SH (2009) Design and implementation of a uniformity-improving
page allocation scheme for flash-based storage systems. Des Autom Embed Syst 13(1–2):5–25

4. Lim S-H, Park KH (2006) An efficient NAND flash file system for flash memory storage. IEEE Trans
Comput 55(7):906–912

5. Lee C, Baek SH, Park KH (2008) A hybrid flash file system based on nor and nand flash memories for
embedded devices. IEEE Trans Comput 57(7):1002–1008

6. Caulfield AM, Grupp LM, Swanson S (2009) Gordon: using flash memory to build fast, power-efficient
clusters for data-intensive applications. In: Proceedings of the 14th international conference on architec-
tural support for programming languages and operating systems (ASPLOS’09), Washington, DC, USA,
Mar 2009, pp 217–228

7. Chen F, Koufaty DA, Zhang X (2009) Understanding intrinsic characteristics and system implications
of flash memory based solid state drives. In: ACM SIGMETRICS/performance, Seattle, WA, USA, Jun
2009, pp 181–192

8. Prabhakaran V, Rodeheffer TL, Zhou L (2008) Transactional flash. In: Proceedings of the 8th USENIX
symposium on operating systems design and implementation (OSDI’08), San Diego, CA, USA, Dec
2008, pp 147–160

9. Kang J-U, Kim J-S, Park C, Park H, Lee J (2007) A multi-channel architecture for high-performance
NAND flash-based storage system. J Syst Archit 53(9):644–658

10. Agrawal N, Prabhakaran V, Wobber T, Davis JD, Manasse M, Panigrahy R (2008) Design tradeoffs for
SSD performance. In: Proceedings of USENIX annual technical conference (USENIX’08), Boston, MA,
USA, Jun 2008, pp 57–70

11. Kim H, Ahn S (2008) A buffer management scheme for improving random writes in flash storage. In:
Proceedings of the 6th USENIX conference on file and storage technologies (FAST’08), San Jose, CA,
USA, Feb 2008, pp 239–252

12. Park S-Y, Jung D, Kang J-U, Kim J-S, Lee J (2006) CFLRU: a replacement algorithm for flash mem-
ory. In: Proceedings of the international conference on compilers, architecture and synthesis for embed-
ded systems (CASES’06) held in conjunction with ESWEEK’06, Seoul, Republic of Korea, Oct 2006,
pp 234–241

13. Jo H, Kang J-U, Park S-Y, Kim J-S, Lee J (2006) FAB: flash-aware buffer management policy for
portable media players. IEEE Trans Consum Electron 52(2):485–493

14. Seo D, Shin D (2008) Recently-evicted-first buffer replacement policy for flash storage devices. IEEE
Trans Consum Electron 54(3):1228–1235

15. Lee S, Shin D, Kim J (2008) Buffer-aware garbage collection for NAND flash memory-based stor-
age systems. In: Proceedings of the international workshop on software support for portable storage
(IWSSPS’08) held in conjunction with ESWEEK’08, Atlanta, GA, USA, Oct 2008, pp 27–32

16. Ding X, Jiang S, Chen F (2007) A buffer cache management scheme exploiting both temporal and spatial
localities. ACM Trans Storage 3(2):5

17. Chiang M-L, Lee PCH, Chang R-C (1999) Using data clustering to improve cleaning performance for
flash memory. Softw Pract Exp 29(3):267–290

18. Gupta A, Kim Y, Urgaonkar B (2009) DFTL: a flash translation layer employing demand-based selective
caching of page-level address mappings. In: Proceeding of the 14th international conference on archi-
tectural support for programming languages and operating systems (ASPLOS), Washington, DC, USA,
Mar 2009, pp 229–240

19. Kim J, Kim JM, Noh SH, Min SL, Cho Y (2002) A space-efficient flash translation layer for compactflash
systems. IEEE Trans Consum Electron 48(2):366–375

20. Lee S-W, Park D-J, Chung T-S, Lee D-H, Park S, Song H-J (2007) A log buffer-based flash translation
layer using fully-associative sector translation. ACM Trans Embed Comput Syst 6(3):18

21. Kang J-U, Jo H, Kim J-S, Lee J (2006) A superblock-based flash translation layer for NAND flash mem-
ory. In: Proceedings of the 6th ACM international conference on embedded software (EMSOFT’06),
Seoul, Republic of Korea, Oct 2006, pp 161–170

22. Lee Y-G, Jung D, Kang D, Kim J-S (2008) μ-FTL: a memory-efficient flash translation layer supporting
multiple mapping granularities. In: Proceedings of the 8th ACM international conference on embedded
software (EMSOFT’08), Atlanta, GA, USA, Oct 2008, pp 21–30

23. Park C, Cheon W, Kang J, Roh K, Cho W (2008) A reconfigurable FTL (Flash Translation Layer)
architecture for NAND flash-based applications. ACM Trans Embed Comput Syst 7(4):38

24. Choi HJ, Lim S-H, Park KH (2009) JFTL: a flash translation layer based on a journal remapping for
flash memory. ACM Trans Storage 4(4):14

25. Lee J, Kim S, Kwon H, Hyun C, Ahn S, Choi J, Lee D, Noh SH (2007) Block recycling schemes and
their cost-based optimization in NAND flash memory based storage system. In: Proceedings of the 7th
ACM international conference on embedded software (EMSOFT’07), Salzburg, Austria, Sep 2007, pp
174–182

Co-optimization of buffer layer and FTL in high-performance 443

26. Kang S, Park S, Jung H, Shim H, Cha J (2009) Performance trade-offs using NVRAM write buffer for
flash memory-based storage devices. IEEE Trans Comput 58(6):744–758

27. Lee BC, Ipek E, Mutlu O, Burger D (2009) Architecting phase change memory as a scalable DRAM al-
ternative. In: Proceedings of the 36th international symposium on computer architecture (ISCA), Austin,
TX, USA, Jun 2009, pp 1–12

28. Yoon JH, Nam EH, Seong YJ, Kim H, Kim BS, Min SL, Cho Y (2008) Chameleon: a high performance
flash/FRAM hybrid solid state disk architecture. IEEE Comput Archit Lett 7(1):17–20

29. Sun K, Baek S, Choi J, Lee D, Noh SH, Min SL (2008) LTFTL: lightweight time-shift flash translation
layer for flash memory based embedded storage. In: Proceedings of the 8th ACM international confer-
ence on embedded software (EMSOFT’08), Atlanta, Georgia, USA, Oct 2008, pp 51–58

30. Hsieh J-W, Tsai Y-L, Kuo T-W, Lee T-L (2008) Configurable flash-memory management: performance
versus overheads. IEEE Trans Comput 57(11):1571–1583

31. Llanos DR TPCC-uva: an open-source implementation of the TPC-C benchmark, installation and user
guide, version 1.2. http://www.infor.uva.es/~diego/tpcc-uva.html (2006)

32. Narayanan D, Donnelly A, Rowstron A (2008) Write off-loading: practical power management for
enterprise storage. In: Proceedings of the 6th USENIX Conference on File and Storage Technologies
(FAST’08), San Jose, CA, USA, Feb 2008, pp 253–267

http://www.infor.uva.es/~diego/tpcc-uva.html

	Co-optimization of buffer layer and FTL in high-performance flash-based storage systems
	Abstract
	Introduction
	Backgrounds
	NAND flash-based storage system
	Characteristics of NAND flash memory
	Power failure recovery
	Flash Translation Layer
	Block-Associative Sector Translation (BAST)
	Fully-Associative Sector Translation (FAST)

	Related works
	Motivation
	Co-optimization between BML and FTL
	Case study with Block-Associative Sector Translation (BAST)
	Selective Block Padding
	Optimized Switch Merge
	Cost analysis of the CO-OP scheme: SBP and OSM

	Case study with Fully-Associative Sector Translation (FAST)
	Selective Block Padding
	Optimized Switch Merge

	Performance evaluation
	Simulation configurations
	Throughput
	FTL merge overhead
	Erase count of NAND flash memory
	Effect of flush cache commands
	Effect of the log block ratio

	Conclusion
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

